烟气同时脱除Hg~0、SO_2和NO_X的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的发展,电力能源需求量也会越来越大,而燃煤电厂环境污染居高不下,环保迫在眉睫。国、内外现有烟气净化技术中除尘、脱硫、脱硝和脱汞往往是在多个独立系统中分别完成,极少有同时一体化处理技术。本文进行了模拟烟气同时脱除Hg0、SO2和NOx的研究,在固定床实验系统上,筛选出了具有同时脱硫脱硝脱汞性能的改性吸收剂并进行了影响因素实验研究;使用SEM、EDS、XPS和化学分析等方法对吸收剂和脱除产物进行了分析;建立了固定床脱汞的数学模型并进行了编程计算;另外还进行了液相条件下的同时脱硫脱硝脱汞的实验研究和传质反应动力学分析。本课题的研究对发展适合我国燃煤烟气多污染物同时控制技术具有一定的理论意义和应用价值。
     利用粉煤灰和石灰为主要物质,制备了可用于同时脱硫脱硝脱汞的改性吸收剂,比表面积和孔结构测试分析结果显示,吸收剂的比表面积和孔容积与制备原料相比增加了10倍左右,孔径大部分在3~40纳米之间,属于中等孔隙。扫描电镜和X-射线能谱分析表明,Ca(OH)2在吸收剂表面的相对含量高于吸收剂中Ca的平均含量,添加剂在吸收剂表面得到了很大程度的分散。
     在固定床实验系统上主要研究了温度、入口汞浓度、SO2和NO浓度变化等对吸收剂脱汞性能的影响,以及模拟烟气中Hg0对吸收剂同时脱硫脱硝性能的影响。平行实验显示,改性吸收剂具有较好的同时脱硫脱硝脱汞性能。
     XPS分析和化学分析结果显示,脱除产物中硫元素主要以硫酸盐形式、氮元素主要以硝酸盐和亚硝酸盐的形式存在,汞主要以离子态汞存在,以此为基础探讨了改性吸收剂同时脱硫脱硝脱汞的反应机理。有毒物质特性浸出实验结果表明,脱除产物中汞的溶出量低于中国和美国EPA溶出标准,产物可以进行有水加工和后续综合利用。
     依据汞在系统中的质量平衡和实验数据为基础,建立了吸收剂脱汞宏观吸附动力学数学模型,用Matlab程序结合欧拉算法,进行了编程计算。结果显示,模拟计算结果与实验结果吻合较好。
     在液相条件下进行了亚氯酸钠溶液同时脱除模拟烟气中SO2、NO和Hg0的实验,研究了吸收剂浓度、初始pH值、温度、SO2和NO浓度等因素对溶液脱汞性能的影响,研究结果表明亚氯酸钠溶液具有较好的同时脱硫脱硝脱汞性能。用化学方法测定了鼓泡反应器的传质特性,在得出的物性参数和传质参数的基础上,进行了液相脱汞传质反应动力学的研究,计算了液相脱汞的吸收速率常数、增强因子等。
With the development of economy, the demand of power energy would increase greatly as well. However, the pollution from coal-fired power plant more and more and the environmental protection become very urgent. In the existing gas purification technology at home and abroad, the removal of dust, SO2, NOx and Hg0 were completed separately in different independent systems usually, and there is very few simultaneous and integrative processing. The study on simultaneous desulfurization, denitration and mercury removal from simulated flue gas was carried out in this paper. At the fixed-bed experimental system, the modified absorbents which have the performance of simultaneous desulfurization, denitration and mercury removal were selected to have an experimental study farther. The metheds such as SEM, EDS, XPS and chemical methods were used to analysis the absorbents and there byproducts. The mathematical model of mercury removal based on the fixed-bed were established and calculated. In addition, the experimental study and mass transfer kinetics of desulfurization, denitration and mercury removal in liquid phase were carried out. The study of this paper have certain theoretical meaning and application value for developing the technique of multiple pollutants simultaneous controlled from coal-fired flue gas.
