燃煤电站汞排放及活性炭稳定吸附机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤汞排放作为主要的环境污染问题之一,其危害已引起国内外研究者及相关政府部门的关注,并积极开展了这方面的控制研究工作。本文依托国家863计划及国家自然科学基金资助项目,围绕当前燃煤汞污染及其控制方法的新兴研究,对我国燃煤电站汞排放污染情况及活性炭喷射烟气除汞过程中的稳定吸附机理问题开展研究。
     通过对中国典型燃煤电站锅炉汞排放特性研究,深入准确地了解我国燃煤电站汞排放的现状。针对活性炭喷射这一目前主要的烟气汞控制技术,着重研究了汞在活性炭吸附产物中的稳定性,吸附机理以及增强稳定的途径和方法,并提出相应的燃煤电站汞排放估算模型和烟道活性炭喷射汞吸附模型,对于推动我国燃煤汞污染排放控制机理研究及控制技术的工程应用具有重要的现实和未来意义。
     首先利用大型燃煤锅炉汞排放分析测试平台对国内6套典型燃煤锅炉进行了系统的汞排放测试研究。研究表明当电站尾部只布置静电除尘(Electrostatic Precipitator,ESP)时,燃烧生成的80%以上的汞以气态形式排入大气;当ESP和湿法脱硫(Wet Flue Gas Desulfurization,WFGD)共同布置时,气态汞比例降低到了25%以下;当ESP、WFGD和选择性催化还原脱硝设备(Selective Catalytic Reduction,SCR)共同布置时,气态汞的比例甚至降低到了7%以下。通过模型估算,每100MW机组总汞排放量在40~50Kg/年左右,气态汞排放量受尾部污染物控制设备的影响较大。2005年全国电站燃煤锅炉总汞排放量约为193.644吨,其中气态汞排放量约为147.014吨,约占总汞排放量的75.92%;固态汞约为30.023吨。
     针对活性炭喷射汞吸附方法可能形成汞再次释放而引起二次污染的问题,着重研究了水环境,受热环境以及自然堆积环境下活性炭吸附汞的稳定性问题。首先通过实验证明了毒性特性浸出程序(TCLP,Toxicity Characteristic Leaching Procedure)是一种可靠的实验室加速评估方法,可作为评估燃煤汞排放活性炭汞吸附产物是否稳定的参考方法。研究表明在水环境下活性炭吸附的汞比较稳定。但当活性炭经过强氧化性的浸渍改性后,汞的吸附稳定性有所下降。受热环境下的稳定性研究表明,随着受热温度的增加和时间的延长均不利于汞在活性炭吸附剂中的稳定;尤其在较高温度段活性炭中汞变得相当不稳定,易造成二次污染。另外研究表明以Hg~(2+)汞源吸附的活性炭中汞稳定性要比以Hg~0汞源的差。飞灰中汞及活性炭吸附的汞在自然环境下较稳定,对周围环境影响不大。
     在研究增强活性炭汞吸附稳定的方法和途径之前,首先利用实验的手段研究了活性炭汞吸附机理。从吸附机理实验来看,活性炭对Hg~0的吸附不是简单的直接的物理吸附过程,而是复杂的化学吸附过程。如果孔表面不存在任何有关的化学元素组分(如Cl元素等),在N_2气氛下活性炭不会通过孔隙间的范德华力作用以物理形式吸附Hg~0,也不会以C-Hg直接化学结合的形式吸附Hg~0。而活性炭对Hg~(2+)的吸附具有化学和物理吸附的双重特征。研究表明在模拟烟气下活性炭对Hg~0的吸附过程中主要以这样的方式进行:在活性炭表面C催化作用下模拟烟气中的Hg~0被酸性气氛氧化成Hg~(2+)并同时被活性炭孔表面吸附位所吸附。而活性炭孔及表面物理结构特性可能在最终完成化学吸附及吸附容量方面起着比较大的作用。酸性气氛在吸附过程中氧化作用可通过预先在活性炭注入或增加具有氧化性的化学元素来代替,这为获得或制造高吸附效力和高稳定性的吸附剂提供了直接的实验依据。
     根据活性炭汞吸附机理研究及汞化合物特性,主要研究了以S为基本元素的增强活性炭汞吸附稳定的改性途径和方法。以不同改性方式,从不同的角度将S元素引入活性炭,并进行了吸附能力和稳定性实验。从对汞的吸附能力来看,各种改性方式的按优到差的顺序是:600℃高温渗硫>200℃高温渗硫>(NH_4)_2S浸渍>SO_2分子源自由基簇射>S(CCl_2)浸渍>Na_2S浸渍。TCLP实验结果表明各种硫改性活性炭吸附的汞在非强酸强碱的水环境下非常稳定。对各改性活性炭进行的热稳定性实验表明,改性渗硫温度越低似乎活性炭中汞越不稳定。YK-AC-600℃-S-Hg和MZ-AC-600℃-S-Hg在热稳定实验的低温区段表现了稳定性增强的趋势。(NH_4)_2S浸渍改性后活性炭吸附汞的稳定性加强。综合考虑吸附能力及稳定性,在各种硫改性的方法中(NH_4)_2S浸渍改性活性炭为最佳改性手段。
     结合实际燃煤电站的尾部烟道结构,在活性炭吸附机理研究的基础上,建立了以化学吸附理论为基础的燃煤烟道活性炭喷射的汞吸附模型。模拟研究活性炭喷射量,活性炭颗粒直径,烟气温度、烟气流速、烟气汞含量、燃煤烟道尾部长度等因素对活性炭吸附汞的影响。模型的建立可以用来指导燃煤烟道活性炭喷射汞吸附控制装置的设计,预测喷射除汞装置的脱除效率和吸附量计算等。
This paper gives a systematic and comprehensive research on the mercury (Hg) emission and control of coal-fired power plant in China with the support of the National High-tech Research and Development Program (863) and the National Natural Science Foundation. It includes characteristics of mercury emission from the coal-fired boiler in Chinese power plant, stabilization of mercury on the activated carbon's surface, adsorption mechanism of gaseous mercury on the activated carbon (AC) and modification the AC surface to enhance adsorbability of mercury, etc.
