流域土地利用对苕溪水体C、N、P输出的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C、N和P等营养物质通过河流向下游水体输送及其对下游水生态系统的影响已经成为国际上流域生态学领域关注的重点问题。河流水体中C、N和P等营养物质的输移过程主要受流域内气候、地形地貌、土地利用及水文条件等因素影响。目前,以土地利用/覆被变化为标志的人类活动已经改变了47%的地球表面,导致全球河流营养盐迁移过程改变和输出量的增加,并危及下游水生态系统的健康状况。因此,系统分析流域土地利用对河流水体中碳、氮和磷等营养物质输出的调控机理是当前了解流域内各类营养物质经由河流向下游水体迁移的生物地球化学行为,及采取相关措施以减缓流域营养物质向下游水体输送,维护或恢复下游水生态系统健康所亟待解决的问题。
     苕溪作为太湖的主要供水和营养物质输入源头之一,对太湖水体富营养化甚至整个长江三角洲地区的水环境安全有着重要影响。本文选择苕溪流域作为研究区,以野外水质与水文监测数据、土地利用与DEM数据等为基础,同时结合遥感与GIS等空间信息技术,通过多步回归、冗余分析、空间多准则分析等典型数理统计方法,系统分析流域土地利用特征、水文过程对溪流水体中C、N、P迁移的调控作用及其影响力所表现出的时空尺度依赖性;评估土地利用综合特征影响下,流域内每个统计单元的C、N、P释放潜力等科学问题。通过研究得出以下主要结论:
     (1)西苕溪流域内某些景观特征对溪流水体中C:N、C:P和N:P三种营养元素生态化学计量比指标的季节变化有显著影响,而作为流域水文过程代理变量的溪流流量对流域景观特征与溪流水体中三种营养元素生态化学计量比指标之间的关系具有显著调节作用,且这种调节作用因流域景观组分及营养元素比种类的不同而因。同样地,西苕溪流域每条溪流中三种营养元素计量比(C:N、C:P和N:P)与其所在集水区内溪流流量之间的相关关系因不同集水区内景观结构特征的差异而有所不同。在各集水区之间,伴随某些景观类型面积的变化,其对三种元素计量比与溪流流量之间相关性的控制作用主要体现在影响两者间相关性的正负方向方面。
     (2)流域景观对溪流水体中营养物质影响的尺度效应分析表明:在苕溪流域中,与岸带和河段尺度相比较,溪流水体中C、N、P营养物质对来自集水区尺度上的自然环境与土地利用所产生的压力更为敏感。流域自然环境及三种空间尺度(河段、岸带和集水区)上的人为干扰变量对河流水体中C、N、P营养物质动态变化的相对影响力随季节更替而产生变化。特别是在雨季期间,流域尺度上自然环境与人为干扰变量所产生的影响力则有所下降,而岸带与河段尺度上人为干扰变量对溪流水体中营养物质变化的作用力显著升高。因此,溪流水体中C、N、P营养物质的动态变化是苕溪所在流域内不同空间尺度上自然环境与人为干扰变量联合作用的结果。其中集水区尺度所产生的影响力总体较大且相对稳定,而局部尺度(河段和岸带)所产生的影响力相对较小且会随季节更替产生显著变化。
     (3)苕溪流域碳、氮、磷释放潜力空间分布特征如下,总氮和总磷的释放潜力空间分布特征大致一致。释放潜力由低到高的分布区域分别为:苕溪流域内的水域分布区、位于上游高地的林地分布区、位于中下游的大型城镇居民点分布区、中下游河道两侧的耕地集中分布区。总有机碳释放潜力的空间分布特征与以上两种营养元素大致相反。总体表现为,流域内受人为干扰程度较低的森林分布区有机碳释放潜力较大,而流域中下游沿河两侧近岸区域内的城镇、农村居民点及水稻田等人为干扰程度较大的用地类型有机碳释放潜力较低。同时基于县域尺度的苕溪流域C、N、P营养盐释放潜力分析表明,尽管三种营养盐释放潜力值因县域不同而存在明显差异,但是该区域内所有县市均具有较高的C、N和P释放潜力,且三种营养物的释放潜力均值均在0.6以上。C、N和P的释放风险等级划分结果表明,苕溪流域内约有48.49%、31.34%和21.54%的区域分别为TN、TP和TOC的重要释放源区
The elemental composition of particulate or dissolved matter (e.g., carbon, nitrogen orphosphorus), exported into downstream freshwaters or oceans (e.g., lakes and estuaries), hasimplications for downstream ecosystems. These relationships between riverine nutrientstransport and downstream ecoystems have been intensively studied by the global watershedecologists. Riverine nutrients export is mainly influenced by the climate, topography, geology,land use, and hydrology regieme of a catchment. Global human acitivities, indicated by landuse/land cover change, have made47%of the earth’s surface changed irreversibly, whichaffected not only the transport process of nutrients in streams but also downstream ecosystemshealth. Thus, throught profound analyses of influences of watershed land use pattern onriverine nutirents export, we will increase our ability to understand the biogeochemicalbehavior of kinds of nutrients from the watershed upland to downstream waters, and it isimperative for mangers to develop effective adaptation strategies to reduce riverine nutrientsexport and/or restore downstream ecosystems.