     The modified absorbents which have the performance of simultaneous desulfurization, denitration and mercury removal was prepared by fly ash and CaO mainly. The analysis results of specific surface area and pore structure tests showed that the specific surface area and pore volume of fly ash increased about 10 times after digestion at certain hydrothermal condition by calcium oxide. Most of the micropore pore size were in the range of 3~40 nm, belonging to medium pore. The SEM and X-ray energy spectrum analysis showed that: the relative average content of Ca(OH)2 on the absorbents surface was higher than that inside. The additives were dispersed in the absorbent surface evenly.
     The effects of temperature, inlet mercury concentration, SO2 and NOx concentration on the mercury removal efficiency were investigated at fixed-bed experimental system. The effect of mercury in the flue gas on the simultaneous desulfurization and denitration was investigated also. The experimental results showed that the modified absorbents had preferable performance of simultaneous desulfurization, denitration and mercury removal from flue gas.
     The XPS analysis and chemical analysis results showed that the sulfur element in modified absorbent’s byproducts mainly existed in the form of sulfate, and nitrogen element existed with nitrate and nitrite mainly, mercury element existed with ion-state. The mechanism of simultaneous removal of SO2, NOx and Hg0 by modified absorbents was discussed.
     The TCLP leaching experiment were adopted in the laboratory and the experiment results showed that the leaching amount of merury from byproducts lower than the standard of national and American EPA. These indicated that the byproduct could be used in water processing comprehensive utilization subsequently.
     Based on mass balance of mercury in the system and experimental data, adsorption macrokinetics models were developed to describe the adsorption characteristic of mercury from flue gas. The differential equations were established based on mass balance of mercury in the gas phase and solide phase. The model was solved using a Matlab program with a improved euler method process. The results showed that the experimental data were fitted to the simulation very well.
     The experiments of simultaneous desulfurization, denitration and mercury removal were carried out in NaClO2 solution. The effect of solution concentration, initial pH value, reaction temperature, concentration of SO2 and NO on the mercury removal performance was researched in the paper. The study showed that NaClO2 solution had a better performance of simultaneous removal of SO2, NO and Hg0 from flue gas. Based on mass transfer parameters of bubbled reactor measured by chemical method, mass transfer and reactor kinetics was studied after obtaining physical parameters and mass transfer coefficient. Some data, such as the absorption rate constant and enhancement factor of mercury removal in liquid phase, were calculated in the paper.
引文
[1]谌天兵,武建军,韩甲业.燃煤污染现状及其治理技术综述.煤. 2006,15(2):1~4,7
    [2]曹征彦.中国洁净煤技术.北京:中国物资出版社,1998.10~20
    [3] Swaine D J. Trace elements in coal. London: Butterworth, 1990. 109~113
    [4]郑楚光,徐明厚,张军营等.燃煤痕量元素的排放与控制.武汉:湖北科学技术出版社,2002.9~14