     It firstly investigated the Hg emission characteristics of six typical large coal-fired boilers using the advanced sampling equipments and analytical instruments in China. Through a study of the distribution of mercury content in combustion products of the six boilers, it found that the ratio of Hg_(gas) is above 80% of the total Hg with the electrostatic precipitator (ESP); the ratio of Hg_(gas) is reduced below 25% with the ESP and wet flue gas desulfurization (WFGD); especially, with the ESP, WFGD and Selective Catalytic Reduction (SCR), the ratio of Hg_(gas) is lower than 5%. According to the mercury emissions estimation model, the total amount of mercury emission of every 100MW is about 40~50 Kg/year. The ratio of Hg_(gas) to Hg_(solid) is affected by the equipped air pollution control device in the tail flue. The total amount of mercury emission from power plant was approximately 193.644 tons, which included 147.014 tons of Hg_(gas) and 46.630 tons of Hg_(solid) in China in 2005.
     The stability of mercury on the AC's surface was studied in the different environments, such as solution environment, heated environment and natural deposition environment. According to the experiment, TCLP is a reliable laboratory accelerated assessment method, which can act as a reference method to evaluate the stability of mercury on the AC. Mercury appeared to be stable on AC in the solution environment according to leaching tests. However, the stability of mercury adsorbed on the oxidation treated AC was not better than that of untreated carbon on the whole. Mercury leaching showed strong pH dependence. Compared with the neutral pH test, lower and higher pH leaching tests for mercury were more effective for removing Hg. As was the result of mercury thermal desorption in air condition, there was much more mercury released from AC when heated either longer time or higher temperature for both kinds of mercury. In addition, it seemed that Hg°was bonded more firmly on AC than Hg~(2+). According to the natural deposited experiment results, the Hg was stable in both fly ash and AC, and would not significantly affect the environment.
     Using the experimental solution, the adsorption mechanism of Hg on AC was investigated before the research of enhancing Hg adsorption stability of AC. Thinking of adsorption mechanism experimental phenomena, it can conclude that the adsorption mechanism of Hg~0 on AC is not simple physical adsorption, but complicated chemical adsorption. If there are no any chemical elements existing on the surface, AC will not adsorb the Hg°through Van der Waals force and chemical force in N_2 ambience. According to the experiment, sorption of Hg~(2+) on AC showed the both chemical and physical characteristics. Based on the experimental results and analysis, the AC adsorption mechanism of Hg°in a simulated flue gas is that the Hg°is oxidized to Hg~(2+) by acidic atmosphere with the help of C catalysis on the AC's surface, and at the same time Hg~(2+) is adsorbed by active adsorption sites. It believes that the physical structure characteristic of AC's surface may work on adsorption capacity. Moreover, the oxidation of pre-impregnated oxidative chemical elements on the surface of AC can be instead of that of acidic atmosphere during the adsorption process. It provides direct experimental evidence for the acquisition or manufacture of adsorbent with high efficiency and high stability.
     Several types of S were introduced into the ACs through different modification. Compared the adsorption capacity of different modified ACs, the modified methods were arranged in order of efficacy as follows: 600℃-S-deposition > 200℃-S-deposition > (NH4)_2S-dipping > free radical with SO_2 source > S (CCl_2)-dipping > Na_2S-dipping. As the experimental results of TCLP, the Hg is quite stable on all modified ACs in general water environment. YK-AC-600℃-S-Hg and MZ-AC-600℃-S-Hg showed the enhanced trend of Hg stability on surface in the low temperature environment. (NH4)_2S dipping modification enhanced the stability of Hg on the ACs. Considering adsorption capacity and stability, (NH_4)_2S dipping is the best way among various sulfur modification methods.
     Based on the result of Hg adsorption mechanism research and the tail flue structure of coal-fired power plant, the chemical adsorption model of AC injection in flue for coal-fired mercury control was established. It can simulate and study the effect of injection amount, particle diameter, flue-gas temperature, flue-gas velocity, mercury concentration, and flue length on the mercury adsorption of AC.
引文
[1] United Nations Environment Programme Chemicals: Global Mercury Assessment, issued by UNEP Chemicals, Geneva, Switzerland, Dec. 2002.
    [2] D.G. Streets, J. M. Hao, Y. Wu, J. K. Jiang, M. Chart, H. Z. Tian, X. B. Feng, Anthropogenic mercury emissions in China, Atmospheric Environment 39, 7789-7806, 2005.
    [3] Chemical and Engineering News, 20-21, 2003.
    [4] http://www.chinapsp.net/forum/forums/post/178850.aspx.
    [5] R. O. Sterling, The heterogeneous and homogeneous chemistry of arsenic and mercury under post combustion conditions, university of Connecticut. Dissertation, Doctor of Philosophy. UMI Number:3144608, 2004.
    [6] US EPA, Mercury Study Report to Congress, Volume Ⅰ: Executive Summary,1997.
    [7] 中华人民共和国卫生部,工业企业设计卫生标准(tj36—79),1979(来源于:http://www.fm120.com/zt/law/laws/1/YPWSBZGL/YPWSBZGL1018.htm)。
    [8] 中华人民共和国国家标准及国家环境保护标准。
    [9] WHO, Air Quality Guidelines Second Edition, Chapter Six, 2000.
    [10] National Research Council, Toxicological Effects of Methyl Mercury, National Academy Press, Washington, DC, 2000.
    [11] http://www.mercury.ngo.cn/zhishi/zhishi6.htm.
    [12] 中华人民共和国食品中汞限量卫生标准(GB 2762—1994),1994。
    [13] D.C.,Adriano, Trace Elements in the Terrestrial Environment, Springer-Verlag, New York, 2001.
    [14] C. W. Thomas, Mercury, Heavy Metals in the Environment, 457-501,2002.
    [15] E.G. Pacyna, J.M. Pacyna, Global emission of mercury from anthropogenic sources in 1995. Water, Air, and Soil Pollution 137, 149-165, 2002..
    [16] C. Seigneur, K. Vijayaraghavan, K. Lohman, P. Karamchandani, C. Scott, Global source attribution for mercury deposition in the United States, Environmental Science & Technology 38 (2), 555-569, 2004.