     The Tiaoxi Rvier, which is located in northern Zhejiang Province, typically contirbutedmuch of water and nutrients for the Taihu Lake. It not only led to the eutrophication in theTaihu Lake but also have implications for the water environmental security in the YangtzeRiver delta. In this study, the Tiaoxi River watershed was selected as the study region. Thewater quatliy indexes, river discharge and land use, incorportaing RS and GIS, and somestatistical methods, such as multistep regression, redundancy analysis and spatial multicriteriaanslysis, was used to analyze the influence of watershed land use patterns and hydrolgicprocesses on riverine nutrients export, and the scale dependence of these influences on riverinenutrients export, and the loss potential of C, N and P in each spatial unit in the Tiaoxi Riverwaterhed. Through the above research, we mainly obtained the follow conclusions:
     (1) Stream water C:N:P ratios were strongly related to several catchment landscapeproperties in the Xitiao River watershed. In addition, the relationships between C:N:P ratiosand catchment landscape properties were significantly affected by the variable hydrologiccondition, which was indicated by the river discharge in the Xitiao River watershed. Thestrength of these relationships changed depending on the element under consideration. Forexample, increasing river discharge was found to strengthen landscape (e.g., the percentage ofcropland)-C:P ratio relationships, but weaken landscape (e.g., percentage of waterbody)-N:Pratio relationships. Similarly, there were significant correlationships between stream waterC:N:P ratios and river discharge in each stream in the Xitiao River watershed. The direction(e.g., postive or negative) of these correlations were related with different landscape propertiesamong catchments from the Xitiao River watershed.
     (2) During the study period, variations of stream water nutrients (e.g., C, N and P) in theTiaoxi River watershed were more responsive to physiography vairables and catchment-scaleland use than to reach-scale anthropogenic variables and riparian-scale land use. In addition,the relative contribution of physiography variables and factors at different scales (e.g., reach,riparian and catchment) varied largely with seasons change. Especially in the rainy season, theinfluence of local-scale (e.g., reach and riparian scale) variables on variations of stream waternutrients in the Tiaoxi River watershed increased significantly and riparian was the greatestpowerful scale for the variation of nutirents in streams, while the relative influence oflarger-scale (e.g., physiography and catchment-scale) variables on variations of in-streamnutrients decreased during the same period. The results indicate that variations of nutrients (e.g.,C, N and P) in stream water of the Tiaoxi River watershed were controlled by the combinedeffect of local-scale and larger scale variables. The influence from catchment-scale variables onvariability of in-stream nutrients was large and relatively stable, while the impact from localscale (e.g., reach and riparian scale) variables to variability of nutrients was generally weak andvaried largely with seasons change.
     (3) Potential exports of total nitrogen and total phosphorus in the Tiaoxi River watershedgenerally followed the pattern of cropland> urban> forest> waterbody, while the losspotential of total organic carbon in the study region showed an opposite pattern as compared tothat of N and P. For example, forests distributed in the watershed upland showed generallylarger values than cropland or urban in the downstream regions. Althrough loss potentials fornutirents (e.g., C, N and P) in six counties in the Tiaoxi River watershed varied largely, therewere a relatively larger values of loss potential for nutrients and mean values of the three kindsof nutrients in each county were larger than0.6. Critical areas on large potential export of C, Nand P covered21.54%,48.49%and31.34%of the entire area in Tiaoxi basin.
引文
Ahearn DS, Sheibley RW, Dahlgren RA, et al. Land use and land cover influence on water quality in the lastfree-flowing river draining the western Sierra Nevada, California. Journal of Hydrology2005,313:234~247.
    Aitkenhead-Peterson JA, Alexander JE, Clair TA. Dissolved organic carbon and dissolved organic nitrogenexport from forested watersheds in Nova Scotia: Identifying controlling factors. Global BiogeochemicalCycles2005,19: GB4016.
    Alexander RB, Elliott AH, Shankar U,et al. Estimating the sources and transport of nutrients in the WaikatoRiver Basin, New Zealand. Water Resources Research2002,38(12):1268.
    Allan D, Erickson D, Fay J. The influence of catchment land use on stream integrity across multiple spatialscales. Freshwater Biology1997,37:149~161.
    Allan J, Johnson L. Catchment-scale analysis of aquatic ecosystems. Freshwater Biology1997,37:107~111.
    Allan JD, Castillo MM. Stream ecology: structure and function of running waters: Springer,2007.
    Allan JD. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annual Reviewof Ecology, Evolution, and Systematics2004,35:257~284.
    Alvarez-Cobelas M, Angeler DG, Sánchez-Carrillo S, et al. A worldwide view of organic carbon export fromcatchments. Biogeochemistry2012,107:275~293.
    Alvarez-Cobelas M, Angeler DG, Sánchez-Carrillo S. Export of nitrogen from catchments: A worldwideanalysis. Environmental Pollution2008,156:261~269.
    Alvarez-Cobelas M, Sánchez-Carrillo S, Angeler DG, et al. Phosphorus export from catchments: a globalview. Journal of the North American Benthological Society2009,28:805~820.
    Arbuckle KE, Downing JA. The Influence of Watershed Land Use on Lake N:P in a PredominantlyAgricultural Landscape. Limnology and Oceanography2001,46:970~975.
    Arnold JG, Srinivasan R, Muttiah RS, et al. Large area hydrologic modeling and assessment part I: Modeldevelopment. Journal of the American Water Resources Association1998,34:73~89.
    Atkinson CL, Golladay SW, Opsahl SP, et al. Stream discharge and floodplain connections affect sestonquality and stable isotopic signatures in a coastal plain stream. Journal of the North AmericanBenthological Society2009,28:360~370.
    Baker A. Land use and water quality. Encyclopedia of Hydrological Sciences,2005.