    [5]United States Environmental Protection Agency (USEPA). Mercury study report to congress. 1997
    [6] Brown T D, Smith D N. Mercury measurement and its control: What we know, have learned, and need to further investigate. Air & Waste Manage. Assoc, 1999,6: 1~99
    [7]Ronny Dumarey, Richard Dama.Pyrolysis/CVAAS for determination of mercury in solid environmental samples. Mikrochimica Aota,1984,3(3-4):191~198
    [8]Kilgroe J. D., Sedman C. B., Srivastava R. K, et al.Control of mercury Emissions from Coal-Fired Electric Utility Boiler: Interim Report U.S.Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratsory, Air Pollution Prevention and Control Division, Research Triangle Park, 2002
    [9]Feeley, T. J., Murphy, J., Hoffmann, J., et al. A review of DOE/NETL’s mercury control technology R&D program for coal-fired power plants. 2003
    [10]Slemr F,Brunke E G,Ebinghaus R,et a1.Worldwide trend of atmospheric mercury since 1977. Geophysical Research Letters. 2003,30(10):15~16
    [11]Ravi, K., Srivastava, N. Hutson, B. et al. Control of mercury emissions from coal-fired electric power utility bolier.Environ. Sci. Technol. 2006,40, 1385~1393
    [12]王起超,沈文国,麻状伟.中国燃煤汞排放量估算.中国环境科学,1999,19(4):318~321
    [13]蒋靖坤,郝吉明,吴烨,等.中国燃煤汞排放清单的初步建立.环境科学,2005,26(2):35~39
    [14]王会强,胡丹.用组合预测模型对我国能源需求量的研究.能源研究与利用. 2007,5: 10~12
    [15]赵希正,孙玉才,王志轩,等.中国电力行业年度发展报告.北京:中国电力出版社. 2007:77~84
    [16]常西亮,樊彩梅.煤燃前脱硫新技术.山西化工, 2007, 27(5):48~50
    [17]王爱华,蔡九菊,王连勇,田红.洁净煤技术进展与展望.节能, 2004,5:6~9
    [18]俞珠峰.洁净煤技术发展及应用.北京:科学出版社, 2000.18~34
    [19]徐龙君,邹德均,程昱娟.正丙醇脱煤中有机硫的研究.煤炭转化, 2006,4:13~17
    [53]Roy S. Absorption of chlorine and mercury in sulfite solutions. Ph.D. Dissertation. Austin: The University of Texas, 2002
    [54]Meij R, Vredenbregt L H J, Winkel H T. The fate and behavior of mercury in coal-fired power plants. Journal of the Air & Waste Management Association. 2002,52(8):912~917
    [55]徐光,俞乔力.电子射线电子洗涤工艺研究进展.自然杂志, 1999,21(4):227~229
    [56]王德荣,林彦奇,赵蔚等.利用焦炭吸附进行燃煤烟气脱硫脱硝技术的研究.环境保护科学,2002,28(1):4~6
    [57]刘守军,刘振宇,朱珍平. CuO/AC脱除烟气中SO2机理的初步研究.煤炭转化, 2000(2):67~71
    [58]邓德兵,马新灵,向军,等.CuO/Al2O3烟气脱硫技术及脱硫剂的研究进展.电力环境保护,2002,18(3):46~51
    [59]李定邦,刘兆辅,张大年.节能型光解法废气脱硫脱硝技术研究.化学世界,2002(S1):53~55
    [60]Kaczur J J.Oxidation chemistry of chloric acid in NOx/SO2 and air toxic metal removal from gas streams.Environmental Process, 1996,15(4):245~253
    [61]马双枕,赵毅,陈传敏.采用杂多酸化合物溶液同时脱硫脱氮的实验研究.环境污染治理技术及设备,2002,3(3):47~50
    [62]Yih S M,Lii C W.Absorption of NO and SO2 in Fe2+-EDTA solution in a double stirred vessel.Chem. Eng. Commun.,1988,(73):45~53
    [63]Haslbeck J L, Neal L G, Ma W T. Development status of the VOXSO-combined NOx/SO2 flue gas treatment process. Integrated Environmental Contro1, 1998(3):2~4
    [64]Ferrell R J. A review of oxidation technologies instrumental in simultaneous removal of pollutants from flue gas streams.The 29th International Technical Conference on Coa1 Utilization & Fue1 Systems,Clearwater,Florida,USA ,2004,2:989~1000
    [65]Wu Yan, Li Jie, Wang Ninghui, Li Guofeng. Industrial experiments on desulfurization of flue gas by pulsed corona induced plasma chemical process. Journal of Electrostatics, 2003,57(3-4):233~241
    [66]陈亚非,张奇兴.电子束烟气脱硫若干问题探讨.中国电力, 2000,33(7):78~80
    [67]U.S. Department of Energy. Technologies for the combined control of sulfur dioxide and nitrogen oxides emissions from coal-fired boilers. Topical Report Number 13, 1999,5:8~18
