黑龙港养分瘠薄区耕地生产力空间变异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
确保国家粮食安全,是构建社会主义和谐社会的前提条件。生产力是耕地生态系统的核心和关键,中国粮食供给的增长是在粮食单产已经接近甚至超过世界平均水平的基础上的再提高,所以研究区域耕地生态系统生产力及生产力变异性空间分布规律和特征,剖析影响生产力空间差异的主控因素,对耕地生态系统生产力稳定提高具有重要意义。本研究以黑龙港流域雄县耕地生态系统为研究对象,通过剖析农耕地生产力变异性理论及内涵,从不同层次出发剖析了雄县耕地生产力空间变异性特征,构建了田块尺度耕地生态系统生产力及生产力变异性的评价指标体系,采用实地调查、室内分析和图件处理等方法,分析了雄县耕地生产力及生产力变异性空间分布规律和主控因素。主要得到以下结论:
     (1)从耕地生产力的趋势性、波动性和稳定性三个角度对雄县耕地生产力进行分析。生产力趋势上,粮食总产趋势值平均增长率为4.05%,趋势增长率发展并不稳定,从2000年开始增长率呈下降趋势;年均增长率超过4.00%的乡镇为米北乡,为全县最高,大营镇发展条件相对较差,粮食总产趋势量增长为负值,为-0.28%。波动性方面,雄县粮食总产量呈现出了5年、10年、15年三个时间尺度周期性变化同时存在的波动特征,波动强度存在由东南部向西北部减弱的空间分布规律,其中北沙乡波动强度最大,达到0.59,居全县之首,昝岗波动强度仅为0.12,为全县最低。稳定性变化特征呈现出由东南向西北逐渐弱的整体空间分布格局,雄县雄州镇耕地生产力稳定性最高为0.3968,北沙乡耕地生产力的稳定性指数小于0,是雄县耕地生产力稳定性最差的区域。
     (2)建立了田块尺度耕地生产力评价指标体系,通对全县各地块标准粮产量的分析,探明了雄县耕地生产力空间分布规律及主要影响因素。雄县标准粮最高为891kg/亩,最低仅为432kg/亩,全县范围内不同标准粮产量水平分片集中度较高。排水条件、有机质、灌溉保证率、全氮、碱解氮和速效钾是田块尺度上生产力空间波动的主控因素,随着生产力的不断升高,人为因素和自然因素对生产力的影响出现交替现象,具体表现为:生产力相对较低区人为因素和土壤自然属性共同作用,生产力较高区人为因素占主导地位。
     (3)从田块尺度进一步对雄县耕地生产力变异性进行分析,揭示了雄县耕地生产力空间变异性规律。1类变异区([0,0.10])面积分布最大为9722.28hm2,占雄县耕地总面积的31.09%;2类变异区((0.10,0.18])和3类变异区((0.18,0.25])面积相当,分别为7889.41hm2和7862.33hm2,占总面积的25.23%和25.14%;4类变异区((0.25,0.38])面积分布最小,仅占耕地总面积的18.54%。生产力稳定性空间波动的主控因素主要有全氮、土体构型、盐渍化情况和有机质含量。总体上看,人为作用对雄县耕地生态系统生产力稳定性的影响最大,土壤自然属性因素在中等稳定程度上与人为因素相当。
     (4)雄县耕地生态系统生产力高产出(标准粮产量高)不一定高稳定,而低产出(标准粮产量低)亦不一定低稳定,两者存在相互交叉区,即有一定的交叉性。高产出高稳定和高产出低稳定两区面积最大分别为6836.73hm2和68766.61hm2,占全县耕地总面积的43.85%,雄县耕地生态系统生产力水平较高、稳定性较强,加强人工管理,控制施肥量,提高灌溉工程设施等是保持高产出高稳定状态良好手段。
To ensure national food security is a prerequisite of building a socialist harmonious society. productivity is the core and key of Farmland ecosystem, the growth of China's food supply is based on a further increase when the grain yield is already close to or above the world average, so studying on regional agro-ecosystem productivity and Variability of spatial distribution and characteristics of productivity, analysising the controlling factors of the land productivity spatial variability, is important to the improvment of the Agro-ecosystem productivity. In this study, taking the Xiong County Land of Heilonggang Valley for ecosystem study, by analyzing the theory and content of the land productivity spatial variability, the study analysised the feature of Xiong County land productivity spatial variability through different levels and builded evaluation system of land productivity and land productivity variation in field Scale, And then studyed the spatial distribution and controlling factors by using the methods of field survey, laboratory analysis and map address. The main conclusions are as follows:
     (1) The land productivity was analyzed from three aspects of trend, volatility and stability. Productivity trends, the average growth rate of total grain output is 4.05% and it is not stable development, the growth rates has declined since 2000; The villages and towns of the average annual growth rate more than 4.00% is Mibei and it’s the highest in Xiongxian county.The development conditions of Daying town is poor and total grain output grew for the negative trend by the -0.28%. In the Volatility of land productivity, Xiong County's total grain output shows the 5yeaes, 10 yeaes and 15 yeaes, three time scale fluctuations in the cyclical changes in characteristics exist, the