    Basnyat P, Teeter LD, Flynn KM, et al. Relationships between landscape characteristics and nonpoint sourcepollution inputs to coastal estuaries. Environmental Management1999,23:539~549.
    Behrendt H, Opitz D. Retention of nutrients in river systems: dependence on specific runoff and hydraulicload. Hydrobiologia2000,410:111~122.
    Bernal S, Sabater F. Changes in discharge and solute dynamics between hillslope and valley-bottomintermittent streams. Hydrol. Earth Syst. Sci.2012,16:1595~1605.
    Beusen A, Dekkers A, Bouwman A, et al. Estimation of global river transport of sediments and associatedparticulate C, N, and P. Global Biogeochemical Cycles2005,19: GB4S05.
    Bhaduri B, Harbor J, Engel B, et al. Assessing watershed-scale, long-term hydrologic impacts of land-usechange using a GIS-NPS model. Environmental Management2000,26:643~658.
    Biggs TW, Dunne T, Martinelli LA. Natural controls and human impacts on stream nutrient concentrations ina deforested region of the Brazilian Amazon basin. Biogeochemistry2004,68:227~257.
    Buck O, Niyogi DK, Townsend CR. Scale-dependence of land use effects on water quality of streams inagricultural catchments. Environmental Pollution2004,130:287~299.
    Burt T, Pinay G. Linking hydrology and biogeochemistry in complex landscapes. Progress in Physicalgeography2005,29:297-316.
    Caille F, Riera JL, Rosell-Melé A. Modelling nitrogen and phosphorus loads in a Mediterranean rivercatchment (La Tordera, NE Spain). Hydrol. Earth Syst. Sci.2012,16:2417~2435.
    Caraco N, Cole J. Human influence on nitrogen export: a comparison of mesic and xeric catchments. Marineand Freshwater Research2001,52:119~125.
    Carney E. Relative influence of lake age and watershed land use on trophic state and water quality ofartificial lakes in Kansas. Lake and Reservoir Management2009,25:199~207.
    Carpenter SR, Caraco NF, Correll DL, et al. Nonpoint pollution of surface waters with phosphorus andnitrogen. Ecological Applications1998,8:559~568.
    Cecchi G, Munafò M, Baiocco F, et al. Estimating river pollution from diffuse sources in the Viterboprovince using the potential non-point pollution index. Annali dell'Istituto superiore di sanità2007,43:295~301.
    Chang NB, Chen HW, Jeng KY, et al. Evaluation of Non-point Source Loads in the Reservoir Watershedusing the GIS/GPS/RS Information Technologies and Numerical Models. Water International2001,26:239~251.
    Chen N, Hong H, Zhang L, et al. Nitrogen sources and exports in an agricultural watershed in SoutheastChina. Biogeochemistry2008,87:169~179.
    Chen N, Wu J, Hong H. Effect of storm events on riverine nitrogen dynamics in a subtropical watershed,southeastern China. Science of The Total Environment2012,431:357~365.
    Cherry K, Shepherd M, Withers P, et al. Assessing the effectiveness of actions to mitigate nutrient loss fromagriculture: A review of methods. Science of The Total Environment2008,406:1~23.
    Cirmo CP, McDonnell JJ. Linking the hydrologic and biogeochemical controls of nitrogen transport innear-stream zones of temperate-forested catchments: a review. Journal of Hydrology1997,199:88~120.
    Conn T, Caulder D, Gilroy E, et al. The validity of a simple statistical model for estimating fluvialconstituent loads: An empirical study involving nutrient loads entering Chesapeake Bay. WaterResources Research1992,28:2353~2363.
    Cronan C. Biogeochemistry of the Penobscot River watershed, Maine, USA: nutrient export patterns forcarbon, nitrogen, and phosphorus. Environmental Monitoring and Assessment2012184:4279~4288.
    Cui LJ, GaoCJ, Zhao XS, et al. Dynamics of the lakes in the middle and lower reaches of the Yangtze Riverbasin, China, since late nineteenth century. Environmental Monitoring and Assessment,2013,185(5):4005-4018.
    de Wit M. Modelling nutrient fluxes from source to river load: a macroscopic analysis applied to the Rhineand Elbe basins. Hydrobiologia2000,410:123~130.
    Deng H, Yeh CH, Willis RJ. Inter-company comparison using modified TOPSIS with objective weights.Computers&Operations Research2000,27:963~973.
    Dikshit AK andLoucks DP. Estimating Non-point Pollutant Loading II: A Case Study in the Fall CreekWatershed. Journal of Environmental Systems1996,25(1):81~95.
    Dikshit AK, Loucks DP. Estimating Non-point Pollutant Loading I: A Geographical information basedNon-point Source Simulation model. Journal of Environmental Systems1995,24(4):395~408.
    Ding X, Shen Z, Hong Q, et al. Development and test of the Export Coefficient Model in the Upper Reach ofthe Yangtze River. Journal of Hydrology2010,383:233~244.
    Dodds WK. Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surfacewaters. Journal of the North American Benthological Society2003,22:171~181.
    Donnelly TH, Barnes C, Wasson R, et al. Catchment phosphorus sources and algal blooms: An interpretativereview. Canberra: CSIRO Land and Water,1998.
    Dow CL, Arscott DB, Newbold JD. Relating major ions and nutrients to watershed conditions across amixed-use, water-supply watershed. Journal of the North American Benthological Society2006,25:887~911.
    Drewry J, Newham L, Greene R, et al. A review of nitrogen and phosphorus export to waterways: context forcatchment modelling. Marine and Freshwater Research2006,57:757~774.
