自然生态恢复过程中铜尾矿废弃地微生物学性质及细菌群落结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜尾矿废弃地是一种人工原生裸地,铜尾矿废弃地上生态系统的形成和发育表现为典型的原生演替。铜陵铜尾矿废弃地大部分都是在通过自然方式恢复,弃置后的尾矿裸地表面首先形成以藻类、苔藓为优势的隐花植物结皮,而后草本植物定居并逐渐形成自然植物群落。本研究以弃置时间分别为19 a和30 a的铜陵杨山冲尾矿废弃地和铜官山尾矿废弃地为对象,探讨自然生态恢复过程中,随着植物群落的演替和基质理化性质的变化,铜尾矿废弃地中微生物量、微生物活性及土壤酶活性等微生物学性质的演变,并利用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术对尾矿废弃地细菌(包括自由固氮微生物)的群落结构进行研究。
     随着铜尾矿废弃地生态系统原生演替的进行,废弃地中有机质、含水量、总氮及速效磷含量增加,pH降低;尾矿废弃地表层微生物量碳、氮及脲酶和碱性磷酸酶活性随生态系统的发展而提高,而微生物代谢熵有所降低;铜官山老尾矿废弃地较杨山冲废弃地表现出高的养分含量和微生物量,表明尾矿废弃地的理化性质、微生物量和土壤酶活性受到生态系统发育时间的重要影响。
     铜尾矿库废弃地不同恢复阶段细菌16S rDNA V3可变区的DGGE图谱分析表明,不同植物群落演替阶段尾矿中细菌多样性无明显的变化趋势;但同一植物群落下的尾矿废弃地,A-层较C-层表现出高的细菌多样性,这与尾矿中有机质、氮和磷等养分含量的变化相一致。细菌16S rDNA V3-V5可变区的DGGE分析及基因测序发现,铜尾矿废弃地中细菌的主要类群为变形菌门(Proteobacteria)(包括α-变形菌纲(alpha-proteobacteria),β-变形菌纲(beta-proteobacteria)和γ-变形菌纲(gamma-proteobacteria)),其次为厚壁菌门(Firmicutes) (包括芽孢杆菌纲(Bacilli)和梭菌纲(Clostridia)),此外还包括硝化螺旋菌门(Nitrospirae)、放线菌门(Actinobacteria)、异常球菌嗜热菌门(Deinococcus-Thermus)和拟杆菌门(Bacteroidetes)等。数据分析表明,铜尾矿废弃地中细菌的多样性同时受到养分的积累状况和植被类型影响。
     自由固氮微生物为铜尾矿废弃地的自然生态恢复提供了重要的氮源,nifH基因(编码固氮铁蛋白)的DGGE指纹图谱分析表明,随着植物群落从裸地到维管植物群落的演替,杨山冲尾矿废弃地固氮微生物多样性未表现出明显的变化趋势;相对于弃置时间较短的杨山冲尾矿废弃地,铜官山老尾矿废弃地表现出高的固氮微生物多样性。测序结果表明,尾矿废弃地中自由固氮微生物主要类群包括变形菌门和蓝藻门。基于条带分布和铜尾矿废弃地理化性质的典范对应分析显示,铜尾矿废弃地中有机质含量、含水量、pH对自由固氮微生物多样性影响显著(p<0.05)。植物群落通过改善基质pH、提高有机质和水分含量影响尾矿废弃地中自由固氮微生物多样性和群落结构。
     铜尾矿废弃地上生长的优势植物白茅(Imperata cylindrica var. major)、狗牙根(Cynodon dactylon)、中华结缕草(Zoysia sinica)、芒(Miscanthus sinensis)、五节芒(Miscanthus floridulus)和木贼(Hippochaete ramosissimum)的根际和非根际nifH基因多样性分析表明:在杨山冲铜尾矿废弃地,优势植物根际尾矿固氮微生物多样性低于非根际尾矿;相对于杨山冲尾矿废弃地,铜官山老尾矿废弃地白茅根际尾矿具有高的固氮微生物多样性;随植物定居时间的增加,杨山冲尾矿废弃地白茅和木贼根际尾矿中固氮微生物多样性提高,而中华结缕草表现出相反的趋势。系统发育分析显示,铜尾矿废弃地根际自由际固氮微生物主要类群包括α-变形菌,β-变形菌和蓝藻。大多数nifH基因序列与已知可培养的微生物及蓝藻表现出较低的相似性,说明铜尾矿废弃地的固氮微生物可能代表着新的固氮微生物类群。尾矿废弃地优势植物类型、植物群落定居时间、植物生活型及尾矿的理化性质皆影响优势植物根际自由固氮微生物多样性。
The wastes of copper mine tailings is a pedogenetic substrate. Formation and development of ecosystem on the wastelands of copper mine tailings is a typical primary succession. Most wastelands of copper mine tailings in Tongling, China, are restored in natural way. The tailings wastelands firstly come into being cryptogamic crust after the disposal, which is dominated by algae and moss, then herbaceous vascular plants settle down and gradually form a natural plant community. The changes in physico-chemical properties, microbial characteristics, enzyme activity in wastelands during primary succession were investigated in two wastelands of copper mine tailings near Tongling, and the structure of bacterial community, free-living nitrogen-fixing bacteria included, was examined using Polymerase Chain Reaction-Denatured Gradient Gel Electrophoresis (PCR-DGGE) approach. The Yangshanchong wasteland and Tongguanshan wasteland studied were discarded for 19 a and 30 a, respectively.
     Soil organic matter, total nitrogen, available phosphorus and water holding increased with primary succession, while the pH showed opposite trend. The microbial biomass C and N, and activities of urease and alkaline phosphatase in surface layer increased, while metabolic quotient decreased with development of ecosystem on the wastelands of copper mine tailings.
