介孔TiO_2及钛硅介孔复合材料的制备及光催化降解造纸废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料是一类孔径分布在2-50 nm之间的多孔材料,具有比表面积大、孔隙率高、孔径分布窄、孔排列有序的特点,使其一问世即成为工业应用(如光催化、离子交换、分子筛、吸附和分离等)的首选。非均相半导体光催化技术在水污染控制,尤其在处理废水中难降解有机污染物方面具有独特的优越性,纳米TiO_2作为一种性能优良的光催化剂已成为治理环境污染的研究热点,本实验通过制备具有较大比表面积的介孔TiO_2及TiO_2-SiO_2介孔复合材料,结果表明介孔TiO_2比纳米TiO_2具有更优异的光催化性能,少量SiO_2掺杂有利于提高介孔TiO_2的光催化活性和反应效率,在处理废水有机污染物等方面具有广阔的应用前景。
     本项研究以钛酸四丁酯(TBOT)为钛源,正硅酸乙酯(TEOS)为硅源,三嵌段共聚物(P123)为模板剂,溶胶-凝胶法合成了介孔TiO_2及具有不同钛硅摩尔比的TiO_2-SiO_2介孔复合材料,用小角X射线衍射(SAXRD)、X射线粉末衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM),红外光谱(FT-IR)、N2吸-脱附和紫外可见吸收光谱(UV-Vis)等分析手段对产物结构和光学性能进行了表征。结果表明:400℃煅烧得到的样品XRD谱图中仅在2θ=25.3°(101),37.9°(004),47.8°(200),54.3°(211)处出现锐钛矿相特征衍射峰,该特征峰随着钛硅比的增加而增强,但XRD谱图中并未出现SiO_2的特征峰,表明SiO_2以无定形的形式存在于复合材料中;SAXRD图中在2θ<1°处有明显的介孔材料的特征衍射峰;TEM图中有明显的短程有序的孔径分布,且分布较均匀;FT-IR显示TiO_2与SiO_2基质之间存在着Ti-O-Si键; N2吸脱附曲线表明合成材料具有介孔结构,随着SiO_2含量的增强,复合材料的孔径减小,比表面积增加;UV-Vis分析表明,复合材料吸收峰发生红移,使光谱响应范围向可见光拓展,提高TiO_2对太阳光的利用率。
     以制浆蒸煮黑液、对氯苯酚和对硝基苯酚为目标降解物,考察了SiO_2复合对介孔TiO_2光催化活性的影响。发现介孔TiO_2的光催化活性优于纳米TiO_2,而SiO_2少量掺杂的介孔TiO_2光催化剂则比纯介孔TiO_2有更好的光催化性能,能有效提高对蒸煮黑液和对硝基苯酚光催化降解;考察了催化剂的种类、光照时间、催化剂的用量、初始pH、通氧方式等对降解制浆黑液的影响因素。探明了在反应条件为:催化剂用量为1.5 g/L、初始pH = 6、连续通氧条件下降解效果最佳,在紫外光照射下,反应12 h后,少量SiO_2的存在能有效促进介孔TiO_2对蒸煮黑液的光催化降解,提高蒸煮黑液的COD_(Cr)和色度的去除效果。以介孔TiO_2-SiO_2复合材料(Ti/Si=100:1)为催化剂,反应体系中COD_(Cr)及色度的去除率分别达94.9%和97.6%,较介孔TiO_2分别提高了5.8%和5.4%,较纯纳米TiO_2分别提高了44 %和12.8 %。
Mesoporous material with pore size between 2-50 nm, high specific surface area, large pore volume and narrow pore size distribution, have considerable potential for wide use in photocatalysis、ion exchange、molecular sieves、adorption and separation applications. Heterogeneous photocatalysis by semiconductors has unique advantages in water pollution control,especially in the treatment of waste water containing poisonous organic compounds which are hard to be destroyed. Titanium dioxide (TiO_2), which can decompose most organic pollutants into inorganic substances under UV irradiation, has become a hot research area because of its attractive application in the treatment of environmental pollutants. In this research, we prepared mesoporous TiO_2 and mesoporous TiO_2-SiO_2 complex materials with more high specific surface area, and the results show that the mesoporous TiO_2 has the better properties than the nano TiO_2 and the complex materials have more superior properties than the pure mesoporous TiO_2 or SiO_2, then they have better photocatalytic properties in the degradation of organic wastewater.