    Duan SW, Kaushal SS. Warming increases carbon and nutrient fluxes from sediments in streams across landuse. Biogeosciences2013,10:1193~1207.
    Dumont E, Harrison J, Kroeze C, et al. Global distribution and sources of dissolved inorganic nitrogenexport to the coastal zone: Results from a spatially explicit, global model. Global BiogeochemicalCycles2005,19: GB4S02.
    Ebina J, Tsutsui T, Shirai T. Simultaneous determination of total nitrogen and total phosphorus in water usingperoxodisulfate oxidation. Water Research1983,17:1721~1726.
    Ebise S, Inoue T. Change in C:N:P ratios during passage of water areas from rivers to a lake. Water Research1991,25:95~100.
    Eckhardt B, Moore T. Controls on dissolved organic carbon concentrations in streams, southern Quebec.Canadian Journal of Fisheries and Aquatic Sciences1990,47:1537~1544.
    Edwards A, Cook Y, Smart R, et al. Concentrations of nitrogen and phosphorus in streams draining themixed land-use Dee Catchment, northeast Scotland. Journal of Applied Ecology2000,37:159~170.
    Erisman JW, Galloway J, Seitzinger S, et al. Reactive nitrogen in the environment and its effect on climatechange. Current Opinion in Environmental Sustainability2011,3:281~290.
    Esselman P, Allan J. Relative influences of catchment-and reach-scale abiotic factors on freshwater fishcommunities in rivers of northeastern Mesoamerica. Ecology of Freshwater Fish2010,19:439~454.
    Evans C, Davies TD. Causes of concentration/discharge hysteresis and its potential as a tool for analysis ofepisode hydrochemistry. Water Resour. Res.1998,34:129~137.
    Fisher SG, Grimm NB, MartíE, et al. Material Spiraling in Stream Corridors: A Telescoping EcosystemModel. Ecosystems1998,1:19~34.
    Fisher SG, Likens GE. Stream Ecosystem: Organic Energy Budget. BioScience1972,22:33~35.
    Frissell C, Liss W, Warren C, et al. A hierarchical framework for stream habitat classification: Viewingstreams in a watershed context. Environmental Management1986,10:199~214.
    Frost PC, Kinsman LE, Johnston CA, et al. Watershed discharge modulates relationships between landscapecomponents and nutrient ratios in stream seston. Ecology2009,90:1631~1640.
    Frost PC, Stelzer RS, Lamberti GA, et al. Ecological Stoichiometry of Trophic Interactions in the Benthos:Understanding the Role of C:N:P Ratios in Lentic and Lotic Habitats. Journal of the North AmericanBenthological Society2002,21:515~528.
    Gadegast M, Hirt U, Opitz D, et al. Modelling changes in nitrogen emissions into the Oder River System1875–1944. Regional Environmental Change2012,12:571~580.
    Galloway JN, Schlesinger WH, Levy H, et al, Schnoor JL. Nitrogen fixation: Anthropogenic enhancement‐environmental response. Global Biogeochemical Cycles1995,9:235~252.
    Galloway JN, Townsend AR, Erisman JW, et al. Transformation of the nitrogen cycle: recent trends,questions, and potential solutions. Science2008,320:889~892.
    Gao C, Zhu JG, Zhu JY, et al. Nitrogen Export from an Agriculture Watershed in the Taihu Lake Area, China.Environmental Geochemistry and Health2004,26:199~207.
    Geneletti D. A GIS-based decision support system to identify nature conservation priorities in an alpinevalley. Land Use Policy2004,21:149~160.
    Geneletti D. An approach based on spatial multicriteria analysis to map the nature conservation value ofagricultural land. Journal of Environmental Management2007,83:228~235.
    Geneletti D. Multicriteria analysis to compare the impact of alternative road corridors: a case study innorthern Italy. Impact Assessment and Project Appraisal2005,23:135~146.
    Giani M, Savelli F, Boldrin A. Temporal variability of particulate organic carbon, nitrogen and phosphorus inthe Northern Adriatic Sea. Hydrobiologia2003,494:319~325.
    Green M, Finlay J. Patterns of hydrologic control over stream water total nitrogen to total phosphorus ratios.Biogeochemistry2011,99:15~30.
    Green MB, Finlay JC. Detecting characteristic hydrological and biogeochemical signals throughnonparametric scatter plot analysis of normalized data. Water Resour. Res.2008,44: W08455.
    Green MB, Finlay JC. Patterns of hydrologic control over stream water total nitrogen to total phosphorusratios. Biogeochemistry2010,99:15~30.
    Green MB, Wang D. Watershed flow paths and stream water nitrogen-to-phosphorus ratios under simulatedprecipitation regimes. Water Resources Research2008,44: W12414.
    Guo L, Cai Y, Belzile C, et al. Sources and export fluxes of inorganic and organic carbon and nutrientspecies from the seasonally ice-covered Yukon River. Biogeochemistry2012,107:187~206.
    Guo L. Doing Battle With the Green Monster of Taihu Lake. Science2007,317:1166.
    Harris GP. Biogeochemistry of nitrogen and phosphorus in Australian catchments, rivers and estuaries:effects of land use and flow regulation and comparisons with global patterns. Marine and FreshwaterResearch2001,52:139~149.
    Harrison JA, Caraco N, Seitzinger SP. Global patterns and sources of dissolved organic matter export to thecoastal zone: Results from a spatially explicit, global model. Global Biogeochemical Cycles2005a,19:GB4S03.