    [68]Zhenping Zhu, Zhengyu Liu, Shoujun Liu, et al. NO reduction with NH3 over activated carbon-suppored copper oxide catalysts at low temperatures. Applied Catalysis B:Enviromental, 2000,26:100~112
    [69]Fernandez J, Renedo M. J, Pesquera A, et al. Effect of CaSO4 on the structure and use of Ca(OH)2/fly ash sorbents for SO2 removal. Power Technology, 2001, 119(3):201~205
    [70]Liu Chiung Fang, Shih Shin Min, Lin Rren Bin. Kinetics of the reaction of Ca(OH)2 fly ash sorbent with SO2 at low temperatures. Chemical Engineering Science, 2002,57(1):93~104
    [71]Krammer Gernot, Reissner Harald-Karl, Staudinger Gernot. Cyclic activation of calcium hydroxide for enhanced desulfurization. Chemical Engineering and Processing, 2002,41(5):463~471
    [72]Ma Xiaoxun, Kaneko Takao, Tashimo Tsutomu, et al. Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed. Chemical Engineering Science, 2000,55(20):4643~4652
    [73]Mieczyslaw A Gostomczyk,Wojciech Jozewicz.Simultaneous control of SO2,NOx,and mercury emissions from coal-fired boilers.Combined Power Plant Air Poilutant Control Mega Symposium,Washington,DC,USA,2004:107~118
    [74]Ira S, Brodsky. A multi-pollutant approach to coal-fired utility retrofits,Power-Gen International,Orlando,FL,USA,2004:350~366
    [75]Ralph Altman,Wayne Buckley,Isaac Ray.Application of wet electrostatic precipitation technology in the utility industry for multiple pollutant control.Power-Gen International Las Vegas,NV,USA,2001:11~23
    [76]E.Stratos Tavoulareas,Wojciech Jozewicz.Multipollutant emissions Control technology options for coal-fired power plants.EPA-600/R-05/034 March, 2005
    [77]王旭伟,鄢晓忠,陈彦菲,等.国内外电厂燃煤锅炉烟气同时脱硫脱硝技术的研究进展.电站系统工程,2007,23(4):5~7
    [78]宋增林,王丽萍,程璞.火电厂锅炉烟气同时脱硫脱硝技术进展,热力发电,2005,34(2):4~7
    [79]张鹏宇.催化活性炭脱硫脱硝除汞的试验研究:[硕士学位论文].武汉:华中科技大学,2004
    [80]杨小玲.燃煤脱硫剂研究应用现状及进展.洁净煤技术,2007,13(1):70~72
    [81]王春波,沈湘林.钙基脱硫剂调制现状及展望.锅炉技术,2000,31(8):1~4
    [82]庞亚军.掺加粉煤灰提高含钙脱硫剂的烟气脱硫率的实验研究,1992,13(4):443~447
    [83]Jozewicz W, Rochelle G T. Fly Ash Recyle in Dry Scrubbing. Environ. Prog., 1986,5(4):219~224
    [84]Hiroaki Tsuchiai, Tomohiro Ishizuka, et. al. Highly active absorbent for SO2 removel prepared from coal fly ash. Eng. Chem. Res., 1995, 34(4):1401~1411
    [85]吴树新,关俊霞,贾俊方,等.钙基燃煤烟气脱硫剂的研究进展.唐山师范学院学报,2007,27(2):23~24
    [86]Peterson Joseph R, Rochelle Gary T. Aqueous reaction of fly ash and Ca(OH)2 to produce calcium silicate absorbent for flue gas desulfurization. Environmental Science and Technology, 1988, 22(11): 1299~1304
    [87] Liu Chiung Fang, Shih Shin Min, Lin Ren Bin. Kinetic model for the reaction of Ca(OH)2/fly ash sorbents with SO2 at low temperatures. Industrial and Engineering Chemistry Research, 2004, 43(15): 4112~4117
    [88]Cunill Fidel, Izquierdo Jose F, Martinez Juan C, et al. Influence of different additives on the reaction between hydrated lime and sulfur dioxide.Environmental Progress, 1991, 10(4):273~277
    [89]陶宝库,王德荣,宋刚,等.固体吸附/再生法同时脱硫脱稍的技术.辽宁城乡环境科技,1998,18(6):8~12
    [90]刘昌见,李荫重,李文华.改性半焦烟气脱硫的机理研究.环境化学,1999,18(4):309~314
    [91]李志红,上官炬,李春虎,等.活性半焦脱除烟气中SO2的研究进展.太原理工大学学报,2002,33(2):179~182,188
    [92]Bustard J,Durham M,Starns T,et al. Full-scale evaluation of sorbent injection for mercury control on coal-fired power plants. Fuel Processing Technology, 2004,85(6-7):549~562