    [17] T. Bergan, L. Gailardo, H. Rodhe, Mercury in the global troposphere: a three-dimensional model study. Atmospheric Environment 33 (10), 1575-1585, 1999.
    [18] R. P. Mason, G R. Sheu, Role of the ocean in the global mercury cycle, Global Biogeochemical Cycles 16 (4), 1093, 2002.
    [19] C. H. Lamborg, W. F. Fitzgerald, J. O'Donnell, T. Torgersen, A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients, Geochimica et Cosmochimica Acta 66 (7), 1105-1118, 2002.
    [20] C. Seigneur, P. Karamchandani, K. Lohman, K. Vijayaraghavan, R. L. Shia, Multiscale modeling of the atmospheric fate and transport of mercury, Journal of Geophysical Research 106 (D21), 27795-27809, 2001.
    [21] O. Travnikov, A. Ryaboshapko, Modelling of mercury hemispheric transport and depositions, MSC-E Technical Report 6/2002, Meteorological Synthesizing Centre-East, Moscow, Russia, 67, 2002.
    [22] C. M. Banic, S. T. Beauchamp, R. J. Tordon, W. H. Schroeder, A. Steffen, K. A. Anlauf, H. K. T. Wong, Vertical distribution of gaseous elemental mercury in Canada, Journal of Geophysical Research 108 (D9), 4264, 2003..
    [23] A. P. Dastoor, Y. Larocque, Global circulation of atmospheric mercury: a modeling study, Atmospheric Environment 38, 147-161, 2004.
    [24] HELCOM: Fourth periodic assessment of the state of the environment of the Baltic marine area, 1994-1998, Baltic Sea Environment Proceedings No. 82. Helsinki Commission, Helsinki, Finland, 2001.
    [25] OSPAR: Quality status report 2000, Region Ⅱ-Greater North Sea, OSPAR Commission, London, 2000.
    [26] R. Ebinghaus, H. H. Kock, C. Temme, J. W. Einax, A. G. Lowe, A. Richter, J. P. Burrows, W. H. Schroeder, Antarctic Springtime Depletion of Atmospheric Mercury, Environmental Science and Technology 36, 1238-1244, 2002.
    [27] AMAP, Assessment report: Arctic Pollution Issues. Arctic Monitoring and Assessment Programme, Oslo, Norway, 1998.
    [28] D. J. Landers, C. Gubala, M. Verta Et al. Using lake sediment mercury flux ratios to evaluate the regional and continental dimensions of mercury deposition in Arcitc and bore ecosystems, Atmospheric Environment, 32, 919-928, 1998.
    [29] M. H. Hermanson, Anthropogenic mercury deposition to Arctic lake sediments, Water, Air, and Soil Pollution, 101,309-321, 1998.
    [30] J. P. Hansen, I. Meldgaard, J. Nordquist, The Greenland Mummies, McGill-Queen's University Press, Montreal and Kingston, 192, 1991.
    [31] S. E. Lindberg, S. Brooks, C. J. Lin et al., Dynamic oxidation of gaseous mercury in Arctic troposphere at Polar Sunrise, Environmental Science and Technology, 36, 1245-1256, 2002.
    [32] R. Wagemann, S. Innes, P. R. Richard, Overview and regional and temporal differences of heavy metals in Arctic whales and ringed seals in the Canadian Arctic, Science of the Total Environment, 186,41-66, 1996.
    [33] D. Muir, B. Braune, B. DeMarch et al., Ch. 3. Ecosystem Uptake and E. ects, In: Canadian Arctic Ontaminant, Assessment Report, Ed. by Jensen J, Adare K and Shearer R, Indian and Northern Affairs Canada, Ottawa, 1997.
    [34] 王光军,可持续发展理念下的能源产业战略,油气田环境保护,第14卷第4期,2004。
    [35] 谌天兵,武建军,韩甲业,燃煤污染现状及其治理技术综述,第15卷第2期,2006。
    [36] 倪斌,煤炭在我国能源结构优化中基础性作用的思考,中国能源,第26卷第7期,2004。
    [37] 岑可法院士,洁净煤燃烧发电技术报告.中国煤炭学会第二次洁净煤技术研讨会,杭州,2001。
    [38] 杨建丽,中国科学院王宽诚教育基金会奖学金国际会议项目执行报告,山西煤炭化学研究所,2001(来源于:http://www.castalents.ac.cn/mag_paper.asp?id=90)。
    [39] 庄德安,杨明珍,岳涛,关于“十五”期间我国火电站脱硫设施建设与运行情况调查之一,2006(来源于:http://www.cenews.com.cn/news/2006-10-31/22676.php)。
    [40] 中国电力报,电力“十一五”规划凸显八大问题,2006(来源于:http://finance.people.com.cn/GB/8215/47813/59330/4186930.html)。
    [41] 中国科技信息研究所,全国“十一五”电力规划出台(来源于:http://www.chinainfo.gov.cn/data/200403/1_20040312_76143.html)。
    [42] 冯新斌,洪业汤,倪建宇,周斌,王羽,贵州煤中汞的分布、赋存形态及对环境的影响,煤田地质与勘探,第02期,14-17,1998。
    [43] 王起超,沈文国,麻壮伟,中国燃煤汞排放量估算,中国环境科学,19(4):318-321,1999。
    [44] 张明泉,朱元成,邓汝温,中国燃煤大气排放量的估算与评述,31(6),482-484。
    [45] 任建莉,燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究,浙江大学博士论文,2003。
    [46] J. H. Pavlish, E. A.Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, S. A. Benson, Status review of mercury control option for coal-fired power plants, Fuel Proessing Technology, 82,89-165, 2003.
    [47] C. L. Senior, J. J. Helble, A. F. Sarofim, Predicting the speciation of mercury emissions from coal-fired power plants, Proceedings of the Air Quality Ⅱ: Mercury, Trace Elements, and Particulate Matter Conference, McLean, VA, Sept. 19-21(A5-2), 2000.
    [48] EPRI, An Assessment of Mercury Emissions from U.S. Coal-Fired, Power Plants, EPRI: Palo Alto, CA, 2000, 1000608.