     As the development of wastelands, no significant trend of bacterial diversity was found in different successional stages of the same horizon. However, A-horizon displayed higher bacterial diversity than C-horizon, which was consistent with the change of soil organic matter and total nitrogen in content. Phylogenetic analysis of 16S rDNA V3-V5 variable region gene sequences retrieved from DGGE gels indicated that there were Proteobacteria, alpha-proteobacteria, beta-proteobacteria and garma-proteobacteria included, Firmicute, Bacilli and Clostridia included, Nitrospirae, Actinobacteria, Deinococcus-Thermus and Bacteroidetes detected in wastelands of copper mine tailings. Both the accumulation of nutrients and the type of vegetation influenced the changes of bacterial diversity in naturally reclaimed wastelands of copper mine tailings.
     Biological nitrogen fixing is an important source of nitrogen input in the natural ecological restoration of mine wastelands. The analysis of diversity of nifH gene in tailings samples with different plant communities from wastelands using PCR-DGGE demonstrated that the diversity of nifH gene in Yangshanchong wasteland did not display a consistent successional tendency with development of plant communities. The nitrogen-fixing microorganism community in the upper layer of tailings in Tongguanshan wasteland showed higher Shannon-Wiener diversity index than that in Yangshanchong wasteland. Phylogenetic analysis of nifH gene sequences retrieved from the DGGE gels indicated that there were mainly two taxa of free-living nitrogen-fixing microorganisms, Proteobacteria and Cyanobacteria living in the wastelands investigated. Canonical correspondence analysis based on the relationship between band patterns of DGGE profile and physico-chemical properties of tailings samples showed that the diversity of nifH gene in different tailings samples was mainly affected by loss of ignition, water content and pH of wastelands (p< 0.05). The dominant plant species and development period of plant communities by ameliorating pH, increasing organic matter and water content affected the diversity and structure of the free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings.
     The study on free-living nitrogen-fixing microorganism communities in rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings, including Imperata cylindrica var. major, Cynodon dactylon, Zoysia sinica, Miscanthus sinensis, Miscanthus floridulus and Hippochaete ramosissimum, indicated that, free-living nitrogen-fixing microorganisms in the bulk soil in Yangshanchong wasteland showed higher diversity indices than that in the rhizosphere of dominant plant; and the nitrogen-fixing microorganism community in the rhizosphere of Imperata cylindrica var. major in Tongguanshan wasteland showed higher Shannon-Wiener diversity index than that in Yangshanchong wasteland. The diversity of free-living nitrogen-fixing microorganism communities in rhizosphere of Imperata cylindrica var. major and Hippochaete ramosissimum increased with the plant ages while Zoysia sinica showed the opposite trend. Phylogenetic analysis indicated that nifH gene sequences retrieved from DGGE gels clustered in the Proteobacteria and Cyanobacteria. Most of nifH gene fragments sequenced were not closely related to any known cultivated nitrogen-fixing bacteria and cyanobacteria, suggesting that the nifH gene sequences in wastelands of copper mine tailings investigated are unique and may represent novel sequences of nitrogen-fixing community. Our results indicated that diversity of nifH gene sequences in rhizosphere and non-rhizosphere tailings samples was affected by development period of plant community, plant species, plant life forms and physico-chemical properties of wastelands.
引文
[1]Jenkinson DS, Ladd JN. Microbial biomass in soil:measurement and turnover in Paul[J]. Soil Biochem,1981,5:415-471.
    [2]叶姜瑜,罗固源.未培养微生物的研究与微生物分子生态学的发展[J].微生物学通报,2004,31(5):111-411.
    [3]卢莉琼,徐亚同,梁俊.分子生物学方法在微生物多样性及微生物生态研究中的应用[J].应用与环境生物学报,2002,10(6):728-928。
    [4]Kahindi JHP, Woomer P, George T, de Souza Mareira FM. Agricultural intensification, soil biodiversity and ecosystem function in the tropics:the role of nitrogen-fixing bacteria[J]. Appl Soil Ecol,1997,6:55-76.
    [5]Widmer F, Shaffer BT, Porteous LA, et al. Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in Oregon cascade mountain range[J]. Appl Environ Microbiol,1999,65:374-380.
    [6]Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil[J]. Research in Microbiology,2001,152:95-103.
    [7]Zehr JP, Mellon MT, Zani S. New nitrogen-fixing microorganisms detected in oligotrophic oceans by the amplification of nitrogenase (nifH) genes [J]. Appl Environ Microbiol,1998,64:3444-3450.
    [8]Coelho MRR, de Vos M, Carneiro NP, et al. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer[J]. FEMS Microbiol Lett,2008,279: 15-22.
    [9]Peoples MB, Craswell ET. Biological nitrogen fixation:investments, expectations and actual contributions to agriculture [J]. Plant Soil,1992,141:13-39.
    [10]Kanungo PK, Kamakrishnan B, Rao VR. Placement effects of organic sources on nitrogenase activity and nitrogen-fixing bacteria in flooded rice soils[J]. Biol Fertility Soils,1997,25:103-108.
    [11]Cleveland CC, Townsend AR, Schimel DS, et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems[J]. Global Biogeochem Cycles,1999,13:623-645.
    [12]Hamelin J, Fromin N, Tarnawski S, et al. nifH gene diversity in the bacterial community associated with the rhizosphere Molinia coerulea, a oligonitrophillic perennial grass[J]. Environ Microbiol,2002,4:477-481.
    [13]Tan Z, Hurek T, Reinhold-Hurek B. Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice[J]. Environ Microbiol,2003,5:1009-1015.
    [14]Gleason HA. Further views on the succession concept[J]. Ecology,1927, 8:299-326.
    [15]Odum EP. The strategy of ecosystem development[J]. Science,1969,164: 262-270.
    [16]Wood DM, Moral DR. Mechanisms of early primary succession in subalpine habitats on Mount St. Helens[J]. Ecology,1987,68:780-790.
    [17]Chapin FS, Walker LR, Fastie CL, et al. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska[J]. Ecol Monographs,1994,64: 149-175.
