绿色木霉葡聚糖内切酶EGIII基因在大肠杆菌中的表达及其分子进化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是地球上最丰富的可再生性物质之一,如果能够利用纤维素来生产燃料乙醇将缓解人类面临的能源和环境污染等危机,因此纤维素乙醇已被人们看作未来能源。纤维素原料是最有发展潜力的燃料乙醇生产原料,但因其结构致密很难被分解成微生物利用的糖类,是目前利用其工业化生产乙醇首要面临的困难。纤维素酶是能够水解纤维素的一类酶的总称,它可以将纤维素水解成单糖,进而发酵产生乙醇,然而目前发现纤维素酶活力低,成本高,严重制约了其工业化应用。
     针对纤维素酶活力低,以及纤维素酶基因在大肠杆菌中表达无活力的问题,本论文做了以下研究:将绿色木霉EGⅢ基因亚克隆到表达载体pET-22b(+),构建重组质粒pET-egl3,转化大肠杆菌BL21(DE3),检测到EGⅢ酶活,利用金属亲和层析对重组EGⅢ进行纯化,SDS—PAGE显示纯化蛋白的分子量约为42kD,纯化后的酶比活力为6U/mg,最适反应温度为60℃,最适pH为4.0。
     由于对绿色木霉内切葡聚糖酶EGⅢ的三维结构尚不清楚,本研究采用了非理性设计进行内切葡聚糖酶EGⅢ分子进化的研究,利用定点饱和突变的方法来获得高活力突变酶。以Thermoascus aurantiacus内切酶的晶体结构,通过SWISSMODEL(http://www.expasy.org/)同源建模绿色木霉EGⅢ的3D结构,分析模板关键位点,结合计算机辅助设计软件Prosa2003能量计算确定了EGⅢ催化区内的R130、E218、Q246和E329为突变位点。利用刚果红染色法进行筛选,从Q246和E329突变库中没能筛选到有活力提高的突变体,而R130和E218各筛选到一株酶活有提高的突变子R130P和E218F,比活为野生型EGⅢ的2.8倍和3.45倍。对其酶学性质的研究发现,突变酶E218F的Km提高了一倍,催化效率Kcat提高了5.4倍;而R130P的Km和Kcat没有明显变化。两个突变酶的最适酶解温度和pH分别都提高至65℃和4.4。
The cellulose is one of the most abundant reproducible material in the earth, so if is used to produce ethanol for fuel the crisis of energy sources and environmental pollution etc. will be settled. Beacause of this, the cellulose ethanol has been considered to be the future fuel by people. From now on, the cellulosic biomass has been regarded as the greatest potential raw material for the fuel ethanol production. However,the cellulose hasn't been fully utilized because of its dense structure which is difficulty to hydrolysis to be the saccharide for microorganisms using, which is the first difficulty of industrialization. So far as we know, cellulase can hydrolyze the cellulose to simple sugars for fermentation to ethanol,whilethe low activity of cellulase and high cost of production have seriously hampered its industrial application. Now, more and more people carry out the researches of cellulase in the world.
     In order to solve the problem that the activity was too low to determine when the cellulase gene expressed in the E.coli, and improve the cellulases' activity, the following researches were done in this paper. EndoglucanseⅢgene egl3 was subcloned into expression vector pET-22b (+) and a recombinant plasmid pET-egl3 was constructed then transformed into E.coli BL21 (DE3). Recombinant protein EndoglucanseⅢwas purified by metal chelating affinity chromatography, the moleculer weight of EGⅢwas 42kDa by the SDS-PAGE analyzing. And the specific activity of EGⅢwas 6U/mg. Its optimal temperature and pH were 60℃and 4.0, respectively.
     From now on, the three dimensional structure of endoglucanseⅢof T. viride is unknown. In order to obtain mutants with higher activity, site-saturation mutagenesis of irrational design was performed. Based on the crystal structure of endoglucanase from Thermoascus aurantiacus , 3D model of EGⅢfrom T.viride was constructed by the method of homologous modeling protein structure prediction on SWISS-MODEL program. Analysing the key sites of the model combined with energy calculation by the computer-aided design software Prosa2003, four mutants R130、E218、Q246 and E329 were selected in the catalytic domain of EGⅢ. What's a pity, we didn't selct any mutants whose activity increased from Q246 and E329. However, the mutants R130P and E218F were obtained using site-saturation mutagenesis, whose enzyme activities were improved obviously. At the same time characteristics of the two mutations were investigated. Their specific activities were 2.8 and 3.45 times of the wild type. Furthermore, Km and Kcat of E218F mutation were increased one time and 5.4 times more than the wild type. While, Km and Kcat of R130P mutation had not any change. Compared with wild type, optimal temperature and pH of the two mutated enzymes were both enhanced to 65℃and 4.5, respectively.