    [49] M. Hocquel, et al., Verhalten von Quecksiiberemissionen bei der Mitverbrennung von Kla¨rschla¨mmen in Kohlestaubfeuerungen, Wege des Abfalls, VDI Berichte 1540, ISBN 3-18-091540-4.
    [50] K. L. Nebel, D. M. White, W. H. Stevenson, M. G. Johnston, A Summary of Mercury Emissions and Applicable Control Technologies for Municipal Solid Waste Combustors.U.S. EPA, Office of Air Quality Planning and Standards, Research Triangle Park, NC.September 1991.
    [51] J. D. Kilgroe, C. B.Sedman, R. K. Srivastava, J. V. Ryan, C. W. Lee, S. A.Thorneloe, Control of Mercury Emissions from Coal-Fired Electric Utility Boilers: Interim Report,EPA-600/R-01-109, 7-2,7-19,2001.
    [1] T. D. Brown, D. N. Smith, R. A. Hargis, Jr., W. J. O'Dowd, Mercury measurement and Its Control: What We Know, Have Learned, and Need to Further Investigate, Journal of the air & waste management association, 1999.
    [2] A. Licata, E. Balles, W. Schuttenhelm, Mercury Contral Alternatives for Coal-fired Power Plants, Presented at Power Gen 2002 Orlando, F1, 2002.
    [3] CRC Handbook of Chemistry and Physics, 53rd edition.
    [4] H. C. HIS, Preparation and evaluation of sulfur-containing adsorbents for removal of mercury from simulated coal combustion flue gases, Thesis for the degree of Doctor, the University of Illinois at Urbana-Champaign, 2001.
    [5] 任建莉,周劲松,骆仲泱,岑可法,煤中汞燃烧过程析出规律试验研究,环境科学学报,22(3),289-293,2002。
    [6] C. L. Senior, J. J. Helble, A. F.Sarofim, Predicting the speciation of mercury emissions from coal-fired power plants, Proceedings of the Air Quality Ⅱ: Mercury, Trace Elements, and Particulate Matter Conference, McLean, VA, Sept. 19-21 (A5-2), 2000.
    [7] C. L. Senior, A. F. Sarofim, T. F. Zeng, J. J. Heible, R. Mamani-Paco, Gas-phase transformations of mercury in coal-fired power plants, Fuel Processing Technol, 63, 197-213, 2000.
    [8] E. M. Prestbo, N. S. Bloom, Mercury speciation adsorption (MESA) method for combustion flue gas: Methodology, artifacts, intercomparision, and atmospheric implications. Water, Air and Soil Pollution, 80, 145-158, 1995.
    [9] EPRI, An Assessment of Mercury Emissions from U.S. Coal-Fired Power Plants, EPRI: Palo Alto, CA, 2000.
    [10] J. H. Pavlish, E. A.Sondreal, M. D.Mann, E. S.Olson, K.n C.Galbreath, D. L. Laudal, S. A.Benson, Status review of mercury control option for coal-fired power plants, Fuel Procssing Technology, 82, 89-165, 2003.
    [11] M. Hocquel, et al., Verhalten von Quecksilberemissionen bei der Mitverbrennung von Kla¨rschla¨mmen in Kohlestaubfeuerungen, Wege des Abfalls, VDI Bedchte 1540, ISBN 3-18-091540-4.
    [12] D. Laudal, Pilot-Scale Evaluation of the Impact of Selective Catalytic Reduction for NO, on Mercury Speciation, Report for EPRI, U.S. Department of Energy National Energy Technology Laboratory, U.S. Environmental Protection Agency, Ontario Power Generation, EPRI: Palo Alto, CA, 2000.
    [13] P. Chu, N. Goodman, G. Behrens, R. Roberson, Total and speciated mercury emissions from U.S. coal fired power plants, proceedings of the Air Quality Ⅱ: Mercury, Trace Elements, and Particulate Matter Conference, McLean, VA, Sept. 19-21(A3-4), 2000.
    [14] J. Kilgroe, EPA mercury emission control study: preliminary results, Presented at the Air Quality Ⅱ: Mercury, Trace Elements, and Particulate Matter Conference, McLean, VA, Sept. 19-21(A4-1), 2000.
    [15] Economic and Social Council of UN, Control of mercury emissions from coal-fired electric utility boilers, EB.AIR/WG.5/2002/6.4 July, 2002.
    [16] 动力煤资源分布,1995-1996(来源:http://www.npcc.com.cn/ecoal/fenbu.htm)。
    [17] 陈文敏,张自劭,陈怀珍,动力配煤,煤炭工业出版社,1999。
    [18] 中国电力企业联合会,2006年全国电力工业统计快报,(http://www.cec.org.cn/news/showc.asp?id=92985)。
    [19] 王振宇,燃煤电站的除尘、脱硫、脱硝技术环境保护科学,127(31),2005。
    [20] “十一五”全国燃煤电站脱硫工程正式启动(来源:http://www.bjkp.gov.cn/bjkpzc/kjqy/hjkx/67064.shtml)。
    [21] 郝海玲,张瑞生,李明举,我国燃煤电站脱硫技术应用现状及展望,电力环境保护,22(3),2006。
    [22] 中国电力信息网,网址http://www.sp.com.cn/zgdl/dyxx/fd2iz-fl-1.htm。
    [23] 国家环境保护总局,《燃煤二氧化硫排放污染防治技术政策》(环发[2002]26号),2002。
    [24] 牛治国,张勇,陈鸿伟,我国燃煤电站烟气脱硫技术进展,河北化工,1,43-45,2006。
    [25] 国家环保总局,关于委托进行火电站脱硫调研,附件2(来源:http://www.sepa.gov.cn/image20010518/6913.doc)。
    [26] 叶春.回流式循环流化床烟气脱硫技术在火电站的应用,中国电力,37(3),85-87,2004.
    [27] 张凤兰,程岩.小龙潭发电站烟气循环流化床脱硫工程评述,电力环境保护,19(1),22-24,2003.