spatial distribution of fluctuations in intensity is weakening from the southeast to the northwest, the fluctuations of the maximum intensity is 0.59 in Beisha town and the minimum is 0.12 in Zangang town. The Stability variation showed a feature that it is weaken gradually from southeast to northwest, the highest stability of land productivity is 0.3968 in Xiongzhou town and the lowest is Beisha town which is Less than zero,is the worst areas in cultivated land productivity stability in Xiongxian County.
     (2) The study established a field scale evaluation index system of land productivity, Ascertained the spatial distribution and the main control factors of land productivity in Xiongxian. Xiong County pay the highest standard grain of 891kg/acre, the minimum is only 432kg/acre, and the standard grain within the different levels of distribution was distributed by poor state flower,the concentration of Land Quality is Higher. Drainage conditions, organic matter, irrigation guarantee rate, total nitrogen, available nitrogen and potassium is the control factors of volatility of productivity.With the productivity rising, Human factors and natural factors on the productivity appeared alternately phenomenon, Concrete expression is: Human factors and natural properties of soil is interacting in the relatively low productivity areas, dominated by human factors higher productivity areas.
     (3) It reveals spatial variability rule of land productivity from further cultivated field scale for land productivity variability in Xiong County.The distribution area of one class variable region ([0,0.10]) 9722.28hm2 is the biggest ,and accounts for 31.09% in the total area of cultivated land, 2 class variable region ((0.10,0.18]) and 3 class variable region ((0.18,0.25]) are similar, It is respectively 7889.41hm2 and 7862.33hm2 and accounts for 25.23% and 25.14%; 4 class variable region ((0.10,0.18]) is the least and only accounts for 18.54% .The controlling factors of productivity space fluctuations in the Productivity stability contain mainly total nitrogen, soil configuration, salinization conditions and organic matter.The effect of human is the biggest for productivity in farmland ecosystem productivity stability, it is similar for Natural properties of soil stability factor in the middle with the very human factors.
     (4) High-yield farmland ecosystem productivity (grain yield high standard) is not necessarily high stability, and low output (standard grain yield is low) is not necessarily less stable in Xiong County. It exist the cross-cutting areas,that certains cross-cutting. High stability and high yield of low stability were the two largest area and 68766.61hm2 6836.73hm2,high yield of high stability and low yield of high stability respectively is 6836.73hm2 and 68766.61hm2, accounts for 43.85%in the total area of cultivated land throughout the county, The higher level and stability of farmland ecosystem productivity can maintain high steady-state by Strengthening labor management, controling fertilizer, improving irrigation facilities and so on.
引文
[1]Black J. K,Watson D. J. Phontosynthesis and the theory of obtaining high crop yields[J]. Field crop absts,1960,13:165~175.
    [2]Bonner J. The upper limit of crop yields[J]. Science,1962,137:11~15.