    [93]许佩瑶.烟气循环流化床同时脱硫脱硝实验研究. [博士学位论文].保定:华北电力大学,2006
    [94]T.Y. Yan. A novel process for Hg removal from gases, Ind. Eng. Chem. Res. 1994,33:3010~3014
    [94]赵毅,孙小军,许佩瑶,等.烟气同时脱硫脱氮的高活性吸收剂的表征及脱除机理研究.中国科学:E辑, 2006,36(3):326~340
    [95]Wang Li gang,Chen Chang he,Kruse H.Kolker.Vapor-phase elemental mercury adsorption by redidual carbon separated from fly ash.Environmental Sciences, 2005, 17(3):518~520
    [96]彭苏萍,王立刚.燃煤飞灰对锅炉烟道气汞的吸附研究.煤炭科学技术,2002,(9):33~34
    [97]Jozewicz W, Rochelle G T. Fly ash recycle in dry scrubbing. Environ Prog, 1986,5(4):219~22
    [98]Renedo M J, Fernandez J.Preparation, characterization,and calcium utilization of fly ash/Ca(OH)2 sorbents for dry desulfurization at low temperature. Industrial and Engineering Chemistry Research,2002,41(10):2412-2417
    [99]Zamansky V M, Ho L, Maly P M, et al. Oxidation of NO to NO2 by hydrogen peroxide and its mixtures with methanol in natural gas and coal combustion gases. Combust. Sci. Technol., 1996,120:255~272
    [100]日本炭素材料学会编,活性炭基础与应用. (高尚愚,陈维译),北京:中国林业出版社,1984.34~69
    [101]赵建海.高活性吸收剂联合脱硫脱氮技术的研究. [硕士学位论文].河北保定:华北电力大学,2001
    [102]Method 29, Determination of metals emissions from stationary sources, 40 CFR Part 60, Appendix A U.S. government Printing Office, Washington, DC, July 1994
    [103]Method 101A, Determination of particulate and gaseous mercury emissions from sewage sludge incinerators, 40 CFR Part 61, Appendix B U.S. government Printing Office, Washington, DC, July 1994
    [104]Standard test method for mercury from coal-fired stationary sources (Ontario Hydro Method), July7, 1999, EPA USA
    [105]R. Meij,The fate of mereury in coal-fired power plants and the influence of wet flue-gas desulphurization,Water,Air,and Soil Pollution,1991,56:21~33
    [106]D.L. Laudal, T.D. Brown, B.R. Nott, Effects of flue gas constituents on Mercury speciation, Fuel Process. Technol. 2000, (65–66):157~165
    [107]Chironna R J, Altshuler B. Chemical aspects of NOx scrubbing. Pollut. Eng. April, 1998, 31: 32~37
    [108]Teramoto M, Ikeda M, Teranishi H. Absorption rates of NO in mixed aqueous solution of NaClO2 and NaOH. Kagaku Kogaku Ronbunshu, 1976,(2):637~640
    [109]Sada E, KumazawaH, Kudo I, et al. Absorption of lean NOx in aqueous solutions of NaClO2 and NaOH. Industrial & Engineering Chemistry Process Design and Development, 1979,(18):275~278
    [110]Hsu H, Lee C, Chou K. Absorption of NO by NaClO2solution: Performce characteristics. Chemical Engineering Communications, 1998, (170):67~81
    [112]万敬敏.液相烟气同时脱硫脱硝的实验研究. [硕士学位论文].保定:华北电力大学,2006
    [113]Chien T, Chu H, Hsueh H. Kinetic study on absorption of SO2 and NOx with acidic NaClO2 solutions using the spraying column. Journal of Environmental Engineering, 2003,129(11):967~974
    [114]Adewuyi Y, He X, Shaw H, et al. Simultaneous absorption and oxidation of NO and SO2 by aqueous solutions of sodium chlorite. Chemical Engineering Communications, 1999,(174):21~25
    [115]Van der vaat R, Akkerhuis J, Feron P, et al. Removal of mercury from gas streams by oxidative membrane gas absorption. Journal of Membrane Science, 2001,187(1-2):151~157