    [28] 赵鹏高,关于加强火电站烟气脱硫产业化发展的若干意见,电力环境保护,22(2),2006。
    [29] 李勇,后石电站600MW机组烟气脱硝系统及工艺特点介绍,山东电力技术,4,41-44,2001。
    [30] 王树荣,王琦,王建华,高翔,骆仲泱,岑可法,选择性催化还原脱硝技术在燃煤电站的应用及发展,电站系统工程,21(4),2005。
    [31] 刘贵云,新建火电项目氮氧化物控制要求,中国环境在线(http://www.chinaeol.net)。
    [32] 任建莉,燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究,浙江大学博士论 文,2003。
    [33] 陈冰如,钱琴芳,杨亦易,杨绍晋,我国一百零七个煤矿样中微量元素的浓度分布,科学通报,1985。
    [34] 王起超,沈文国,麻壮伟,中国燃煤汞排放量估算,中国环境科学,194,318-321,1999。
    [35] 唐修义,黄文辉等著,中国煤中微量元素,国家自然基金资助项目,北京:商务印书馆,2004。
    [36] 黄文辉,杨宜春,中国煤中的汞,中国煤田地质,第14卷,2002。
    [37] 王泉海,邱建荣,吴昊,煤燃烧过程中汞释放的研究现状,热能动力工程,第17卷(总第102期),2002。
    [38] 郭欣,郑楚光,贾小红,煤粉锅炉燃烧产物中汞,砷分布特征研究,工程热物理学报,25(4),2004。
    [39] 朱珍锦,薛来,谈仪,张长鲁,李永光,章德龙,王启杰,潘丽华,柯建新,负荷改变对煤粉锅炉燃烧产物中汞的分布特征影响研究,中国电机工程学部,21(7),2001。
    [40] 朱珍锦,薛来,谈仪,张长鲁,李永光,章德龙,王启杰,潘丽华,柯建新,300MW煤粉锅炉燃烧产物中汞的分布特征研究,动力工程,22(1),2002。
    [41] 陈义珍,柴发合,薛志钢,刘涛,陈煜辉,田崇国,燃煤火电站汞排放因子测试设计及案例分析,环境科学研究,19(2),2006。
    [42] W. Jockel, A present situation of CEM systems for mercury, The air & waste management association's 89 th annual meeting & exibition,June,1996.
    [43] Method 29, Determination of metals emissions from stationary sources, 40 CFR Part 60,Appendix A, U.S. Government Printing Office, Washington, DC, 1994.
    [44] Method 101A, Determination of particulate and gaseous mercury emissions from sewage sludge incinerators, 40 CFR Part 61,Appendix B, U.S. Government Printing Office, Washington, DC, 1994.
    [45] Standard Test Method for Elemental, Oxidized, Particle-Bound and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources(Ontario Hydro Method), Designation: D 6784-02,US, 2002.
    [46] 郭欣,郑楚光,贾小红,林钊,刘亚明,300MW煤粉锅炉烟气中汞形态分析的实验研究,中国电机工程学报,24(6),2004。
    [47] Y. Takahisa, A. Kazuo, Mercury emissions from a coal-fired power plant in Japan, The Science of the Total Environment, 259, 97-103, 2000.
    [48] 王光楷,燃煤电站汞排放测试及脱汞产物稳定性研究,浙江大学硕士论文,2006。
    [49] United Nations Environment Programme Chemicals: Global Mercury Assessment, issued by UNEP Chemicals, Geneva, Switzerland, 2002.
    [1] R. Chang, The development of cost effective mercury control sorption processes, Proceedings of Air Quality Ⅱ: Mercury, Trace Elements, and Particulate Matter Conference, McLean, VA, Sept. 19-21, 2000.
    [2] 吴正直编著,《煤粉灰房建材料的开发与应用》,中国建材工业出版社,2003。
    [3] 王福元,吴正严主编,《粉煤灰利用手册》,中国电力出版社出版,2004。
    [4] G. T. Amrhein, M. J. Holmes, R. T. Bailey, G A. Kudlac, W. Downs, D. A. Madden, Advanced Emissions Control Development Program, Phase Ⅲ-Approved Final Report, DOE Contract DE-FC22-94PC94251,1999.
    [5] G. A. Kudlac, G. T. Amrhein, Enhanced mercury control for coal-fired boilers, Proceedings of the 17th Annual Pittsburgh Coal Conference; Pittsburgh, PA, Sept. 11-14, 2000.
    [6] D. J. Hassett, D. F. Pflughoeft-Hassett, D. L. Laudal, J. H. Pavlish, Mercury release from coal combustion byproducts to the environment, Mercury in the Environment, Proceedings of a Specialty Conference, Air and Waste Management Association, Minneapolis, MN, Sept. 15-17, Air and Waste Management Association, Pittsburgh, PA, 485-493,1999.
    [7] M. A. Ebadian et al, Mercury Contaminated Material Decontamination Methods: Investigation and Assessment.
    [8] T. R. Carey, C. F. Richardson, R. Chang, Stability of mercury captured on sorbent surfaces, Presented at the Air and Waste Management Association's 92nd Annual Meeting and Exhibition, St. Louis, MO, June 20-24, 1999.
    [9] D. J. Hassett, D. F. Pfughoeft-Hassett, D. L. Laudal, J. H. Pavlish, Mercury Release from Coal Combustion By-Products to the Environment, International Ash Utilization Symposium,1999.
    [10] J. H. Pavlish, E. A. Sondreal, M.I D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, S. A. Benson. Status Review of Mercury Control Option for Coal-fired Power Plants. Fuel Procssing Technology, 82, 89-165, 2003.
    [11] 钱觉时编著,《粉煤灰特性与粉煤灰混凝土》,科学出版社,84—89,2002。
    [12] 王炳华,赵明,固体废弃物浸出毒性特性及美国EPA的实验室测定,干旱环境监测,15(4),2001。
    [13] U.S. EPA method 1311, Toxicity characteristic leaching procedure, 1992 (http://www.epa.gov/epaoswer/hazwaste/test/pdfs/1311.pdf).
    [14] 高洪亮,模拟燃煤烟气中汞形态转化及脱除技术的实验及机理研究,浙江大学博士论文,2004。
    [15] Karatza D, Lancia A, Musmarra D et al.,, Study of mercury absorption and desorption on sulfur impregnated carbon, Experimental Thermal and Fluid Science, 21,150-155, 2000.