    [18]Fastie CL. Cause and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska[J]. Ecology,1995,76:1899-1916.
    [19]Grime JP.1997. Biodiversity and ecosystem function:the debate deepens[J]. Science,277:1260-1261.
    [20]Chardwick OA, Derry LA, Vitousek PM, et al. Changing sources of nutrients during four million years of ecosystem development[J]. Nature,1999,397: 491-497.
    [21]Wardle DA, Walker LR, Bardgett RD. Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science,2004,305:509-513.
    [22]Bardgett RD, Walker LR.2004. Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation[J]. Soil Biol Biochem,36:555-559.
    [23]Allen MF, Allen EB, Zink TA, et al.,1999. Soil microorganisms, in:Walker L (Ed.), Ecosystems of Distrubed Ground[M]. Elsevier, Amsterdam:521-544.
    [24]Schipper LA, Degens BP, Sparling GP, et al. Changes in microbial heterotrophic diversity along five plant successional sequences[J]. Soil Biol Biochem,2001,33: 2093-2103.
    [25]Tscherko D, Hammesfahr U, Marx MC, et al. Shift in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence[J]. Soil Biol Biochem,2004,36:1685-1698.
    [26]Nemergut DR, Anderson SP, Cleveland CC, et al. Microbial community succession in an unvegetated, recently deglaciated soil[J]. Microb Ecol,2007,53: 110-122.
    [27]Chodak M, Pietrzykowski M, Niklinska M. Development of microbial properties in a chronosequence of sandy mine soils[J]. Appl Soil Ecol,2009,41:259-268.
    [28]Insam H, Domsch KH. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites[J]. Microb Ecol,1988,15: 177-188.
    [29]Insam H, Haselwandter K. Metabolic quotient of the soil microflora in relation to plant succession[J]. Oecologia,1989,79:174-178.
    [30]Noll M, Wellinger M. Changes of the soil ecosystem along a recording glacier: Testing the correlation between environmental factors and bacterial community structure[J]. Soil Biol Biochem,2008,40:2611-2619.
    [31]Ohtonen R, Fritze H, Pennanen T, et al. Ecosystem properties and microbial community changes in primary succession on a glacier forefront[J]. Oecologia, 1999,119:239-246.
    [32]Jahnke J and Priefer UB. Phototrophic biofilms of restored fields in the rhenish lignite mining area: development of soil algal, bacterial, and fungal biomasses[J]. Soil Biol Biochem,2002,34:1157-1165.
    [33]Sigler WV, Crivii S, Zeyer J. Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics[J]. Microb Ecol,2002,44:306-316.
    [34]Roy A, Singh KP. Dynamics of microbial biomass and nitrogen supply during primary succession on blastfurnace slag dumps in dry tropics[J]. Soil Biol Biochem,2003,35:365-372.
    [35]Shillam L, Hopkins DW, Badalucco L, et al. Structural diversity and enzyme activity of volcanic soils at different stages of development and response to experimental disturbance[J]. Soil Biol Biochem,2008,40:2182-2185.
    [36]Tscherko D, Rustemeier J, Richter A, et al. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps[J]. Eur Soil Sci,2003,54:685-696.
    [37]Sigler WV, Zeyer J. Microbial diversity and activity along the forefields of two receding glaciers[J]. Microb Ecol,2002,43:397-407.
    [38]Merila P, Strommer R, Fritze H. Soil microbial activity and community structure along a primary succession transect on the land-uplift coast in western Finland[J]. Soil Biol Biochem,2002,34:1647-1654.
    [39]Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev, 1995,59:143-169.
    [40]Kelly JJ, Haeggblom M, Tate RL. Changes in soil microbial communities over time resulting from time application of zinc:laboratory microcosm study [J]. Soil Biol Biochem,1999,31:1455-1465.
    [41]Maire N, Borcard D, Lacako E, et al. Organic matter cycling in grassland soils of the swiss Jura mountains:Biodiversity and strategies of the living communities[J]. Soil Biol Biochem,1999,31:1281-1293
    [42]Ibekwe A M, Kenedy A C, Frohne P S, et al. Microbiol diversity along a transect of agronomic zones[J]. FEMS Microbiol Ecol,1998,26:151-163.
    [43]Yoshitake S, Uchida M, Nakatsubo T. Characterization of soil microflora on a successional glacier foreland in the high Arctic on Ellesmere Island, Nunavut, Canada using phospholipids fatty acid analysis[J]. Polar Biosci,2006,19:73-84.
    [44]Philip WR, Matthias CR, Kevin PF, et al. Choice of methods for soil microbial community analysis:PLFA maximizes power compared to CLPP and PCR-based approaches [J]. Pedobiologia,2006,50:75-280.
    [45]Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-leve Sole-Carbon-Source Utilization[J]. Appl Environ Microbiol,1991,57: 2351-2359.
    [46]杨永华,姚健.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23-25.
    [47]Zhang HX, Wang XY, Qi HY. Development in research methods of microbial ecology[J]. Acta Ecologica Sinica,2003,23:988-995.
    [48]Jennifer LK, Lee AB, Miranda H, et al. Methods of studying soil microbial diversity[J]. J Microbiol Methods,2004,58:169-188.
    [49]Dunbar J, Ticknor LO, Kuske CR. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol,2000,66:943-2950.
    [50]Garcia-Martine ZJ, Acinas SG, Anton AL, et al. Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity [J]. J Microbiol Methods, 1999,36:55-64.
    [51]Muyzer G, De Wall EC, Uitterlinden AG. Profiling of complex micmbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol, 1993,59:695-700.
    [52]王岳坤,洪葵.红树林土壤细菌群落16S rDNA V3片段PCR的产物DGGE分析[J].微生物学报,2005,45(2):201-204.
    [53]Ferris MJ, Muyzer G, Ward DM. Denaturing gradient gel electrophoresis is profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community[J]. Appl Environ Microbiol,1996,62:340-346.