    [3]Loomis R. S.,Williams W. A. Maximum crop productivity: an estimate[J]. Crop science,1963,(3).
    [4]竺可桢.论我国气候的几个特点及其与粮食作物生产的关系[J].地理学报,1964,30(1):1~13.
    [5]田国良.呼伦贝尔草原的太阳光辐射能和光合潜力[J].地理学报,1980,35(1):76~82.
    [6]梁荣欣.水稻的气候土壤生产潜力估算.自然资源[J],1984,(2):68~73.
    [7]候光良,蒋世逵.西藏高原1~12月平均温度的估算问题[J].地理学报,1980,35(3):265~269.
    [8]李继由.西藏地区光合生产力估算[J].资源科学,1980,(1):58~62.
    [9]于沪宁,赵丰收.光热资源和农作物的光热生产潜力[J].气象学报,1982,40(3):327~333.
    [10]方光迪.三江地区光、热资源与作物生产潜力[J].气象学报,1985,43(3):321~331.
    [11]赵名茶.作物可利用的光能-对光合潜力公式的检验和探讨[M].地理集刊,北京:科学出版社,1985,(17):35~48.
    [12]王菱,陈沈斌,候光良.利用彭曼公式计算潜在蒸发的高度订正方法[J].气象学报,1988,46(3):381~383..
    [13] Evah W. Murage. Nancy K. Karanja,Paul C. Smithson,et al.Diagnostic indicators of soil quality in productive and non-productive smallholders fields of Kenyas Central Highlands.Agriculture Ecosystems and Environment,2000,79(1):1~8.
    [14] M.J.Kirkby,Y.Le Bissonais,T.J.Coulthard,et al.The development of land quality indicators for soil degradation by water erosion. Agricultuer,Ecosystems and Environment,2000 81(2):125~135.
    [15] Clem Tisdell.Economic indicators to assess the sustainability of conservation farming projects:an evaluation.Agriculture,Ecosystems and Environment,1996,57(2-3):117~131.
    [16] Bas A.M.Bouman} Hans G.P.Jansen, Rob A.Schipper,et al.A frameword for integrated biophysical and economical land use analysis at different scales . Agriculture Ecosystems and Environment.1999.75(1-2):55~73.
    [17]张凤荣,张晋科,张迪等. 1996-2004年中国耕地的粮食生产能力变化研究[J].中国土地科学,2006,20(2):8-14.
    [18]张秋菊,傅伯杰,陈利顶等.黄土丘陵沟壑区县域耕地生产力与粮食自给能力变化差异—以安塞县为例[J].资源科学,2004,26(4):126-131.
    [19]陈奇伯,王克勤,齐实等.黄土丘陵区宁夏西吉县土地利用动态与坡耕地生产力变化水土保持学报,2002,16(3):28-32.
    [20]吕艳燕,郭吉元.世界六国粮食生产状况的统计分析[J].统计分析,1999,(4):40.
    [21]丁声俊,朱立志.世界粮食安全问题现状[J].中国农村经济,2003:71-80.
    [22]聂振邦,刘韧,王正友等.世界粮食供求现状、趋势和对策研究[J].中国稻米,2004,(5):1-5.
    [23]刘宗超.世界粮食形势及中国的对策[J].发展战略,2004,(5):60~63.
    [24]谢新松,许雅香.世界粮食危机与中国粮食安全[J].现代农业科学,2008,15(8):75~76.
    [25]万宝瑞,深化对粮食安全问题的认识[N].人民日报,2008-04-18.
    [26]张小虎.从全球粮食价上涨及粮食安全谈我国耕地保护[J].中国国土资源经济,2008(8):14-15.
    [27]郑新广,于峰.世界粮食危机的诱因及应对[J],国际经贸探索,2008(8):7.
    [28]张一宾.世界的粮食与农业[J].现代农药,2007,6(3):6-12.
    [29]曾玉平.中国的粮食生产波动[J].中国统计,1997(19)1: 25-27.