     Mesoporous TiO_2 and TiO_2-SiO_2 photocatalysts (with different molar ratio of Ti/Si) has been successfully synthesized by using nonionic triblock copolymer (P123) as template agent via sol-gel reactions of tetrabutyl titanate (TBOT) and tetraetethyl orthosilicate (TEOS), then the prepared material(safter calcined at 400℃for 4h) were characterized by Low-angle X-ray diffraction (SAXRD), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscope(SEM), Fourier transform infrared spectrophotometer (FT-IR), N2 adsorption-desorption isotherm, Ultraviolet-visible (UV-Vis), and so on. The SAXRD shows the samples possess a short - range ordered mesoporous structure but lack of a long - range ordered structure; the XRD shows the samples were all anatase and the silica or silicate in the prepared samples exists as amorphous state ; TEM shows that the synthesized materials have lots of channels and possess a short-range ordered mesoporous structure; FT-IR analysis shows the formation of the band for Ti-O-Si vibration between TiO_2 and SiO_2 matrix; BET analysis shows the synthesized materials possess the mesoporous structure(BET surface area=105.41m2g-1, total pore volume 0.2039 cm3g-1, average pore diameter 7.74 nm for TiO_2), also synthesized materials’s the BET surface area increases and the pore diameter decreases with the increase of the silica content. From UV-Vis analysis, the absorption spectra of TiO_2-SiO_2 shifted toward visible light region and the absorbance dramatically increased with the increase of silica content.
     The presence of mesoporous structure and a little silica in TiO_2 crystalling were found to promote the photocatalytic activity of TiO_2 in degradation p-chlorophenol、p-nitrophenol and black liquor from pulping and papermaking. The results showed the mesoporous TiO_2 had the better photocatalytic properties than nano TiO_2 and the mesoporous TiO_2 with the little doption of silica had the better photocatalytic properties than mesoporous TiO_2. The influencing factors on the degradation of black liquor such as the kinds of catalyst, light application time, catalyst dosage, initial pH value, aerating mode etc. in the photocatalysis system were investigated. The presence of mesoporous structure and silica in TiO_2 crystal were found to improve the removement of efficiency of chemical oxygen demand (COD_(Cr)) greatly. Its COD_(Cr) was decreased from 450 mg/L to 46.14 mg/L and 23.07 mg/L, respectively. The removing rate of COD_(Cr) of black liquor from pulp was up to 89.7 % and 94.9 % and the removing rate of chroma was 92.6 % and 97.6 %. The best parameters during the photocatalysis processes were determined also, its best conditions were the catalyst (Ti/Si=100:1) dosage was at 1.5g/L, the initial pH = 6 with continuous aerating and reaction time 12h.
引文
[1] Ross, W R. Practical Application of the ADUF Process to the Full-scale Treatment of a Maize procession effluent [J].Wat. Sci. Technol, 1992, 25 (10): 27-39
    [2] Ndon U J, Dague R R. Effects of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of low strength wastewater [J]. Wat. Res., 1997, 31 (10): 2455-2466