    [54]Duineveld BM, Rosado A, Elsas JD, et al. Analysis of the dynamics of bacterial communities in the rhizophere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns [J]. Appl Environ Microbiol, 1998,64:4950-4957.
    [55]冯胜,高光朱,广伟,等.基于16S rDNA-DGGE和FDC技术对富营养化湖泊不同生态修复工程区细菌群落结构的研究[J].应用与环境生物学报,2007,13(4):535-540.
    [56]Santegoeds CM, Nold S, Ward DM. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacterial from a hot spring cyanobacterial mat[J]. Appl Environ Microbiol,1996,62:3922-3928.
    [57]蓝崇钰,束文圣,孙庆业.采矿地的复垦.见:陈昌笃主编.持续发展与生态学[M].北京:中国科技出版社.1993,132-138.
    [58]束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究[J].生态科学,2000,19(2):24-25.
    [59]Bradshaw A. Restoration of mined lands—using natural processes[J]. Ecol Eng, 1997,8:255-269.
    [60]孙庆业,杨林章,安树青,等.尾矿废弃地的自然生态恢复,见:王如松主编,循环·整合·和谐.北京:中国科学技术出版社,2005:251-257.
    [61]Stromberg B, Ban wart S. Weathering kinetics of waste rock from the Aitik copper mine, Sweden:scale dependent rate factors and pH controls in large column experiments[J]. J Contam Hydrol,1999,39:59-89.
    [62]Ljungberg J, Ohlander B. The geochemical dynamics of oxidising mine tailings at Laver, Northern Sweden[J]. J Geochem Explor,2001,74:57-72.
    [63]胡欢,王汝成,陆建军,等.安徽铜陵狮子山矿田夕卡岩型金矿床的矿物组合、化学成分及成因意义[J].矿床地质,2001,20:86-88.
    [64]Neel C, Bril H, Courtin-Nomade A, et al. Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings[J]. Geoderma,2003,111:1-20.
    [65]Bini C, Gaballo S. Pedogenic trends in anthrosols developed in sulfidic mine spoils:A case study in the Temperino mine archaeological area (Campiglia Marittima, Tuscany, Italy)[J]. Quaternary Int,2006,156:70-78.
    [66]Sun QY, An SQ, Yang LZ, et al. Chemical properties of the upper tailings beneath biotic crusts[J]. Ecol Eng,2004,23:47-53.
    [67]孙庆业,任冠举,杨林章,等.自然植物群落对铜尾矿废弃地土壤酶活性的影响[J].土壤学报,2005,42(1):37-43.
    [68]Baldrian P, Trogl J, Frouz J, et al. Enzyme activities and microbial biomass in topsopil layer during spontaneous succession in spoil heaps after brown coal mining[J]. Soil Biol Biochem,2008,40:2107-2115.
    [69]Frouz J, Novakova A. Development of soil microbial properties in topsoil layer
    during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development[J]. Geoderma,2005,129:54-64.
    [70]Wanner M, Dunger W. Biological activity of soils from reclaimed open-cast coal mining areas in upper Lusatia using testate amoebae (Protists) as indicators[J]. Ecol Eng,2001,17:323-330.
    [71]Wieglab G, Felinks B. Primary succession in post-mining landscapes of Lower Lusatia—chance or necessity[J]. Ecol Eng,2001,17:199-217.
    [72]龙健,黄昌勇,腾应,等.我国南方红壤矿山复垦土壤的微生物特征研究.水土保持学报,2002,16:126-132.
    [73]滕应,黄昌勇,龙健.铅锌银尾矿污染区土壤微生物区系及主要生理类群研究[J].农业环境科学学报,2003,2(4):408-411.
    [74]滕应,黄昌勇,骆永明,等.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报,2004,41(1):113-119.
    [75]Dunger W, Voigtlander K. Assessment of biological soil quality in wooded reclaimed mine sites[J]. Geoderma,2005,129:32-44.
    [76]刘爱民,黄为一.铜尾矿复垦后土壤微生物活性及其群落功能多样性研究[J].生态环境,2005,14:876-879.
    [77]Claassens S, Van Rensburg PJJ, Van Rensburg L. Soil microbial community structure of coal mine discard under rehabilitation[J]. Water, Air, and Soil Pollution,2006,174:355-366
    [78]Kirk JL, Beaudette LA, Hart M, et al. Methods of studying soil microbial diversity[J].J Microbiol Methods,2004,58:169-188.
    [79]田胜尼,孙庆业,王峥峰,等.铜陵铜尾矿废弃地定居植物及基质理化性质的变化[J].长江流域资源与环境,2005,14(1):88-93.
    [80]尚文勤,朱利平,孙庆业,等.自然生态恢复过程中尾矿废弃地土壤微生物变化[J].生态环境,2008,17(2):713-717.
    [1]Ohtonen R, Fritze H, Pennanen T, et al. Ecosystem properties and microbial community changes in primary succession on a glacier forefront[J]. Oecologia, 1999,119:239-246.
    [2]Sigler WV, Crivii S, Zeyer J. Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics[J]. Microbial Ecology,2002,44:306-316.
    [3]Tscherko D, Hammesfahr U, Marx MC, et al. Shifts in rhizosphere microbial communities and enzyme activity of Poaalpina across an alpine chronosequence[J]. Soil Biol Biochem,2004,36:1685-1698.
    [4]Sourkova M, Frouz J, Fettweis U, et al. Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany)[J]. Geoderma,2005,129:73-80.
    [5]Jahnke J, Priefer UB. Photo trophic biofilms of restored fields in the rhenish lignite mining area:development of soil algal, bacterial, and fungal biomasses[J]. Soil Biol Biochem,2002,34:1157-1165.
    [6]Frouz J, Novakova A. Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development[J]. Geoderma,2005,129:54-64.
    [7]Baldrian P, Trogl J, Frouz J, et al. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining[J]. Soil Biol Biochem,2008,40:2107-2115.