    [30]蒋乃华,张雪梅.中国粮食生产稳定与波动成因的经济分析[J].农业技术经济,1998(6): 40-44.
    [31]蒋乃华.我国粮食生产波动的结构特征分析[J].浙江社会科学,1998(4):26-30.
    [32]郭燕枝,王美霞,王创云.中国粮食安全系数波动及政策选择[J].农村经济,2009,(11):17-19
    [33]张志强.中国粮食生产波动的特征及波因分析[J].北京农学院学报,1998,13(2): 81-86.
    [34]张志强,邓蓉,王中华.中国粮食生产波动原因分析[J].新疆农垦经济,2003(3): 11-12.
    [35]马帅,郭淑梅.中国粮食产量增长率波动的计量研究[J].中国农学通报,2006,22(2):110-114
    [36]李国祥.建国以来我国粮食生产循环波动分析[J].中国农村观察,1999,(5):44-51.
    [37]张峭.中国粮食生产波动研究[J].农业技术经济,1998(5): 34-37.
    [38]刘明亮,陈百明.我国近期粮食生产的波动性及其与农业自然灾害发生状况的相关分析[J].灾害学,2000,15(4): 78-85.
    [39]尹世久,吴林海,张勇.我国粮食产量波动影响因素的经验分.系统工程理论与实践.2009.29(10):28-34.
    [40]张大瑜,凌凤楼,张立馥等.东北平原粮食主产区公主岭市种植业系统的能值分析[J].农业工程学报,200521(6):12-17.
    [41]孙玉杰,徐梦洁,刘勤等.封丘县粮食产量波动性与关联因素分析[J].江西农业大学学报(社会科学版),2007,6(2):63-66.
    [42]齐跃普,门明新,许皞.河北省粮食产量波动及其形成的影响因素定量化分析[J].农业系统科学与综合研究,2008,24(4):403-407.
    [43]李新旺,王树涛,门明新等.基于EMD的河北省粮食产量波动及其成因的时空多尺度分析[J].自然资源学报,2009,24(11):1994-2004.
    [44]张勇,曾澜,吴炳方.区域粮食安全预警指标体系的研究[J].农业工程学报,2004,20(3):192-196.
    [45]杨萍果,毛任钊,赵建林等.区域粮食综合生产能力及粮食安全分析—以河北省石家庄市为例[J].农业工程学报,2006,22(2):279-282.
    [46]张千五,王数,张凤荣等.基于农用地分等的粮食生产能力田间质量限制研究[J].农业工程学报,2008,24(10):85-88.
    [47]公茂刚,王学真,刘力臻.发展中国家粮食安全影响因素的理论分析[J].东北师大学报(哲学社会科学版) 2009,(6):93-98.
    [48]郭淑兰.我国粮食产量主要影响因素:理论与实证[J].生产力研究,2009,(14):8-10.
    [49]封志明,杨艳昭,张晶等.从栅格到县域:中国粮食生产的资源潜力区域差异分析[J].自然资源学报,2007,22(5):747-755.
    [50]程叶青.东北地区粮食单产空间格局变化及其动因分析[J].自然资源学报,2009,24(9):1541-1549.
    [51]李奇峰,张海林,陈阜.东北农作区粮食作物种植格局变化的特征分析[J].中国农业大学学报,2008,13(3):74-79.
    [52]祝美群,白人朴.改革开放以来我国粮食生产波动的分析[J].中国农业大学学报,2000,5(4):6-10.
    [53]谷洁,高华,方日尧等.冬小麦产量的土壤养分限制因子与施肥研究[J].西北农业大学学报, 1998, 26(1): 74-77.
    [54]霍习良,张俊梅,许皞等.河北省冲积平原区潮土的土壤养分限制谱序研究与应用[J].河北农业大学学报, 2001, 24(4): 32-35.
    [55]罗龙学,吴定志,刘尚培等.不同施肥比例与玉米产量的关系[J].种子, 2004, 23(1): 56-57.