    [16] 任建莉,燃煤过程汞析出及模拟烟气中汞吸附脱除实验和机理研究,浙江大学博士论文.2003。
    [17] F. E. Huggins, N. Yap, G. P. Huffman, C. L. Senior, XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures, Fuel Processing Technology, 82, 167-196,2003.
    [18] E. S. Olson, S. J. Miller, R. K. Sharma, G. E. Dunham, S. A. Benson, Catalytic effects of carbon sorbents for mercury capture, Journal of Hazardous Materials, 74, 61-79, 2000.
    [1] S. J. Miller, G. E. Dunham, E. S. Olson, T. D. Brown, Flue gas effects on a carbon-based mercury sorbent, Fuel Processing Technology, 65-66, 343-363, 2000.
    [2] F. E. Huggins, G.P. Huffman, G. E. Dunham, C. L. Senior, XAFS Examination of Mercury Sorption on Three Activated Carbons, Energy & Fuels, 13, 114-121,1999.
    [3] R. Yan, Y. L. Ng, D. T. Liang, C. S.g Lira, J. H. Tay, Bench-Scale Experimental Study on the Effect of Flue Gas Composition on Mercury Removal by Activated Carbon Adsorption, Energy & Fuels,17, 1528-1535, 2003,.
    [4] B. Ghorishi, B. K. Gullett, Waste Management Res., 16, 582,1998.
    [5] H. P. Boehm, Adv Catal.,16,79-274, 1966.
    [6] E.J. Granite, H.W. Pennline, R. A. Hargis, Ind Eng. Chem. Res.,39,1020, 2000.
    [7] Y. H. Li, C. W. Lee, B. K. Gullett, Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorptionq, Fuel, 82, 451-457, 2003.
    [8] Y. H. Li, C. W. Lee, B. K. Gullett, The effect of activated carbon surface moisture on low temperature mercury adsorption, Carbon, 40, 65-72, 2002).
    [9] S. Kwon, E. Borguet, R.D.Vidic, Impact of Surface Heterogeneity on Mercury Uptake by Carbonaceous Sorbents under UHV and Atmospheric Pressure, Environ. Sci. Technol., 36, 4162-4169,2002.
    [10] C.A. Leon, L. R. Radovic, In: Thrower PA, editor, Chemistry and physics of carbon, vol. 24, New York: Marcel 282. Dekker, 213-310, 1994.
    [11] M. A. Lopez-Anto'n, J, M. D. Tasco'n, M. R. Marti'nez-Tarazona, Retention of mercury in activated carbons in coal combustion and gasification flue gases, Fuel Processing Technology, 77-78, 353-358, 2002.
    [12] M. M. Maroto-Valer, Y. Z. Zhang, E. J. Granite, Z. Tang, H. W. Pennline, Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample, Fuel, 84,105-108, 2005.
    [13] R. C. Bansal, J. B.Dormet, F. Stoeckli, Activated carbon, New York: Marcel Dekker, 1988.
    [14] W.O. Stacy, F. J.Vastola, Jr. PL.Walker, Carbon, 6, 917, 1968.
    [15] J. Zawadzki, Carbon, 25(3), 431-6, 1987.
    [16] J. Zawadzki, In: Thrower PA, editor, Chemistry and physics of carbon, vol. 21, New York: Marcel Dekker, 147-380, 1989.
    [17] 吕云阳,王文绍,刘颂禹,季振平,《锌分族》(无机化学丛书,第六卷),科学科学出版社,1995。
    [18] S.V. Krishnan, B. K. Gullett, W.Jozewicz, Environ Sci Technol, 28,1506-119942.
    [19] H. S. Huang, J. M.Wu, C.D. Livengood, Hazard Waste Hazard Mater,13,107-109, 1996.
    [20] J. A. Korpiel, R. D.Vidic, Environ Sci Technol, 31, 2319-2325,1997.
    [21] S.V. Krishnan, B. K. Gullett, W. Jozewicz, Environ Sci Technol, 28, 1506-1512, 1994.
    [22] B.C. Wu, T. W. Peterson, F. Shadman, C. L. Senior, J. R. Morency, F. E. Huggins, G. P. Huffman, Interactions between vapor-phase mercury compounds and coal char in synthetic flue gas, Fuel Processing Technology, 63, 93-107, 2000.
    [23] G. Tremblay, F. J. Vastola, Jr. PL. Walker, Carbon, 16, 35, 1978.
    [24] D. Karatza, A. Lancia, D. Musmarra, C. Zucchini, Study of mercury absorption and desorption on sulfur impregnated carbon, Experimental Thermal and Fluid Science, 21,150-155, 2000.
    [25] G. E. Dunham, S. J. Miller, R. Chang, P. Bergman, Environ Prog, 17, 203, 1998.
    [26] T. K. Gale, R. L. Merritt, K. M. Cushing, G. R.Offen, Mercury Speciation as a Function of Flue Gas Chlorine Content and Composition in a l MW Semi-Industrial Scale Coal-Fired Facility, EPRI-DOE-EPA-A&WMA Combined Utility Air Pollution Control Symposium: The MEGA Symposium, 2003.
    [27] A. Licata, W. Schuettenhelm, M. Klein, Mercury Controls for MWCs Using the Sodium Tetrasulfide Process, 8th Annual North American Waste-to-Energy Conference, Nashville, TN, 2000.
    
    [28] S. Niksa, N. Fujiwara, Predicting Mercury Speciation in Coal-Derived Flue Gases", EPRI-DOE-EPA-A&WMA Combined Utility Air Pollution Control Symposium: The MEGA Symposium, 2003.
    
    [29] B. Hall, P. Schager, J. Weesmaa, The homogeneous gas phase reaction of mercury with oxygen, and the corresponding heterogeneous reactions in the presence of activated carbon and fly ash, Chemosphere, 30(4), 611-627,1995.
    
    [30] F. E. Hugginsa, N. Yapa, G. P. Huffman, C. L. Seniorb, XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures, Fuel Processing Technology, 82,167-196,2003.
    
    [31] C. H. Tessmer, R. D. Vidic, L. J. Uranowski, Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols, Environmental Science& Technology, 31(7), 1997.