    [8]Zhao XL, Cheng HT, Lu GH, et al. Advances in soil microbial biomass. J Meteorol Environ,2006,22 (4):68-72.
    [9]Sparling GP. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of change in soil organic matter. Aust J Soil Res,1992,30:
    195-207.
    [10]Li X, Sarah P. Enzyme activities along a climatic transect in the Judean Desert[J]. Catena,2003,53:349-363.
    [11]孙庆业,蓝崇钰,黄铭洪,等.铅锌尾矿上自然定居植物[J].生态学报,2001,21(9):1457-1462.
    [12]尚文勤,朱利平,孙庆业,等.自然生态恢复过程中尾矿废弃地土壤微生物变化.生态环境,2008,17(2):713-717.
    [13]陈政,阳贵德,孙庆业.生物结皮对铜尾矿废弃地土壤微生物量及酶活性的影响[J].应用生态学报,2009,20(9):2193-2198.
    [14]詹婧,孙庆业.铜陵铜尾矿废弃地细菌多样性初步研究[J].安徽农业科学,2010,38(4):1660-1663.
    [15]孙庆业,杨林章,安树青,等.尾矿废弃地的自然生态恢复,见:王如松主编,循环·整合·和谐[M].北京:中国科学技术出版社,2005,251-257.
    [16]中国科学院南京土壤研究所编.土壤理化分析[M].上海:上海科学技术出版社,1978,62-108.
    [17]Frouz J, Keplin B, Pizl V, et al. Soil biota and upper soil layers development in two contrasting post-mining chronosequences[J]. Ecol Eng,2001,17:275-284.
    [18]Neel C, Bril H, Courtin-Nomade A, et al. Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings [J]. Geoderma,2003,111:1-20.
    [19]Sun QY, An SQ, Yang LZ, et al. Chemical properties of the upper tailings beneath biotic crusts[J]. Ecol Eng,2004,23:47-53.
    [20]He L, Tang Y. Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China[J]. Caten, 2008,72:259-269.
    [21]Insam H, Haselwandter K. Metabolic quotient of the soil microflora in relation to plant succession[J]. Oecologia,1989,79:174-178.
    [22]Roy A, Singh KP. Dynamics of microbial biomass and nitrogen supply during primary succession on blastfurnace slag dumps in dry tropics[J]. Soil Biol Biochem,2003,35:365-372.
    [23]Nemergut DR, Anderson SP, Cleveland CC, et al. Microbial community succession in an unvegetated, recently deglaciated soil[J]. Microb Ecol,2007,53: 110-122.
    [24]Odum EP. The strategy of ecosystem development[J], Science,1969,164: 262-270.
    [25]Insam H, Domsch KH. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites[J]. Microb Ecol,1988,15: 177-188.
    [26]Allison VJ, Condron LM, Peltzer DA, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand[J]. Soil Biol Biochem,2007,39: 1770-1781.
    [1]尚文勤,朱利平,孙庆业,等.自然生态恢复过程中尾矿废弃地土壤微生物变化.生态环境,2008,17(2):713-717.
    [2]Muyzer, G, Waal, EC, Uitterlinden, AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol, 1993,59:695-700.
    [3]Ferris MJ, Muyzer G, Ward DM. Denaturing gradient gel electrophoresis is profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community[J]. Appl Environ Microbiol,1996,62:340-346.
    [4]罗海峰,齐鸿雁,薛凯等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用.生态学报,2003,23(8):1570-1575.
    [5]Borneman J, Skroch PW, O'Sullivan KM, et al. Molecular microbial diversity of an agricultural soil in Wisconsin[J]. Appl Environ Microb,1996,62:1935-1943.
    [6]Smit E, Leeflang P, Gommans S, et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods[J]. Appl Environ Microb,2001,67: 2284-2291.
    [7]Sun HY, Deng SP, Raun WR. Bacterial community structure and diversity in a
    century-old manure-treated agroecosystem[J]. Appl Environ Microb,2004,70: 5868-5874.
    [8]Zhou JZ., Bruns MA, Tiedje JM,1996. DNA Recovery from Soils of Diverse Composition[J]. Appl Environ Microbiol,62,316-322.
    [9]Weisburg WG, Bams SM, Pelletier DA, et al.16S ribosomal DNA amplification for phylogenetic study[J]. J bacteriol,1991,173(2):697-703.
    [10]Ishii K, Fukuio M. Optimization of Annealing Temperature To Reduce Bias Caused by a Primer Mismatch in Multitemplate PCR[J]. Appl Environ Microbiol, 2001,67:3753-3755.
    [11]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Biol Evol,2007,24:1596-1599.
    [12]Elshahed MS, Youssef NH, Spain AM, et al. Novelty and Uniqueness Patterns of Rare Members of the Soil Biosphere. Appl Environ Microbiol,2008,74: 5422-5428.
    [13]Zouache K, Voronin D, Tran-Van V, et al. Persistent Wolbachia and Cultivable Bacteria Infection in the Reproductive and Somatic Tissues of the Mosquito Vector Aedes albopictus[J]. PLoS One,2009,4(7):e6388,1-10.
    [14]Llado S, Jimenez N, Vinas M, et al. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil[J]. Biodegradation,2009,20:593-601.
    [15]Xing D, Ren N, Rittmann BE. Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene[J]. Appl Environ Microbiol,2008,74:1232-1239.
    [16]Lesaulnier CC, Papamichail D, Mccorkle SR, et al. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol,2008,10:926-941.
    [17]Liu WT, Linning KD, Nakamura K, et al. Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content. Microbiol,2000,146:1099-1107.
    [18]高平平,赵立平.可用于微生物群落分子生态学研究的活性污泥总DNA提取方法研究[J].生态学报,2002,22(11):2015-2019.
    [19]赵勇,周志华,李武.土壤微生物分子生态学研究中总DNA的提取[J].农业环境科学学报,2005,24(5):854-860.