    Harrison JA, Seitzinger SP, Bouwman AF, et al. Dissolved inorganic phosphorus export to the coastal zone:Results from a spatially explicit, global model. Global Biogeochemical Cycles2005b,19: GB4S03.
    Harrison PJ, Yin K, Lee JHW, et al. Physical-biological coupling in the Pearl River Estuary. ContinentalShelf Research2008,28:1405~1415.
    Hawkins CP, Kershner JL, Bisson PA, et al. A hierarchical approach to classifying stream habitat features.Fisheries1993,18:3~12.
    Heathwaite AL, Johnes PJ. Contribution of nitrogen species and phosphorus fractions to stream water qualityin agricultural catchments. Hdrological Processes1996,10:971~983.
    Hetling LJ, Jaworski NA, Garretson DJ. Comparison of nutrient input loading and riverine export fluxes inlarge watersheds. Water science and technology1999,39:189~196.
    Hope D, Billett M, Cresser M. A review of the export of carbon in river water: fluxes and processes.Environmental Pollution1994,84:301~324.
    Huang IB, Keisler J, Linkov I. Multi-criteria decision analysis in environmental sciences: Ten years ofapplications and trends. Science of The Total Environment2011,409:3578~3594.
    Huryn A, Wallace J. Life history and production of stream insects. Annual Review of Entomology2000,45:83~110.
    Hynes H. Edgardo Baldi memorial lecture. The stream and its valley. Verhandlungen der InternationalenVereinigung fur theoretische und angewandte Limnologie1975,19:1~15.
    Jarvie HP, Withers PJA, Hodgkinson R, et al. Influence of rural land use on streamwater nutrients and theirecological significance. Journal of Hydrology2008,350:166~186.
    Jaworski NA, Groffman PM, Keller AA, et al. A watershed nitrogen and phosphorus balance: The upperPotomac River basin. Estuaries1992,15:83~95.
    Johnes PJ. Evaluation and management of the impact of land use change on the nitrogen and phosphorusload delivered to surface waters: the export coefficient modelling approach. Journal of Hydrology1996,183:323~349.
    Johnson L, Richards C, Host G, et al. Landscape influences on water chemistry in Midwestern streamecosystems. Freshwater Biology1997,37:193~208.
    Johnson S, Covich A. Scales of observation of riparian forests and distributions of suspended detritus in aprairie river. Freshwater Biology1997,37:163~175.
    Kalff J. Limnology: Inland water ecosystems. Vol592. New Jersey: Prentice Hall,2002.
    Karimipour F, Delavar MR, Kinaie M. Water quality management using GIS data mining. Journal ofEnvironmental Informatics2005,5:61~71.
    Katsiapi M, Mazaris A, Charalampous E, et al. Watershed land use types as drivers of freshwaterphytoplankton structure. Hydrobiologia2012,698:121~131.
    Keeney RL, Raiffa H. Decisions with Multiple Objectives-Preferences and Value Tradeoffs: CambridgeUniversity Press, Cambridge,1993.
    Kim J, Choi J, Choi C, et al. Impacts of changes in climate and land use/land cover under IPCC RCPscenarios on streamflow in the Hoeya River Basin, Korea. Science of The Total Environment2013,452-453:181~195.
    King RS, Baker ME, Whigham DF, et al. Spatial considerations for linking watershed land cover toecological indicators in streams Ecological Applications2005,15:137~153.
    Kroeze C, Bouwman L, Seitzinger S. Modeling global nutrient export from watersheds. Current Opinion inEnvironmental Sustainability2012,4:195~202.
    Lammert M, Allan JD. Assessing biotic integrity of streams: effects of scale in measuring the influence ofland use/cover and habitat structure on fish and macroinvertebrates. Environmental Management1999,23:257~270.
    LAWA,2003. German Guidance document for the implementation of the EC Water Framework Directive.http://www.lawa.de/Publikationen.html.
    Letcher RA, Jakeman AJ, Merritt WS, et al. Review of techniques to estimate catchment exports. Sydney:Environmental Protection Authority,1999.
    Levin SA. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology1992,73:1943~1967.
    Liang T, Wang S, Cao H, et al. Estimation of ammonia nitrogen load from nonpoint sources in the XitiaoRiver catchment, China. Journal of Environmental Sciences2008,20:1195~1201.
    Liu X, Lu X, Chen Y. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu,China: An11-year investigation. Harmful Algae2011,10:337~343.
    Ma X, Li Y, Zhang M, et al. Assessment and analysis of non-point source nitrogen and phosphorus loads inthe Three Gorges Reservoir Area of Hubei Province, China. Science of The Total Environment2011,412-413:154~161.
    Ma X, Wang Z, Yin Z, et al. Nitrogen Flow Analysis in Huizhou, South China. Environmental Management2008,41:378~388.
    Malczewski J. GIS-based multicriteria decision analysis: a survey of the literature. International Journal ofGeographical Information Science2006,20:703~726.
    Mallarino A, Stewart B, Baker J, et al. Phosphorus indexing for cropland: Overview and basic concepts ofthe Iowa phosphorus index. Journal of Soil and Water Conservation2002,57:440~447.
    Marzin A, Verdonschot PM, Pont D. The relative influence of catchment, riparian corridor, and reach-scaleanthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia2013,704:375~388.
    McMahon G, Woodside MD. Nutrient mass balance for the Albemarle-Pamlico drainage basin, northCarolina andVirginia,1990. Journal of the American Water Resources Association1997,33(3):573~589.
    Merritt W, Letcher R, Jakeman A. A review of erosion and sediment transport models. EnvironmentalModelling&Software2003,18:761~799.