    
    [32] J. B. Donnet, Carbon, 6,161,1968.
    
    [33] H. P. Boehm, M. Voll, Carbon, 8,227,1970.
    
    [34] E. Papirer, S. Li, J. B. Donnet, Carbon, 25(2),243,1987.
    
    [35] H. P. Boehm, E. Diehl, W. Heck, R. Sappok, Angew. Chem., Int. Ed. Engl.,3(10), 669,1964.
    
    [36] V. A.Garten, D. E. Weiss, Carbon, 22(1), 19,1984.
    
    [37] C. A. Leon, J. M.Solar, V. Calemma, L. R. Radovic, Carbon,30(5),797,1992.
    
    [38] B. R. Puri, In Chemistry and Physics of Carbon, New York, 1970.
    
    [39] IUPAC, manual of symbols and terminology, Pure Appl. Chem., 31, 578-680,1972.
    [1] Hsing-Cheng HIS, Preparation and evaluation of sulfur-containing adsorbents for removal of mercury from simulated coal combustion flue gases, Thesis for the degree of Doctor, the University of Illinois at Urbana-Champaign, 2001.
    [2] CRC Handbook of Chemistry and Physics,53rd edition.
    [3] 刘国珍 金泽祥,汞的形态分析进展,理化检验-化学分册,第36卷第一期,2000年1月。
    [4] 袁倬斌,朱敏,韩树波.汞的形态分析研究进展[J].岩矿测试.1999,18(2):150-156。
    [5] Chatt A. Biochemical neutron activation analysis. In: Abstracts of intnational conference on nuclear analytical methods in life sciences. Oct. 26-30, 1998, Beijing, China.
    [6] Huggins E F, Huffman P G, Robertson J D. Speeiation of elements in NIST particulate matter SRMs 1648 and 1650. J Hazard Mater, 2000, 74: 1-23.
    [7] Huggins E F, Shah N, Huffman P G, et al. XAFS spectroscopic characterization of elements in combustion ash and fine particulate matter. Fuel Processing Techn., 2000, 65-66: 203-218.
    [8] Hsiao M C, Wang H P, Wei Y L, et al. Speeiation of copper in the incineration fly ash of a municipal solid waste. J Hazard Mater, 2002, 91: 301-307.
    [9] Lee P A, Citrin P H, Eisenberger P, et al. Extended X-ray absorption fine structure——its strengths and limitations as a structural tool. Rev Mod Phys, 1981, 53(4): 769-803.
    [10] Sayers D E, Bunker B A. X-ray Absorption: Principles, Appliea-tions, Techniques of EXAFS, SEXAFS and XANES. In: Konings-berger D C, Prins R, eds. New York: John Wiley and Sons lne, 1998. 211-253.
    [11] Kim S C, Rytuba J J, Brown E G. Geological and anthropogenic factors influencing mercury speciation in mine wastes: An EXAFS spectroscopy study. Appl Geoch, 2004, 19 (3): 379-393.
    [12] Metson J B, Hay S J, Trodahl H J, et al. The use of X-ray absorp-tion near edge spectrum in materials characterization. Curr Appl Phys, 2004, 4 (2-4): 233—236
    [13] Huffiman P G, Huggins E F, Shah N, et al. Speeiation of arsenic and chromium in coal and combustion ash by XAFS spectroscopy. Fuel Processing Techn, 1994, 39: 47-62.
    [14] Tohno S, Kawai J, Chatani S, et al. Application of X-ray absorp-tion fine structure (XAFS) spectrometry to identify the chemical states of atmospheric aerosols. J Aerosol Sei, 1998, 29, (suppl 1): 235-236.
    [15] Huggins F E, Shah N, Zhao J M, et al. Nondestructive determi-nation of trace element speciation in coal and coal ash by XAFS spectroscopy. Energy Fuel, 1993, 7: 482-489.
    [16] Manteau A, Gorshkov I A, Drits A V. Structural chemistry of Mn, Fe, Co and Ni in manganese hydrous oxides: Part 1. Information from XANES spectroscopy. Am Minerral, 1992, 77: 1133-1143.
    [17] Manceau A, Gorshkov I A, Drits A V. Structural chemistry of Mn, Fe, Co and Ni in manganese hydrous oxides: Part 2. Information from EXAFS spectroscopy. Am Minerral, 1992, 77: 1144-1157.
    [18] Qi J H, Zhang M P, Feng L J, et al. An EXAFS study on the local structure around iron in atmospheric aerosols collected in the Qingdao area. Molecules, 2003, 8:31-39.
    [19] Frank E. Hugginsa, Nora Yapa, Gerald P. Huffman, Constance L. Seniorb, XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures, Fuel Processing Technology 82 (2003) 167-196.
    [20] 叶小燕,宋伟杰,朱永法,曹立礼,X射线光电子能谱仪的功能开发与利用,实验技术与管理,第16卷,第5期,1999。
    [21] http://ce.sysu.edu.cn/ChemEdu/Echemi/ac151/speknowledge/basic/basie_2_06.htm.
    [22] 何滨,江桂斌,汞形态分析中的前处理技术,分析测试学报,第21卷第1期,2002年1月。
    [23] 刘晶,郑楚光,张军营,王满辉,煤中易挥发痕量元素赋存形态的分析方法及实验研究,燃烧科学与技术,第9卷第4期,2003年8月。
    [24] 冯新斌,洪业汤,洪冰,倪建宇,朱泳煊,煤中汞的赋存状态研究,矿物岩石地球化学通报,Vol,20 No.2,2001,4。
    [25] 李展强 张汉萍 李海萍 张华新 赵文海 李锡坤,广州市黄埔港区土壤中汞的形态分析及分布特征,岩矿测试,第24卷第1期,2005年3月。
    [26] Querol X, Juan R, Lopez-Soler A, Fermandez-Turiel J L,et al. Mobility of trace elements in coal and combustion wastes[J], Fuel, 1996,75:7 821.
    [27] Fernandez-Turiel J L, Carvalho W D, Cabanas M, et al. Mobility of heavy metals from coal fly ash[J]. Environmental Geology, 1994, 23:264.