    [20]O'Donnell AG, GErres HE.16S rDNA methods in soil microbiology[J]. Curr Opin Biotechnol.1999,10:225-229.
    [21]Yu Z, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis[J]. Appl Environ Microbiol,2004,70:4800-4806.
    [22]Neel C, Bril H, Courtin-Nomade A, et al. Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings[J]. Geoderma,2003,111:1-20.
    [23]Chabrerie O, Laval K, Puget P, et al. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France[J]. Appl Soil Ecol,2003,24:43-56.
    [24]Schipper LA, Degens BP, Sparling GP, et al. Changes in microbial heterotrophic diversity along five plant successional sequences[J]. Soil Biol Biochem,2001,33: 2093-2103.
    [25]Ohtonen R, Fritze H, Pennanen T, et al. Ecosystem properties and microbial community changes in primary succession on a glacier forefront[J]. Oecologia, 1999,119:239-246.
    [26]Zhou J, Xia B, Huang H, et al. Bacterial phylogenetic diversity and a novel candidate division of two humid region, sandy surface soils[J]. Soil Biol Biochem, 2003,35:915-925.
    [27]Gardener BBM. Ecology of Bacillus and Paenibacillus spp. In Agricultural Systems[M]. Symposium:The Nature and Application of Biocontrol Microbes: Bacillus spp. Phytopathology,2004:1252-1258.
    [28]Dobereiner J. Biological nitrogen fixation in the tropics:social and economic distributions[J]. Soil Biol Biochem,1997,29:771-774.
    [29]Beneduzi A, Peres D, da Costa PB, et al. Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil [J].
    Res Microbiol,2008,159:244-250.
    [30]Aislabie JM, Chhour KL, Saul DJ, et al. Dominant bacteria in soils of Marble point and Wright valley, Victoria land, Antarctica[J]. Soil Biol Biochem,2006,38: 3041-3056.
    [31]Garrity GM, Holt JG. Phylum BVIII. Nitrospirae phy. nov. In Boone, D. R. and Castenholz, R. W. (eds.) Bergey's Manual of Systematic Bacteriology. The Archaea and the Deeply Branching and Phototrophic Bacteria[M]. Vol.1.2nd Edition. Springer, New York, Berlin, Heidelberg,2001:451-471.
    [32]Carpenter EJ, Lin S, Capone DC. Bacterial activity in South Pole snow[J]. Appl Environ Microbiol,2000,66:4514-4517.
    [33]Saul DJ, Aislabie JM, Brown CE, et al. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica[J]. FEMS Microbiol Ecol,2005,53:141-155
    [34]Rainey FA, Ray K, Ferreira M, et al. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample[J]. Appl Environ Microbiol,2005,71:5225-5235.
    [35]Hirsch P, Ludwig W, Hethke C, et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone-bacteria of the Cytophaga-Flavobacterium-Bacteroides line of phylogenetic descent[J]. Syst Appl Microbiol,1998,21:306-314.
    [1]Bradshaw A. Restoration of mined lands-Using natural processes[J]. Ecol Eng, 1997,8:255-269.
    [2]Bradshaw A. The use of natural processes in reclamation—advantages and difficulties[J]. Landscape and Urban Planning,2000,51:89-100.
    [3]Bradshaw AD, Huttl RF. Future minesite restoration involves a broader approach[J]. Ecol Eng,2001,17:87-90.
    [4]Gorham E, Vitousek PH, Reiners WA. The regulation of chemical budgets over the course of terrestrial ecosystem succession[J]. Annu Rev Ecol Syst,1979,10: 53-84.
    [5]刘昌沛.生物固氮体系生态见:尤崇杓,姜涌明,宋鸿遇主编.生物固氮[M].北京:科学出版社:1987,163-183.
    [6]Kahindi JHP, Woomer P, George T, et al. Agricultural intensification, soil biodiversity and ecosystem function in the tropics:the role of nitrogen-fixing bacteria[J]. Appl Soil Ecol,1997,6:55-76.
    [7]Hurek T, Reinhold-Hurek B. Azoarcus sp. Strain BH72 as a model for nitrogen-fixing grass endophytes[J]. J Biotechnol,2003,106:169-178.
    [8]van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecol Lett,2008,11:296-310.
    [9]Duc L, Noll M, Meier E, et al. High diversity of diazotrophs in the forefield of a receding alpine glacier[J]. Microb Ecol,2009,57:179-190.
    [10]卢东升,吴小芹.茶园有益微生物及其微生态效应研究进展[J].信阳师范学院学报(自然科学版),2005,18(1):117-124.
    [11]Martinez E, Palacios R, Sanchez F. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens Harboring Rhizobium phaseoli plasmids[J]. J Bacteriol,1987,169:2828-2834.
    [12]Simonet P, Grosjean MC, Misra A, et al. Frankia genus-specific characterization by polymerase chain reaction[J]. Appl Environ Microbiol,1991,57:3278-3286.
    [13]Aquilanti L, Mannazzu I, Papa R, et al. Amplified ribosomal DNA restriction analysis for the characterization of Azotobacteraceae:a contribution to the study of these free-living nitrogen-fixing bacteria[J]. J Microbiol Methods,2004,57: 197-206.
    [14]Bhatia R, Ruppel S, Narula N. Diversity studies of Azotobacter spp. from cotton-wheat cropping systems of India[J]. J Basic Microbiol,2008,48:455-463.
    [15]Deslippe JR, Egger KN, Henry GHR. Impacts of warming and fertilization on nitrogen-fixing microbial communities in the Canadian High Arctic[J]. FEMS Microbiol Ecol,2005,53:41-50.
    [16]Soares RA, Roesch LFW, Zanatta G, et al. Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques[J]. Appl Soil Ecol,2006,33: 221-234.
    [17]Buckley DH, Huangyutitham V, Hsu SF, et al. 15N2-DNA-stable isotope probing of diazotrophic methanotrophs in soils[J]. Soil Biol Biochem,2008,40: 1272-1283.