    [116]Shendrikar D A, Filby R, Markowski R G, et al. Trace element loss onto polyethylene container walls from impinger solutions from flue gas sampling. Journal of the Air Pollution Control Association, 1984, 34(3):233~236
    [117]Zhao L L, Rochelle G T. Hg absorption in aqueous Permanganate. AICHE Journal, 1996,42(12):3559~3562
    [118]R. SligerJ, Kramlieh, N. Marinov, Towards the development of a Chemieal kinetic model for the homogeneous oxidation of mereury by chlorines species. Fuel Proeessing Teehnology,2000,(65):423~438
    [119]M. W. Chase, C.A. Davies, D.J.Downey, SyVerd AN. JANAF thermodynamics tables. Journal of physical and chemical reference data,1985,(14):1-1856
    [120]北川浩,铃木谦一郎.吸附的基础与设计.北京:化学工业出版社,1983.1~58
    [121]冯孝庭.吸附分离技术.北京:化学工业出版社,2000:45~50
    [122]吕梁,侯浩波.粉煤灰的性能与利用.北京:中国电力出版社,1998,34~48
    [123]United States Environmental Proteetion Agency. Test methods for evaluating solid waste,Physieal/chemieal methods,2000
    [124]Tai Gyu Lee. Study of mercury kinetics and control methodologies in simulates combustion flue gases. Ph.D. Thesis. University of Cincinnati,1999
    [125]C S Ho, S M Shih. Factors influencing the reaction of Ca(OH)2 with SO2. Chin Inst Chem Eng, 1993,52(24):187~195
    [126]Yoon H, Stouffer M R, Rosenhoover W A, et al. Pilot process variable study of cool side desulfurization. Environ. Prog., 1988,7(2):101~111
    [127]Stouffer M R, Yoon H F, Burker P. An investigation of the mechanisms of flue gas desulfurization by in-duct dry sorbent injection. Ind. Eng. Chem. Res., 1989,28:20~27
    [128]Cook J L, Khang S J, Lee S K et al. Attrition and changes in particle size of lime sorbents in a circulating fluidized bed absorber. Power Technology, 1996, 89:1~8
    [129]吴忠标,谭天恩.石灰浆滴脱硫—干燥关系的模拟研究.高校化学工程学报,1993,7(2):27~31
    [130]赵毅,赵建海,马双忱,等.高活性吸收剂去除二氧化硫的实验研究.华北电力大学学报,2001,90(1):72~75
    [131]高翔,骆仲泱.钙基吸收剂脱硫反应特性的研究.燃烧科学与技术.1998,4(4):369~373
    [132]王世昌,徐旭常,姚强.水蒸汽对CaO颗粒脱硫反应催化作用的实验研究.中国电机工程学报,2004,24(9):252~256
    [133]Ervin B M J, Thomas J O. Hydrogen peroxide scrubber for the control of nitrogen oxides. Environ. Eng. Sci., 2002,19(5):321~327
    [134]Nelli C H, Rochelle G T. Simultaneous sulfur dioxide and nitrogen dioxide removal by calcium hydroxide and calcium silicate solids. Air & Waste Manage Assoc, 1998,48:819~828
    [135]Huggins F E,Yap N,Huffman G P,et al.XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures.Fuel Process Technology,2003,82(23):167~196
    [136]徐丁苗.无机化学.北京:人民卫生出版社,2000.103~129
    [137]T. C. Ho, N.kobayashi, Y.K.Lee, et.al. Modeling of mereury sorption by activated carbon in a confined a semi-fluidized, and a fluidized bed. Waste management, 2002,(22):391~398
    [138]J R Flora, R D Vidie, W Liu. Modeling powdered activated carbon injection for the uptake elemental mercury vapors, Journal of air & waste management association,1998(48):1051~1059
    [139]T C Ho, Y K Lee, N Kobayashi, C J, et al. Measurement and modeling of elemental mercury sorption on various activated carbons in a fixed-bed adsorber, Journal of the Chinese Institute of Chemical Engineers 2003,34(1): 17~23
    [140]Tai Gyu Lee. Study of mercury kinetics and control methodologies in simulates combustion flue gases: PhD dissertation. University of Cincirnnati, 1999
    [141]任建莉,周劲松,骆仲泱,等.模拟烟气中汞吸附系统的数学模型.浙江大学学报,2006,40(10):1827~1832