    [56]赵四申,王秀,高清海等.不同机械施肥方式对玉米生长发育及产量效应的影响[J].农业工程学报, 1999, 15(3): 123-127.
    [57]徐玲,张杨珠,曾希柏等.不同施肥结构对稻田土壤肥力质量的影响[J].湖南农业大学学报(自然科学版). 2006, 32(4): 362-367.
    [58]张奇春,王光火.长期不同施肥下杂交稻与常规稻的产量与土壤养分平衡[J].植物营养与肥料学报, 2006, 12(3): 340-345.
    [59]Gourley J P, Allan D L, Russelle M P. Plantand nutrient efficiency: a comparison of definitions and suggested improvement[J]. Plant and Soil, 1994, 158: 29-37.
    [60]孔宏敏,何圆球,吴大付等.长期施肥对红壤旱地作物产量和土壤肥力的影响[J].应用生态学报, 2004, 15(5): 782-786.
    [61]钦绳武,顾益初,朱兆良.潮土肥力演变与施肥作用的长期定位试验初报[J].土壤学报, 1998,35(3): 367-375.
    [62]孙克刚,张学斌,吴政卿,等.长期施肥对不同类型土壤中作物产量及土壤剖面硝态氮累积的影响[J].华北农学报, 2001, 16(3): 105-109.
    [63]马俊永,李科江,曹彩云,等.有机-无机肥长期配施对潮土土壤肥力和作物产量的影响[J].植物营养与肥料学报, 2007, 13(2): 236-241.
    [64]宋永林,唐华俊,李小平.长期施肥对作物产量及褐潮土有机质变化的影响研究[J].华北农学报, 2007, 22(增刊): 100-105.
    [65]李秀英,李燕婷,赵秉强,等.褐潮土长期定位不同施肥制度土壤生产功能演化研究[J].作物学报,2006,32(5): 683-689.
    [66]Hashim G, Coughlan K, Syers J. On-site nutrient depletion: an effect and a cause of soil erosion[J]. Soil Erosion at Multiple Scales.CAB Internationa,l 1998: 207-221.
    [67]Xie J C, Luo J, Ma M. Potassium-supplying potential of different soils and the current potassium balance status in the farmland ecosystems in China[J]. Soil and Fertilizer Institute of the Chinese Academy of Agricultural Sciences, 1990, 17: 97-105.
    [68]Lin X, Yin C, Xu D. Inputand output of soilnutrients in high-yield paddy fields in south China[A]. In KhonKaen. Proceedings of the in-ternational symposium onmaximizing rice yields through improved soil and environmental management. Thailand, 1996. 93-97.
    [69]张锡洲,刘岱,李廷轩,等.资中县农田养分平衡与土壤养分变化初探[J].西南农业学报,2001, S1: 21-25.
    [70]高洪军,朱忠,彭畅,等.淡黑钙土玉米养分平衡调控技术初探[J].吉林农业科学,2005,30(5): 43-45, 53.
    [71]王洋,齐晓宁.德惠市农田黑土肥力评价级施肥措施研究[J].中国生态农业学报,2007,3: 26-28.
    [72]袁新田,焦加国,李辉信.上海农场农田土壤养分状况及培肥措施[J].安徽农业科学,2007, 35(32): 10381-10382.
    [73]刘爱民,徐丽明.现代精准农业及我国精准农业的发展方向[J].中国农业大学学报,2000,5(2):20-25.
    [74]巨晓棠,刘学军,邹国元,等.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002,35(12):1493~1499.
    [75] Tompson L M.Weather and technology in the production of soybeans in the Central United States. Agronomy J. 1970 (62):232-236.
    [76] Slabbers P J, Herrendorf V Sorbello,Stapper M.Evaluation of simplified water-crop yield model. Agricultural Water Management, 1979(2):95-129.
    [77] Offutt S E , P Garcia, M Pinar.The distribution of gains from technological advance when input quality varies. Agricultural Economies Association,1987,69:321-327.