    [18]Wartiainen I, Eriksson T, Zhang W, et al. Variation in the active diazotrophic community in rice paddy-nifH PCR-DGGE analysis of rhizosphere and bulk soil[J]. Appl Soil Ecol,2008,39:65-75.
    [19]Coelho MRR, de Vos M, Carneiro NP, et al. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer[J]. FEMS Microbiol Lett,2008,279: 15-22.
    [20]Coelho MRR, Marriel IE, Jenkins SN, et al. Molecular detection and quantification of nifH gene sequeces in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer[J]. Appl Soil Ecol,2009,42: 48-53.
    [21]Duc L, Noll M, Meier E, et al. High diversity of diazotrophs in the forefield of a receding alpine glacier[J]. Microb Ecol,2009,57:179-190.
    [22]Hsu SF, Buckley DH. Evidence for the functional significance of diazotroph
    community structure in soil[J]. ISME J,2009,3:124-136.
    [23]Sato A, Watanabe T, Unno Y, et al. Analysis of diversity of diazotrophic bacteria associated with the rhizosphere of a tropical arbor, Melastoma malabathricum L[J]. Microb Environ,2009,24:81-87.
    [24]Chowdhury SP, Schmid M, Hartmann A, et al. Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus[J]. Eur J Soil Biol,2009,45:114-122.
    [25]Zhou JZ, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition[J]. Appl Environ Microbiol,1996,62:316-32.
    [26]Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil[J]. Res Microbiol,2001,152:95-103.
    [27]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Biol Evol,2007,24:1596-1599.
    [28]Hurek T, Egener T, Reinhold Hurek B (1997) Divergence in nitrogenases of Azoarcus spp., Proteobacteria of the β-subclass[J]. J Bacteriol 179:4172-4178.
    [29]Widmer F, Shaffer BT, Porteous LA, et al. Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in Oregon cascade mountain range [J]. Appl Environ Microbiol,1999,65:374-380.
    [30]Sun QY, An SQ, Yang LZ, et al. Chemical properties of the upper tailings beneath biotic crusts[J]. Ecol. Eng,2004,23:47-53.
    [31]Russow R, Veste M, Bohme F. A natural 15N approach to determine the biological fixation of atmospheric nitrogen by biological soil crusts of the Negev Desert. Rapid Commun[J]. Mass Spectrom,2005,19:3451-3456.
    [32]Yeager CM, Kornosky JL, Morgan RE, et al. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA[J]. FEMS Microbiol Ecol, 2007,60:85-97
    [33]尚文勤,朱利平,孙庆业,等.自然生态恢复过程中尾矿废弃地土壤微生物
    变化.生态环境,2008,17(2):713-717.
    [34]Noll M, Wellinger M. Changes of the soil ecosystem along a receding glacier: Testing the correlation between environmental factors and bacterial community structure. Soil Biol Biochem,2008,40:2611-2619.
    [35]Gros R, Monrozier LJ, Bartoli F, et al. Relationships between soil physico-chemical properties and microbial activity along a restoration chronosequence of alpine grasslands following ski run construction[J]. Appl Soil Ecol,2004,27:7-22.
    [36]Giller KE, McGrath SP, Hirsch PR. Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium[J]. Soil Biol Biochem,1989,21:841-848.
    [37]Riffkin PA, Quigley PE, Kearney GA, et al. Factors associated with biological nitrogen fixation in dairy pastures in south-western Victoria[J]. Aust J Agric Res, 1999,50:261-272.
    [38]Hery M, Nazaret S, Jaffre T, N et al. Adaptation to nickel spiking of bacterial communities in neocaledonian soil[J]. Environ Microbiol,2003,5:3-12.
    [39]Tan Z, Hurek T, Reinhold-Hurek B. Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice[J]. Environ. Microbiol,2003,5:1009-1015.
    [40]Beneduzi A, Peres D, da Costa PB, et al. Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil[J]. Res Microbiol,2008,159:244-250.
    [41]Poly F, Ranjard L, Nazaret S, et al. Comparison of nifH gene pools in soils and soil microenvironments with contrasting poperties[J]. Appl Environ Microbiol, 2001,67:2255-2262.
    [42]Diallo MD, Willems A, Vloemans N, et al. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. Raddiana and Balanites aegyptiaca in the dryland part of Senegal[J]. Environ Microbiol,2004,6:400-415.
    [43]Bardgett RD, Mawdsley JL, Edwards S, et al. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands[J]. Funct Ecol,1999, 13:650-660.
    [44]Tscherko D, Hammesfahr U, Zeltner G, et al. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain[J]. Basic App Ecol, 2005,6:367-383.
    [45]Hery M, Philippot L, Meriaux E, et al. Nickel mine spoils revegetation attempts: effect of pioneer plants on two functional bacterial communities involved in the N-cycle[J]. Environ Microbiol,2005,7:486-498.
    [46]Zhang YG, Li DQ, Wang HM, et al. Molecular diversity of nitrogen-fixing bacteria from the Tibetan Plateau, China[J]. FEMS Microbiol Lett,2006,260: 134-142.
    [1]池振明.现代微生物生态学[M].北京:科学出版社,2005.
    [2]胡小加.根际微生物与植物营养[J].中国油料作物学报,1999,21(3):77-79.
    [3]Glick BR. The enhancement of plant growth by free-living bacteria[J]. Can J Microbiol,1995,41:109-117.
    [4]Glick BR, Bashan Y. Genetic manipulation of plant growth promoting bacteria to enhance biocontrol of fungal phytopathogens[J]. Biotechnol Adv,1997,15:
    353-378.
    [5]罗明,邱沃.新疆平原荒漠盐碱草地土壤微生物生态分布的研究[J].中国草地,1995,(5):29-33.
    [6]肖育贵,胡震宇.不同林型土壤微生物种群数量及养分变化分析[J].四川林业科技,1997,18(4):32-35.