    [3] Dague R R, Bunik G C, Ellis T G. Anaerobic sequencing batch reactor treatment of dilute wastewater at psychrophilic temperatures [J]. Wat. Res., 1998, 70 (2): 155-160
    [4] Fujishima A, Honda A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238 (1): 37-38
    [5] Habets L H A, Hooimeijer A. Inline biological process water treatment for zero discharge operation at recycled mills [J]. Pulp and Paper Canada, 1997, 98 (12): 184 -187
    [6] 武书彬. 造纸工业水污染控制与治理技术[M]. 北京: 化学工业出版社,2001
    [7] Zhou G W, Kang Y S. Synthesis and structural properties of manganese titanate MnTiO3 nanoparticle [J]. Mater Sci Engin C, 2004, 24 (1): 71-74
    [8] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocacalysis [J]. J. Photochem. Photobiol. C, Photochem. Rev., 2000, 1 (1): 1-21
    [9] Zhang Y, Bahnemann D, Bockelmann D, et al. Mechanistic studies of water detoxification in illuminated TiO2 suspensions [J]. Solar Energy Mat., 1991, 24 (5): 564-583
    [10] 李世彤,周国伟,汪媛媛. TiO2 掺杂及固定化技术降解造纸废水研究进展[J]. 中国造纸, 2004, 23 (12): 52-56
    [11] Hoffmann M R, Martin S T, Choi W, et al. Environment application of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95 (1): 69-95
    [12] 林会亮,周国伟,刘颖等.介孔 TiO2-SiO2 的制备及光催化降解黑液的影响因素[J]. 中华纸业,2007,28(3): 67-70
    [13] Ciesla U, Schüth F. Ordered mesoporous materials [J]. Micropor. Mesopor. Mater. , 1999, 27 (2): 131-149
    [14] Kang K K, Ahn W S. Physiochemical properties of transition metal-grafted MCM - 48 prepared using matallocene precursors[J]. J. Mol. Catal. A:Chem., 2000, 159 (2): 403-410
    [15] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev., 1997, 97 (6): 2373-2381
    [16] 解思深,李文治,王超英,等. 利用介孔材料制备碳纳米管的形貌、结构和 Raman 散射研究[J]. 中国科学, 1997, 27 (7): 630-635
    [17] Jamal E H., Saúl C, Carlos J, et al. High Cobalt Content Mesoporous Silicas[J]. Chem. Mater., 2004, 16: 2805-2813
    [18] Winkler J, Sacheleben, Duisburg. Nano-Scaled Titanium Dioxide-Properties and Use in Coatings with Special Functionality[J]. Macromol. Symp., 2002, 187: 317- 324
    [19] 高伟,吴凤清,罗臻,等. TiO2 晶型与光催化活性关系的研究[J]. 高等学校化学学报. 2001, 22 (4): 660-662
    [20] Maira A J, Yeung K L, Lee C Y, et al. Size effects in gas-phase photoxidation of trichloroethylene using nanometer-sized TiO2 catalysis [J]. J. Cataly., 2000, 192 (1): 185-191
    [21] Stafford U, Gray K A, Kamat P V. Photocatalytic degradation of 4-chiolrophenol: the effects of varying TiO2 concentration and light wavelength [J]. J. Catal., 1997, 167(1): 25-32
    [22] Ishibashi K, Fujishima A, Watanable T. Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air and water [J]. J. Phys. Chem. (B), 2000, 104 (12): 4934-4940
    [23] 尚静,杜尧国,徐自力. TiO2 纳米粒子气-固复相光催化氧化 VOCS 作用的研究进展[J]. 环境污染治理技术与设备, 2000, 1 (3): 67-76
    [24] 沈伟韧,赵文宽,贺飞,等. TiO2 光催化反应及其在废水处理中的应用[J]. 化学进展,1998, 10 (4): 349-361
    [25] 付贤智,李旦振. 提高多相光催化氧化过程效率的新途径[J]. 福州大学学报(自然科学版). 2001, 29 (6): 104-114
    [26] Wang B., Xu G., Sun H. Study on the conversion of methane to C2 hydrocarbons through symmetric electrical field enhancing catalysis [J]. J. Nature Gas Chem., 2001, 10 (2): 101-109