    [78] Giancarlo Moschini. Normal inputs and joint Production with allocatable fix Factors American. Agricultural Economics Association,1989,71(4):1021-1024.
    [79]Dobermann A.Factors causing field variation of direct-seeded flooded rice. Geoderma,1994 ,62:125-150.
    [80] Timsina J,Connor D J. Productivity and management of rice-wheat cropping systems: issues and challenges. Field Crops Research, 2001, 69 (2):93-132.
    [81]Tvy T J,Hooker D C. Assessment of multiple-and single-factor stress impacts one corn. Field Corps Research.2002,75(2-3):123-137.
    [82]Hafner S.Trends in maize, rice and wheat yields for 188 nations over the past 40 years:a prevalence of linear growth.Agriculture,Ecosystems & Environment, 2003,97(1-3):275-283.
    [83]Chloupek O,Hrsktova P, Schweigert P. Yield and its stability,crop diversity, adaptability and response to climate change,weahter and fertilization over 75 years in the Czech Republic in comparison to some European countries. Field Crops Reseacrh,2004 ,85 (2-3):167-190.
    [84] Samapundo S,Devlieghere F,De Meulenaer B et al. Predictive modelling of the individual and combined effect of water activity and temperature on the radial growth of Fusarium verticilliodes and F-proliferatum on corn. International Journal of Food Microbiology,2005,105 (1):35-52.
    [85] Bouman B A M,Laar H H Van. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 2006,87(3):249-273.
    [86] Nicholas R. Lardy. Agriculture in China’s modern economic development. Cambridge University Perss,1983:190-200.
    [87] Shenggen Fan.Effect of technological change and institutional reform on production growth inChinese agriculture. American Journal of Agricultural Economics,1991,73:266-275.
    [88] Yifu lin.Rural reform and agricultural growth in China. American Economic Review, 1992,82:34-51.
    [89]顾焕章主编.技术进步与农业发展.江苏科学技术出社,1993:24-44.
    [90]朱希刚.种植业生产技术进步评价和经营规模对策.农业技术经济,1991(1):17-23.
    [91]顾焕章等.中国农业增长的源泉与技术进步.农业技术经济,1991(l): 1-8.
    [92]Klingebiel A. A,Montgomery P. H Land Capability Classification. US Department of Agriculture Handbook LUCCD Proceeding of International Conference on Land Use/Cover Change Dynamics[J]. Beijing Normal University,Beijing,China,2001.
    [93]金野隆光(林齐民译).土壤配肥原理[M].福建科技出版社,1983.
    [94]林培.土地资源学[M].中国农业大学出版社,1996.
    [95]黎孟波.土壤肥力研究进展[M].中国科技出版社,1991.
    [96]王建武.县域农业土地利用系统定量化分析方法研究与实践[C].中国农业大学博士学位论文,1998.
    [97]Huang N E,Shen Z,Long S.R.et al. The emp iricalmode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of Land A,1998,454:903-955.
    [98]Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:the Hilbert spectrum. Annual Review of Fluid Mechanics,1999,31:417-457.
    [99]邓拥军,王伟,钱成春等.EMD方法及Hibert变换中边界问题的处理[J].科学通报,2001, 46(3):257-263.
    [100]林振山,汪曙光.近四百年北半球气温变化的分析:EMD方法的应用[J].热带气象学报,2004, 20(1): 90-96.
    [101]熊学军,郭炳火,胡莜敏等.EMD方法和Hilbert谱分析法的应用与探讨[J].黄渤海海洋, 2002, 20(2):12-21.
    [102]方伟华,史培军,王静爱.洪涝灾害灾情时间变化特性分析[J].自然灾害学报.2000,(2):39-44.
    [103]邓拥军,王伟,钱成春等.EMD方法及Hilbert变换中边界问题的处理[J].科学通报,2001,46(3):257-263.
    [104]曾黄麟.粗糙集理论及其应用[M].重庆:重庆大学出版社,1998.
    [105]刘清.Rough集及Rough推理[M].北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700