    [7]赵大君,郑师章.凤眼莲根分泌物氨基酸对根际肠杆菌属F2细菌降酶的影响[J].应用生态学报,1996,7(4):435-438.
    [8]Muarray AH. Effect of simple phenolic compounds of heather (Calluna vulgaris) on rumen microbial activity in Vitro[J]. J Chem Ecol,1996,22:493-505.
    [9]Chaboud A. Isolation, purification and chemical composition of maize root cap slime[J]. Plant Soil,1983,73:395-402.
    [10]胡元森,吴坤,刘娜,等.黄瓜不同生育期根际微生物区系变化研究[J].中国农业科学,2004,37(10):1521-1526.
    [11]孙庆业,任冠举,杨林章,等.自然植物群落对铜尾矿废弃地土壤酶活性的影响[J].土壤学报,2005,42:37-43.
    [12]孙庆业,杨林章,安树青,等.尾矿废弃地的自然生态恢复-以铜陵铜尾矿废弃地为例[C].王如松主编.循环整合和谐-第二届全国复合生态与循环经济学术讨论会论文集.北京:中国科学技术出版社,2005:251-257.
    [13]陈政,阳贵德,孙庆业.生物结皮对铜尾矿废弃地土壤微生物量及酶活性的影响[J].应用生态学报,2009,20(9):2193-2198.
    [14]薛生国,周菲,叶晟,等.金属尾矿废弃地植物稳定技术研究进展[J].环境科学与技术,2009,32(8):101-104.
    [15]Sun QY, An SQ, Yang LZ, et al. Chemical properties of the upper tailings beneath biotic crusts. Ecol Eng,2004,23:47-53.
    [16]田胜尼,孙庆业,王峥峰等.铜陵铜尾矿废弃地定居植物及基质理化性质的变化[J].长江流域资源与环境,2005,14(1):88-93.
    [17]Coelho MRR, de Vos M, Carneiro NP, et al. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer[J]. FEMS Microbiol Lett,2008,279: 15-22.
    [18]Wartiainen I, Eriksson T, Zhang W, et al. Variation in the active diazotrophic community in rice paddy—nifH PCR-DGGE analysis of rhizosphere and bulk soil[J]. Appl Soil Ecol,2008,39:65-75.
    [19]Chowdhury SP, Schmid M, Hartmann A, et al. Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus[J]. Eur J Soil Biol,2009,45:114-122.
    [20]Coelho MRR, Marriel IE, Jenkins SN, et al. Molecular detection and quantification of nifH gene sequeces in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer [J]. Appl Soil Ecol,2009,42: 48-53.
    [21]Sato A, Watanabe T, Unno Y, et al. Analysis of diversity of diazotrophic bacteria associated with the rhizosphere of a tropical arbor, Melastoma malabathricum L[J]. Microb Environ,2009,24:81-87
    [22]Riley D, Barber SA. Salt accumulation at the soybean root-soil interface[J]. Soil Science Society of America Proceedings,1970,34:154-155.
    [23]Zhou JZ, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition[J]. Appl Environ Microbiol,1996,62,316-322.
    [24]Diallo MD, Willems A, Vloemans N, et al. Polymerase chain reaction denaturing gradient gel electrophoresis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal[J]. Environ Microbiol,2004,6:400-415.
    [25]Simonet P, Grojean MC, Misra AK, et al. Frankia genus-specific characterization by polymerase chain reaction[J]. Appl Environ Microbiol,1991,57:3278-3286.
    [26]Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil[J]. Res Microbiol,2001,152:95-103.
    [27]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Biol Evol,2007,24:1596-1599.
    [28]中国科学院南京土壤研究所编.土壤理化分析[M].上海:上海科学技术出版 社,1978,62-108.
    [29]Duc L, Noll M, Meier E, et al. High diversity of diazotrophs in the forefield of a receding alpine glacier. Microb Ecol,2009,57:179-190.
    [30]Neel C, Bril H, Courtin-Nomade A, et al. Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings[J]. Geoderma,2003,111:1-20.
    [31]Yeager CM, Kornosky JL, Morgan RE, et al. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA[J]. FEMS Microbiol Ecol, 2007,60:85-97.
    [32]Deslippe JR, Egger KN, Henry GHR. Impacts of warming and fertilization on nitrogen-fixing microbial communities in the Canadian High Arctic[J]. FEMS Microbiol Ecol,2005,53:41-50.
    [33]Yeager CM, Kornosky JL, Housman DC, et al. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert[J]. Appl Environ Microbiol,2004,70: 973-983.
    [34]Soares RA., Roesch LFW, Zanatta G, et al. Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques[J]. Appl Soil Ecol,2006,33: 221-234.
    [35]Bhatia R, Ruppel S, Narula N. Diversity studies of Azotobacter spp. from cotton-wheat cropping systems of India[J]. J Basic Microbiol,2008,48:455-463.
    [36]Hsu SF, Buckley DH. Evidence for the functional significance of diazotroph community structure in soil[J]. Int Soc Microb Ecol,2009,3:124-136.
    [37]Tan Z, Hurek T, Reinhold-Hurek B. Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol, 2003,5:1009-1015.
    [38]Zhang Y, Li D, Wang H, et al. Molecular diversity of nitrogen-fixing bacteria from the Tibetan Plateau, China[J]. FEMS Microbiol Lett,2006,260:134-142.
    [39]Martensson AM, Torsrensson L. Monitoring sewage sludge using heterotrophic nitrogen fixing microorganisms[J]. Soil Biol Biochem,1996,28:1621-1630.
    [40]Hery M, Nazaret S, Jaffre T, et al. Adaptation to nickel spiking of bacterial communities in neocaledonian soil[J]. Environ Microbiol,2003,5:3-12.
    [41]Tscherko D, Hammesfahr U, Zeltner G, et al. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain[J]. Basic Appl Ecol,2005,6:367-383.
    [42]Poly F, Ranjard L, Nazaret S, et al. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties[J]. Appl Environ Microbiol, 2001,67:2255-2262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700