    [142]Wang Ligang, Chen Changhe, Kruse H. Kolker. Modeling mercury adsorption on carbon particles in simulated flue gas. Journal of soustheast University(English Edition), 2006,22(2):256~259。
    [143]李作骏.多相催化反应动力学基础.北京:北京大学出版社, 1990.39~62
    [144]柳正辉,王果庭,杨孔璋编译.吸附的动力学特性.北京:科学出版社,1964. 45~50
    [145]史季芬.多级分离过程—蒸馏、吸收、萃取、吸附.北京:化学工业出版社,1991.37~68
    [146]Brogren, C, Karlsson, H T, Bjerle, I Absorption of NO in an Aqueous Solution of NaClO2. Chemical Engineering Technology,1998, 21(1):61~70
    [147]赵音.液相同时脱硫脱硝技术及机理研究. [硕士学位论文].保定:华北电力大学,2006
    [148]马宵颖.液相烟气脱汞实验研究.[硕士学位论文].保定:华北电力大学,2006
    [149]Tsung Wen Chien, Hsin Chu. Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution. Journal of Hazardous Materials,2000,(B80): 43~57
    [150]Yang C L, Shaw H, Perlmutter H D. Absorption of NO Promoted by Strong Oxidizing Agents:1. Inorganic Oxychlorites in Titric Acid. Chemical Engineering Communication, 1996, 143(1):23~38
    [151]Charles E M, Thomas J F, William W A, et al.Mercury capture and fate using wet FGD at coal-fired power plants. DOE/NETL Mercury and Wet FGD R&D, August 2006:1~37
    [152]Kelly Martin, Eduardo Gonzalez, Chenn Q. Zhou ,C.D.L Avengood, M H. Mendelssohn. Elemental Mercury Removal Using a Wet Scrubber. Presented at the 61th Annual Meeting of the American Power Conference,Chicago, 1999,61:180~185
    [153]Lynn L Zhao, Gary T Rochelle. Mercury Absorption in Aqueous Oxidants Catalyzed by Mercury(II). Ind. Eng. Chem. Res. 1998,37:380~387
    [154]Chien T, Chu H, Hsueh H. Kinetic study on absorption of SO2 and NOx with acidic NaClO2 solutions using the spraying column. Journal of Environmental engineering, 2003,129(11):967~974
    [155]Mercedes D S, Sven U, Klaus R G. Mercury emission control in coal-fired plants: The role of wet scrubbers. Fuel Processing Tehchnology, 2007, 88:259~263
    [156]Zhao Weirong, Shi Huixiang, Wang Dahui. Modeling of mass transfer characteristics of bubble column reactor with surfactant present. Journal of Zhejiang University Science,2004,5(6): 714~720
    [157]叶群峰.吸收法脱除模拟烟气中气态汞的研究.[博士学位论文].杭州:浙江大学,2006
    [158]Zhao L L. Mercury absorption in aqueous solutions. PhD thesis. Austin: The University of Texas, 1997.
    [159]Danckwerts P V. Gas-Liquid Reaction. NewYork: McGraw-Hill, 1970. 35~245
    [160]Alper E, Deckwer W D, Danckwerts P V. Comparison of effective interfacial areas with the actual contact area for gas absorption in a stirred cell. Chemical Engineering Science, 1980,35(6): 1263~1268
    [161]Hikita H, Asai S, Takatsu T. Absorption of carbon dioxide into aqueous sodium hydroxide and sodium-carbonate solutions. The Chemical Engineering Journal, 1976, 11(2): 131~141
    [162]赵伟荣.阳离子红X-GRL染料的UV/O3氧化处理研究.[硕士学位论文].杭州:浙江大学,2004
    [163]Sitaraman R,Ibrahim S H,Kuloorn R. A generalized equation for diffusion in liquids.Journal of Chemical and Engineering Data,1996,42(2):559~3562
    [164]Pohorechi R, Moniuk W. Kinetics of reaction between carbon dioxide and hydroxyl ions aqueous electrolyte solutions. Chemical Engineering Science, 1988,43(7):1677~1684
    [165]Pohorechi R,Asai S Takatsu T. Absorption of carbon dioide into aqueous sodium hydroxide and sodium-carbonate solutions. The chemical Engineering Journal,1976,11(2):131~141
    [166]Lide D R. CRC Handbook of Chemistry and Physics. 75th ed, Cleveland:CRC Press, 1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700