    Minshall GW, Thomas SA, Newbold JD, et al. Physical factors influencing fine organic particle transportand deposition in streams. Journal of the North American Benthological Society2000,19:1~16.
    Moeller JR, Wayne Minshall G, Cummins KW, et al. Transport of dissolved organic carbon in streams ofdiffering physiographic characteristics. Organic Geochemistry1979,1:139~150.
    Mulholland PJ, Helton AM, Poole GC, et al. Stream denitrification across biomes and its response toanthropogenic nitrate loading. Nature2008,452:202~205.
    Mulholland PJ, Kuenzler EJ. Organic carbon export from upland and forested wetland watersheds. Limnol.Oceanogr.1979,24(5):960~966.
    Mulholland PJ. Regulation of nutrient concentrations in a temperate forest stream: roles of upland, riparian,and instream processes. Limnology and Oceanography1992,37:1512~1526.
    Munafo M, Cecchi G, Baiocco F, et al. River pollution from non-point sources: a new simplified method ofassessment. Journal of Environmental Management2005,77:93~98.
    Neff J, Hobbie S, Vitousek P. Nutrient and mineralogical control on dissolved organic C, N and P fluxes andstoichiometry in Hawaiian soils. Biogeochemistry2000,51:283~302.
    Neill C, Deegan LA, Thomas SM, et al. Deforestation for pasture alters nitrogen and phosphorus in smallAmazonian streams. Ecological Applications2001,11:1817~1828.
    Nielsen A, Trolle D, S ndergaard M, et al. Watershed land use effects on lake water quality in Denmark.Ecological Applications2012,22:1187~1200.
    Olson DL. Comparison of weights in TOPSIS models. Mathematical and Computer Modelling2004,40:721~727.
    Omernik J, Abernathy A, Male L. Stream nutrient levels and proximity of agricultural and forest land tostreams: some relationships. Journal of Soil and Water Conservation1981,36:227~231.
    Ongley ED, Xiaolan Z, Tao Y. Current status of agricultural and rural non-point source Pollution assessmentin China. Environmental Pollution2010,158:1159~1168.
    Pacific VJ, Jencso KG, McGlynn BL. Variable flushing mechanisms and landscape structure control streamDOC export during snowmelt in a set of nested catchments. Biogeochemistry2010,99:193~211.
    Pacini N, G chter R. Speciation of riverine particulate phosphorus during rain events. Biogeochemistry1999,47:87~109.
    Perez B, Day J, Justic D, et al. Nutrient stoichiometry, freshwater residence time, and nutrient retention in ariver-dominated estuary in the Mississippi Delta. Hydrobiologia2011,658:41~54.
    Pieterse NM, Bleuten W, J rgensen SE. Contribution of point sources and diffuse sources to nitrogen andphosphorus loads in lowland river tributaries. Journal of Hydrology2003,271:213~225.
    Post WM, Peng TH, Emanuel WR, et al. The global carbon cycle. American Scientist1990,78:310~326.
    Pringle C. What is hydrologic connectivity and why is it ecologically important? Hydrological Processes2003,17:2685~2689.
    Qin B, Xu P, Wu Q, et al. Environmental issues of Lake Taihu, China. In: Qin B, Liu Z, Havens K, editors.Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China.194. SpringerNetherlands,2007, pp.3~14.
    Qin XS, Huang GH, Chakma A, et al. A MCDM-based expert system for climate-change impact assessmentand adaptation planning–A case study for the Georgia Basin, Canada. Expert Systems withApplications2008,34:2164~2179.
    Qu W, Mike D, Wang S. Multivariate analysis of heavy metal and nutrient concentrations in sediments ofTaihu Lake, China. Hydrobiologia2001,450:83~89.
    Quirós R. The relationship between nitrate and ammonia concentrations in the pelagic zone of lakes.Limnetica2003,22:37~50.
    Redfield AC. The biological control of chemical factors in the environment. American Scientist1958,46:205~221.
    Richards C, Johnson LB, Host GE. Landscape-scale influences on stream habitats and biota. CanadianJournal of Fisheries and Aquatic Sciences1996,53:295~311.
    Roth N, Allan JD, Erickson D. Landscape influences on stream biotic integrity assessed at multiple spatialscales. Landscape Ecology1996,11:141~156.
    Sandin L, Johnson RK. Local, landscape and regional factors structuring benthic macroinvertebrateassemblages in Swedish streams. Landscape Ecology2004,19:501~514.
    Sardans J, Rivas-Ubach A, Pe uelas J. The C:N:P stoichiometry of organisms and ecosystems in a changingworld: A review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics2012,14:33~47.
    Schlesinger WH. Biogeochemistry,2nd. Academic Press, San Diego,2001.
    Seitzinger SP, Mayorga E, Bouwman AF, et al. Global river nutrient export: A scenario analysis of past andfuture trends. Global Biogeochemical Cycles2010,24: GB0A08.
    Seitzinger SP, Styles RV, Boyer EW, et al. Nitrogen retention in rivers: model development and applicationto watersheds in the northeastern USA. The Nitrogen Cycle at Regional to Global Scales. Springer,2002, pp.199-237.
    Service SC. National Engineering Handbook: Hydrology. USDA, Springfield, VA,1993.
    Sheldon F, Peterson EE, Boone EL, et al. Identifying the spatial scale of land use that most stronglyinfluences overall river ecosystem health score. Ecological Applications2012,22:2188~2203.
    Shen Z, Liao Q, Hong Q, et al. An overview of research on agricultural non-point source pollution modellingin China. Separation and Purification Technology2012,84:104~111.