    [28] Krishnan SV, Gullett BK, Jozewicz W. Environ Sci Technol 1994;28:1506-12.
    [29] Leon y Leon CA, Radovie LR. In: Thrower PA, editor, Chemistry and physics of carbon, vol. 24, New York: Marcel 282. Dekker, 1994, pp. 213-310.
    [30] Bacon R, Tang MM. Carbon 1964;2:221.
    [31] Granite EJ, Pennline HW, Hargis RA. Ind Eng Chem Res 2000;39:1020.
    [32] Korpiel JA, Vidic RD. Environ Sci Technol 1997;31:2319.
    [33] Vidie RD, Siler DP. Carbon 2001;39:3.
    [34] Rong Yan, Yuen Ling Ng, David Tee Liang, Chun Siong Lira, and Joo Hwa Tay, Bench-Scale Experimental Study on the Effect of Flue Gas Composition on Mercury Removal by Activated Carbon Adsorption, Energy & Fuels 2003, 17, 1528-1535.
    [35] Sung Jun Lee, Yong-Chil Seo, Jongsoo Jumg, Tai Gyu Lee, Removal of gas-phase elemental mercurybyiodine-and chlorine-impregnated activated carbons, Atmospheric Environment 38 (2004) 4887-4893.
    [36] E.S. Olson, S.J. Miller, R.K. Sharma, G.E. Dunham, S.A. Benson, Catalytic effects of carbon sorbents for mercury Capture, Joumal of Hazardous Materials 74 2000 61-79.
    [37] M. Domingo-Garc'ia, F. J. L'opez-Garz'on, and M. P'erez-Mendoza, Effect of Some Oxidation Treatments on the Textural Characteristics and Surface Chemical Nature of an Activated Carbon, Journal of Colloid and Interface Science 222, 233-240 (2000).
    [1] J.R.Flora, R.D.Vidic, W.Liu, Modeling powdered activated carbon injection for the uptake elemental mercury vapors, Journal of air & waste management association, 1998(48),1051-1059.
    [2] T.C.Ho, N.kobayashi, Y.K.Lee, et.al. Modeling of mercury sorption by activated carbon in a confined a semi-fluidized, and a fluidized bed. Waste management, 2002(22), 391-398.
    [3] T.R.Carey, Jr. Hargrove, C.F. Richardson, et al. Factors affecting mercury control in utility flue gas using activated carbon. Journal of air & waste management association, 1998(48), 1166-1174.
    [4] F. B. Meserole, R. Chang, T. R. Carey, C.F. Richardson, et al. Modeling mercury removal by sorbent injection, Journal of air & waste management association, 1999(49), 694-704.
    [5] Tai-Gyu Lee, Study of mercury kinetics and control methodologies in simulates combustion flue gases, dissertation, University of Cincinnati, 1999.
    [6] FABRIZIO SCALA, Simulation of mercury capture by activated carbon injection in incinerator flue gas: 1. in duct removal, Environ. Sei. Technoi., 35, 4367-4372, 2001.
    [7] FABRIZIO SCALA, Simulation of mercury capture by activated carbon injection in incinerator flue gas: 2. fabric filter removal, Environ. Sci. Technol., 35, 4373-4378, 2001.
    [8] 任建莉,燃煤过程中汞析出及模拟烟气中汞吸附脱除实验和机理研究,浙江大学博士学位论文,2003。
    [9] 高洪亮,模拟燃煤烟气中汞形态转化及脱除技术的实验及机理研究,浙江大学博士学位论文,2004。
    [10] 顾惕人,朱bu瑶,李外郎,马季铭,戴乐蓉,程虎民,表面化学,科学出版社(1994年6月第一版),2001。
    [11] 张辉,刘士阳,张国英,化学吸附的量子力学绘景,科学出版社,2004。
    [12] Y. Matsumura, Atmos. Environ., 8, 1321, 1974.
    [13] Y. Otani, C. Kanaoka, C.Usui, S. Matsui, H. Emi, Environ. Sci. Technol., 20, 735,1986.
    [14] Y. Otani, H. Emi, C. Kanaoka, I. Uchijima, H. Nishino, Environ. Sci. Technol.,22,708, 1988.
    [15] K. D. Henning, K. Keldenich, K. Knoblauch, J. Degel, Gas Sep. Purif., 2, 20, 1988.
    [16] K. Felsvang, R.Gleiser, G. Juip, K. K. Nielsen, Fuel Process. Technol., 39, 417, 1994.
    [17] S. V. Krishnan, B. K.Gullett, W.Jozewicz, Environ. Sci.Technol., 28, 1506, 1994.
    [18] H. S. Huang, J. M.Wu, C. D.Livengood, Hazard. Waste Hazard. Mater., 13, 107, 1996.
    [19] D. Karatza, A. Lancia, D. Musmarra, F. Pepe, Proc.Combust. Inst., 26, 2439,1996.
    [20] R. D.Vidic, J. B. McLaughlin, J. Air Waste Manage. Assoc., 46, 241, 1996.
    [21] B. Ghorishi, B. K. Gullett, Waste Manage. Res., 16, 582,1998.
    [22] T. R. Carey, O. W. Jr. Hargrove, C. F. Richardson, R. Chang, F. B. Meserole, J. Air Waste Manage. Assoc., 48,1166, 1998.
    [23] F. E. Huggins, G. P. Huffman, G. E. Dunham, C. L. Senior, Energy Fuels, 13, 114, 1999.
    [24] E. S. Olson, S. J. Miller, R. K. Sharma, G. E. Dunham, S. A. Benson, J. Hazard. Mater., 74, 61, 2000.
    [25] W. Liu, R. D.Vidic, T. D. Brown, Environ. Sci. Technol., 34, 154, 2000.
    [26] B.Wu, T. W. Peterson, F. Shadman, C. L. Senior, J. R.Morency, F. E. Huggins, G. P. Huffman, Fuel Process. Technol., 63, 93, 2000.
    [27] E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems; Cambridge University Press: New York, 1984.
    [28] S. Fabrizio, Modeling Mercury Capture in Coal-Fired Power Plant Flue Gas, Ind. Eng. Chem. Res., 43, 2575-2589, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700