    [27] 吴合进,吴鸣,谢茂松,等. 增强型电场协助光催化降解有机污染物[J]. 催化学报, 2000, 21 (5): 399-403
    [28] 丁正新,侯乙东,李旦振,等. 形态结构和光电特性对纳米 TiO2 光催化性能的影响[J]. 物理化学学报, 2003, 19 (10): 978-981
    [29] 姚清照,刘正宝 . 光电催化降解染料废水[J]. 工业水处理, 1995, 19 (6):15-25
    [30] 李旦振,郑宜,付贤智. 微波光催化耦合效应及其机理研究[J]. 物理化学学报,2002, 18 (4): 332-335
    [31] 国伟林,王西奎,林志明,等.超声波作用下的钛醇盐水解法制备纳米 TiO2 [J]. 高等学校化学学报, 2002, 23 (8): 1592-1594
    [32] 谢永贤,陈文,徐庆.有序介孔材料的合成及机理[J].材料导报,2002,16(1):51-53
    [33] 武宝萍,袁兴东,宋长生等.介孔分子筛的研究[J].精细石油化工进展,2005,6(1):47-53
    [34] Huo Q, Margoless D I, Stueky G D, et a1. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature, 1994, 368:317-321
    [35] Kresge C T, Leonowicz M E, Roth W J, et a1. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 7l0-7l2
    [36] Tanev P T, Chibwe M,Pinnavma T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J]. Nature, 1994, 368: 321-323
    [37] Corma A, Fornes V, Navarro M T, et a1. Acidity and Stability of MCM-41 Crystalline Alumino silicates[J].Journal of Catalysis, 1994, 148 (2): 569-574
    [38] Huo Q, Margolese D I,Clesla U, et a1. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays+[J]. Chem Mater, 1994, (6):1176-l191
    [39] Corma A,Martinez A, Martinezsoria V, et a1. Hydrocracking of Vacuum Gas-Oil on the Novel Mesoporous MCM-41 Aluminosilicate Catalyst[J].Journal of Catalysis, 1995, 1 (153): 25-30
    [40] Stucky G D,Huo Q, Firouzi A, et a1.Directed synthesis of organic/inorganic composite structures[J]. Stud. Surf. Sci. Catal., 1996, (105): 3-28
    [41] 周四清,伏再辉,伊笃林.钒络合物在中孔载体 HMS 上的组装[J]. 湖南师范大学自然科学学报,2002, 25 (1): 47-50
    [42] 袁忠勇,王敬中.中孔分子筛材料研究进展[J]. 精细石油化工, 1997, (4): 5-8
    [43] 张小明,张兆荣,索继栓等. 含钛中孔分子筛 Ti-MSU 的合成和表征[J]. 化学通报, 2000, (3): 29-31
    [44] 赵杉林,翟玉春,孙桂大等.MCM-41 沸石分子筛的微波合成与表征[J]. 石油化工, 1999, 28 (3): 22-28
    [45] Huo Q, Margolese D, Stucky G D. Organization of organic molecules with inorganic moleculars pecies into nanocomposite biphase arrays [J]. Chem. Mater., 1996, 8: 1147-1160
    [46] Beck J S, Vartuli J C, Roth W J. A new family of macroporous molecular sievesprepared with liquid crystal template [J]. J Am Chem. Soc.,1992, l14:10834-10843
    [47] Lin W Y,Pang W Q,Wei C P, et a1. Synthesis and characterization of H-form aluminosnilicate MCM-41 in a novel alkali.metal free media[J].Chem.J.Chinese Universities,1999,20(10):1 495-1 498
    [48] Monnier A,Schuth F,Huo Q S.Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science, 1993, 261: 1299 -1300
    [49] Tanev P T,Pinnavaia T J.A neutral templating route to mesoporous molecular sieves[J].Science,1995,267:865-867
    [50] Kresge C T,Leonowicz M E,Roth W J,et a1.Ordered macroporous molecular sieves synthesized by liquid-crystal template mechanism [J], Nature,1992,359: 710 -712
    [51] Antonelli D M ,Ying J Y.Synthesis of hexagonally packed mesoporous TiO2 by modified sol-gel method [J].Angew Chem.Int. Ed.Eng1.1995, 34:2014-20l7
    [52] 孙献亭, 黄青山. 介孔固体研究进展[J].平顶山师专学报,2003,15 (2):28-29
    [53] Jin G Q,Guo X Y.Synthesis and characterization of mesoporous silicon carbide[J].Microporous and Mesoporous Mater, 2003, 60 (1): 207-210
    [54] 丁彩凤, 朱海涛,王海亭. 表面活性剂在有序介孔材料合成中的应用[J]. 山东陶瓷, 2003, 26 (3): 10-14