    Silva J, Cunha Bustamante M, Markewitz D, et al. Effects of land cover on chemical characteristics ofstreams in the Cerrado region of Brazil. Biogeochemistry2011,105:75~88.
    Sliva L, Dudley Williams D. Buffer Zone versus Whole Catchment Approaches to Studying Land UseImpact on River Water Quality. Water Research2001,35:3462~3472.
    Somura H, Takeda I, Arnold JG, et al. Impact of suspended sediment and nutrient loading from land usesagainst water quality in the Hii River basin, Japan. Journal of Hydrology2012,450-451:25~35.
    Sponseller R, Benfield E, Valett H. Relationships between land use, spatial scale and streammacroinvertebrate communities. Freshwater Biology2001,46:1409~1424.
    Srinivasan R, Ramanarayanan TS, Arnold JG, et al. Large area hydrologic modeling and assessment part II:Model application. Journal of the American Water Resources Association1998,34:91~101.
    St lnacke P, Grimvall A, Sundblad K, et al. Estimation of riverine loads of nitrogen and phosphorus to theBaltic Sea,1970-1993. Environmental Monitoring and Assessment1999,58:173~200.
    Stone R. China Aims to Turn Tide Against Toxic Lake Pollution. Science2011,333:1210~1211.
    Stumm W. The acceleration of the hydrogeochemical cycling of phosphorus. Water Research1973,7:131~144.
    Stutter MI, Langan SJ, Cooper RJ. Spatial and temporal dynamics of stream water particulate and dissolvedN, P and C forms along a catchment transect, NE Scotland. Journal of Hydrology2008,350:187~202.
    Tetzlaff D, Soulsby C, Bacon PJ, et al. Connectivity between landscapes and riverscapes—a unifying themein integrating hydrology and ecology in catchment science? Hydrological Processes2007,21:1385~1389.
    Thomas SM, Neill C, Deegan LA, et al. Influences of land use and stream size on particulate and dissolvedmaterials in a small Amazonian stream network. Biogeochemistry2004,68:135~151.
    Tomer M, Meek D, Jaynes D, et al. Evaluation of nitrate nitrogen fluxes from a tile-drained watershed incentral Iowa. Journal of Environmental Quality2003,32:642~653.
    Tong ST, Chen W. Modeling the relationship between land use and surface water quality. Journal ofEnvironmental Management2002,66:377~393.
    Turner RE, Rabalais NN, Justic D, et al. Global patterns of dissolved N, P and Si in large rivers.Biogeochemistry2003,64:297~317.
    Udy JW, Fellows CS, Bartkow ME, et al. Measures of nutrient processes as indicators of stream ecosystemhealth. Hydrobiologia2006,572:89~102.
    Vannote RL, Minshall GW, Cummins KW, et al. The river continuum concept. Canadian Journal of Fisheriesand Aquatic Sciences1980,37:130~137.
    Viney N, Sivapalan M, Deeley D. A conceptual model of nutrient mobilisation and transport applicable atlarge catchment scales. Journal of Hydrology2000,240:23~44.
    Vitousek PM, Aber JD, Howarth RW, et al. Human alteration of the global nitrogen cycle: sources andconsequences. Ecological Applications1997,7:737~750.
    Voinov A, Gaddis EJB. Lessons for successful participatory watershed modeling: a perspective frommodeling practitioners. Ecological Modelling2008,216:197~207.
    Waldron S, Flowers H, Arlaud C, et al. The significance of organic carbon and nutrient export frompeatland-dominated landscapes subject to disturbance, a stoichiometric perspective. Biogeosciences2009,6:363~374.
    Wang L, Liu J, Sun G, et al."Water, climate, and vegetation: ecohydrology in a changing world". Hydrol.Earth Syst. Sci.2012a,16:4633~4636.
    Wang L, Seelbach PW, Hughes RM. Introduction to landscape influences on stream habitats and biologicalassemblages. American Fisheries Society Symposium.48. American Fisheries Society,2006, pp.1.
    Wang X, Lu Y, Han J, et al. Identification of anthropogenic influences on water quality of rivers in Taihuwatershed. Journal of Environmental Sciences2007,19:475~481.
    Wang X, Wang Q, Wu C, et al. A method coupled with remote sensing data to evaluate non-point sourcepollution in the Xin'anjiang catchment of China. Science of The Total Environment2012b,430:132~143.
    Weijters M, Janse J, Alkemade R, et al. Quantifying the effect of catchment land use and water nutrientconcentrations on freshwater river and stream biodiversity. Aquatic Conservation: Marine andFreshwater Ecosystems2009,19:104~112.
    Whiles MR, Dodds WK. Relationships between Stream Size, Suspended Particles, and Filter-FeedingMacroinvertebrates in a Great Plains Drainage Network. J. Environ. Qual.2002,31:1589~1600.
    Wohlfart T, Exbrayat JF, Schelde K, et al. Spatial distribution of soils determines export of nitrogen anddissolved organic carbon from an intensively managed agricultural landscape. Biogeosciences2012,9:4513~4525.
    Wu H, Guo Z, Peng C. Land use induced changes of organic carbon storage in soils of China. Global ChangeBiology2003,9:305~315.
    Wu L, Long TY, Liu X, et al. Impacts of climate and land-use changes on the migration of non-point sourcenitrogen and phosphorus during rainfall-runoff in the Jialing River Watershed, China. Journal ofHydrology2012,475:26~41.
    Xiao H, Ji W. Relating landscape characteristics to non-point source pollution in mine waste-locatedwatersheds using geospatial techniques. Journal of Environmental Management2007,82:111~119.
    Xu H, Paerl HW, Qin B, et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophicLake Taihu, China. Limnology and Oceanography2010,55:420~432.
    Yang Y, Mohammat A, Feng J, et al. Storage, patterns and environmental controls of soil organic carbon inChina. Biogeochemistry2007,84:131~141.
    Zampella RA, Procopio NA, Lathrop RG, et al. Relationship of Land-Use/Land-Cover Patterns andSurface-Water Quality in The Mullica River Basin1. Journal of the American Water ResourcesAssociation2007,43:594~604.
    Zhang H, Huang GH. Assessment of non-point source pollution using a spatial multicriteria analysisapproach. Ecological Modelling2011,222:313~321.
    Zhang HC, Cao ZH, Shen QR, et al. Effect of phosphate fertilizer application on phosphorus (P) losses frompaddy soils in Taihu Lake Region: I. Effect of phosphate fertilizer rate on P losses from paddy soil.Chemosphere2003,50:695~701.
    蔡明李庄王.改进的输出系数法在流域非点源污染负荷估算中的应用.水利学报2004,35(7):40~45.
    蔡庆华,唐涛,刘建康.河流生态学研究中的几个热点问题.应用生态学报2003,14(9):1573~1577.
    崔丽娟.湿地价值评价研究.北京:科学出版社,2001
    丁晓雯,刘瑞民,沈珍瑶.基于水文水质资料的非点源输出系数模型参数确定方法及其应用.北京师范大学学报(自然科学版)2006,42(5):534~538.
    国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    杭州市环境保护局,2008. http://www.hzepb.gov.cn/zwxx/kjjc/hjgb.
    胡雪涛,陈吉宁,张天柱.非点源污染模型研究.环境科学2002,23(3):124~129.
    湖州市水利局,2008. http://xxgk.huzhou.gov.cn.
    湖州市水文局,2004. http://www.hzwr.gov.cn/newsmb.asp?f=2004102509140.htm.
    黄金良,李青生,洪华生等.九龙江流域土地利用/景观格局-水质的初步关联分析.环境科学2011,32(1):64~72.
    姜磊.苕溪流域非点源水污染预测及总量分配方法研究.浙江大学硕士学位论文,2011.
    李恒鹏,杨桂山,黄文钰等.不同尺度流域地表径流氮,磷浓度比较.湖泊科学2006,18(4):377~386.
    李怀恩,庄咏涛.预测非点源营养负荷的输出系数法研究进展与应用.西安理工大学学报2003,19(4):307~312.
    李丽娇,张奇.一个地表-地下径流耦合模型在西苕溪流域的应用.水土保持学报2008,22(4):56~61.
    李兆富,杨桂山,李恒鹏.基于改进输出系数模型的流域营养盐输出估算.环境科学2009,30(3):668~672.
    李兆富,杨桂山,李恒鹏.西笤溪流域不同土地利用类型营养盐输出系数估算.水土保持学报2007,21(1):1~4.
    李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素.地理科学2001,21(4):301~307.
    刘家福,蒋卫国,占文凤等. SCS模型及其研究进展.水土保持研究2010,17(2):120~124.
    孟伟,张远,渠晓东.河流生态调查技术方法.北京:科学出版社,2011.
    聂泽宇,梁新强,邢波等.基于氮磷比解析太湖苕溪水体营养现状及应对策略.生态学报2012,32(1):48~55.
    欧洋,王晓燕,耿润哲.密云水库上游流域不同尺度景观特征对水质的影响.环境科学学报2012,32(5):1219~1226.
    彭近新,陈慧君.水质富营养化与防治.北京:中国环境科学出版社,1988.
    冉祥滨,于志刚,姚庆祯等.水库对河流营养盐滞留效应研究进展.湖泊科学2009,21(5):614~622.
    史培军,宋长青,景贵飞.加强我国土地利用/覆盖变化及其对生态环境安全影响的研究.地球科学进展2002,17(2):161~168.
    孙维侠,史学正,于东升等.基于1:100万土壤空间数据库的有机碳储量估算研究.地理科学2004,23(1):568~573.
    田玉强,欧阳华,徐兴良等.青藏高原土壤有机碳储量与密度分布土壤学报2008,45(5):933~942.
    王丽丽,宋长春,葛瑞娟等.三江平原湿地不同土地利用方式下土壤有机碳储量研究.中国环境科学2009,29(6):656~660.
    王绍强,周成虎,李克让等.中国土壤有机碳库及空间分布特征分析.地理学报2000,55(5):533~544.
    王晓燕.非点源污染及其管理.北京:海洋出版社,2003.
    武晓峰,李婷.流域内污染负荷分布的评价模型研究-以密云县蛇鱼川小流域为例.中国环境科学2011,31(4):680~687.
    许朋柱,秦伯强.2001-2002水文年环太湖河道的水量及污染物通量.湖泊科学2005,17(3):213~218.
    薛丽娟.太湖西苕溪流域径流过程模拟.大连理工大学硕士学位论,2006.
    晏维金.人类活动影响下营养盐向河口/近海的输出和模型研究.地理研究2006,25(5):825~835.
    岳隽,王仰麟,李贵才等.不同尺度景观空间分异特征对水体质量的影响——以深圳市西丽水库流域为例.生态学报2007,27(12):5271~5281.
    张汪寿,耿润哲,王晓燕等.基于多准则分析的非点源污染评价和分区——以北京怀柔区北宅小流域为例.环境科学学报2013,33(1):258~266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700