    [55] Wang Y D , Ma C L, Sun X D,et a1. Synthesis and characterization of mesoporous TiO2 with wormhole-like framework structure[J].Applied Catalysis A:General,2003, 246 (1):161-270
    [56] 刘超, 陈国祥.模板法制备介孔材料的研究进展[J].离子交换与吸附,2003,19(4): 374-384
    [57] 朱金华, 沈 伟, 徐华龙,等. 水热一步法合成 Ti-SBA-15 分子筛及其催化性能研究[J]. 化学学报,2003, 61 (2): 202-207
    [58] 赵杉林, 张扬健, 孙桂大,等. 钛硅沸石分子筛 Ti-MCM-41 的微波合成与表征[J]. 催化学报, 1999, 20 (1): 93-95
    [59] Ulgappan N, Rao C N R. Mesoporous phase based on SnO2 and TiO2[J]. Chem Commun, 1996:1685-1686
    [60] 鞠剑峰, 李澄俊, 徐铭等. 纳米二氧化钛复合材料的抗菌性能研究[J]. 精细化工, 2003, 20(11): 641-643
    [61] 郑珊, 高濂, 张青红, 等. TiO2 修饰的 MCM-41 的结构表征及光催化苯酚降解活性[J]. 化学学报, 2001, 22(2): 206-208
    [62] 陈航榕, 施剑林, 张文华, 等.钛掺杂有序多孔氧化锆的研究.无机材料学报,2001, 16(3): 465-469
    [63] 罗根祥, 陈平, 肖进兵, 等.Fe-MCM-41 介孔材料的合成、表征及催化性能研究[J]. 石油化工高等学校学报, 2001,16(1): 33-36
    [64] Bharat L N, Johnson O, Sridhar K. Direct synthesis of Titanium-Sibstituted mesoporuos SBA-15 molecular sieve under microwave-hydrothermal conditions[J]. Chem. Mater. 2001, 13 (2): 552-557
    [64] Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396:152-155
    [65] Huang Y Y, McCarthy T J, Sachtler W M H.Preparation and catalytic testing of mesoporous sulfated zirconium dioxide with partially tetragonal wall structure[J]. Appl. Catal A, 1996, 148 (1): 135-154
    [66] Chenite A, Lepage Y, Sayari A. Direct TEM imaging of tubules in calcined MCM-41 type mesoporous materials [J]. Chem Mater, 1995, 7: 1015-1019
    [67] Zheng J. H., Pang J. B., Qiu K. Y., et al. Synthesis and characterization of mesoporous titania and silica-titania materials by urea templated sol-gel reactions[J]. Microporous and mesoporous materials, 2001, 49: 189-195
    [68] Luis R. P.. Mesoporous titania: effect of thermal treatment on the texture and acidic properties[J]. Materials Letters, 2005, 59 : 994-997
    [69] Zhao L. L., Yu Y.,Song L.X., et al. Preparation of mesoporos titania film using nonionic triblock copolymer as surfactant template[J]. Applied Catalysis A: General, 2004, 263: 171-177
    [70] 席红安, 方能虎, 李中凯等.SBA-15 的二氧化钛改性及其光催化降解对氯苯酚[J]. 化学学报, 2002, 60 (12): 2124-2128
    [71] Hideyuki O, Michio M, Hiroshi T, et al. Bleaching of lignin solution by a photocatalyzed reaction on semiconductor photocatalysts [J]. Ind. Eng. Chem. Res., 1989, 28: 719-724
    [72] 刘飞跃, 黎秉环, 徐银松. 纳米晶 TiO2光催化降解制浆黑液的影响因素[J]. 纤维素科学与技术,2002, 10 (3): 1-10
    [73] Fujishima A; Rao T N; Tryk D A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1: 1-21
    [74] 李世彤, 周国伟. Co2+-TiO2纳米粒子光催化降解造纸黑液的影响因素[J]. 中华纸业,2006, (2): 62-65
    [75] Zhijie L, Bo H, Yao X, et al. Hydrothermal synthesis, characterization, and photocatalytic performance of silica-modified titanium dioxide nanoparticles[J].Journal of colloid and interface science, 2005, 288, 149-154
    [76] 李志杰, 候博, 徐耀, 等. 共沉淀法制备氧化硅改性的纳米二氧化钛及其性质[J]. 物理化学学报, 2005, 21(3): 229-233
    [77] 赵亮, 王大喜, 高金森, 等. TiO2-SiO2 复合氧化物结构和红外光谱的量子化学研究[J].催化学报, 2005, 26 (1): 15-19
    [78] 朱永法, 张利, 姚文清, 等. 溶胶-凝胶法制备薄膜型TiO2光催化剂[J]. J. Catal., 1999, 20 (3): 362-364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700