引文
[1]傅其军,燃料酒精的发展前景[J],广西轻工业,2001,2),6-10
    [2]梅允福,发展清洁车用乙醇汽油[J],节能与环保,2003,4),28-30
    [3]Lee R.Lynd,Paul J.Weimer,Willem H.van Zyl et al.,Micmbial Cellulose Utilization:Fundamentals and Biotechnology[J],Microbiology and Molecular Biology Reviews,2002,66(3):506-577
    [4]L.R.Lynd,C.E.Wyman T.U.Gemgross,Biocommodity Engineering[J],Biotechnol Prog,1999,15(5),777-793
    [5]孙智谋,蒋磊,张俊博等,世界各国木质纤维素原料生物转化燃料乙醇的工业化进程[J],酿酒科技,2007,1,91-94
    [6]牟洪燕,秦梦华,纤维原料生产乙醇的研究进展[J],黑龙江造纸,2006,3,24-27
    [7]SunY,ChengJ,Hydrolysis of lingo cellulosic materials for ethanol production [J],BiomassTechnology,2002,83,3-9
    [8]Keikhosro Karimi Mohammad Taherzadeh,Conversion of rice straw to sugars by dilute-acid hydrolysis[J],Biomass and Bioenergy,2006,30,247-253
    [9]宋安东,生物质(秸秆)纤维燃料乙醇生产工艺试验研究[J],郑州:河南农业大学,2003,25
    [10]杜风光,史吉,张龙等,纤维质生产燃料乙醇产业化研究进展[J],中国麻业科学,2007,29,72
    [11]BinYang,Charles E Wyman,Advancing Cellulosic Ethanol Technology in China [J],PROGRESS IN CHEMISTRY,2007,19(7/8):1072-1076
    [12]张百良,任天保,王许涛,纤维素乙醇的研究现状及其发展趋势纤维素乙醇的研究现状[J],新能源产业,2007,4,12-16
    [13]张宇昊,王颉,张伟等,半纤维素发酵生产燃料乙醇的研究进展[J],酿酒科技,2004,125(5):58-60
    [15]王健,袁永俊,张驰松,纤维素发酵产酒精研究进展[J],中国酿造,2006 159(6):9-13
    [16]阎伯旭,齐飞,张颖舒等,纤维素酶分子结构和功能研究进展[J],生物化学与生物物理进展,1999,26(3):233-237
    [17]Warren R A J,Microbial hydrolysis of polysaccharides[J],Annu RevMicrobiol, 1996,50,183-202
    [18]孙健,陈砺,王红林,纤维素原料生产燃料酒精的技术现状[J],可再生能源,2003,6,5-9
    [19]王建平,纤维素酶的研究进展及趋向[J],舟山师专学报,1995,3,42-46
    [20]H.R.Bungay Georges Belfort,Advanced biochemical engineering,New York:1987,79-85
    [21]谢占玲,吴润,纤维素酶的研究进展[J],草业科学,2004,4,72-76
    [22]孟雷,陈冠军,王怡等,纤维素酶的多型性[J],纤维素科学与技术,2002,10(2):47-55
    [23]关铜,张世华,纤维素酶在饲料工业中的研究与应用[J],贵州畜牧兽医,2003,27(5):7-9
    [24]J.Knowles,P.Lehtovaara T.T.Teeri,Cellulase family and their genes[J],Trends biotechnology,1987,5,255-262
    [25]Ninaa,Maria I,Anus et al.,ACEI of Trichoderma reesei is a repressor of cellulose and xylanase expression[J],Applied and Environmental Microbiology,2003,69(1):56-65
    [26]荒开基夫,纤维素酶研究动态[J],日本酿造协会杂志,1988,83,177-182
    [27]Gao Peiji,Qu Yinbo,Wang Zunong.,Effects of endoglucanase from Trichoderma viride A10 in cellulose hydrolysis[J],progress in natural science,1992,2(5):449-456
    [28]H.Wang R.W.Jones,Cloning,characterization and functional expression of an endoglucanase-encoding gene from the phytopathogenic fungus Macrophomina phaseolina[J],Gene,1995,158(1):125-128
    [29]J.Stahlberg,G.Johansson G.Pettersson,A binding-site-deficient,catalytically active,core protein of endoglucanase Ⅲ from the culture filtrate of Trichoderma reesei[J],Eur J Biochem,1988,173(1):179-183
    [30]Focher B,Marztti A,Structural Features of Cellulose and Cellulose Derivatives,and their Effects on Enzymatic Hydrolysis Haigler CH et.al,New york:1991,297-306
    [31]Vincken J P Beldman G,The Effect of Xyloglucans on the Degradation of Cell-wall-Embeded Cellulose by the Combined Action of Cellobiohydrolase and Endoglucanases from Trichoderma Viride[J],Plant Physios,1994,104(1):99-102
    [32]王廷璞,曹丽娜,雷新有,利用微生物发酵生物质生产酒精工艺[J],甘肃科技,2006,22(10):42-45
    [33]常秀莲,木质纤维素发酵酒精的探讨[J],酿酒科技,2001,2,39-42
    [34]M.Penttila,P.Lehtovaara,H.Nevalainen et al.,Homology between cellulase genes of Trichoderma reesei:complete nucleotide sequence of the endoglucanase Ⅰgene[J],Gene,1986,45(3):253-263
    [35]Kauri T Kushner D J,Role of contact in bacterial degradation of cellulose[J],Fems Microbiol Ecol,1985,31,301-306
    [36]Acebal C,Castillo'n MP,Estrada P et al.,Enhanced cellulase production from trichodermareesei QM9414 on physically pretreated wheat straw[J],Appl Microbiol Biotechnol,1986,24,218-223
    [37]程超,郝永清,张爱荣等,纤维素酶系统的研究进展[J],畜牧与饲料科学,2007,3,61-63
    [38]Tilbeurgh H,Tomme P Claeyssens M,Limited proteolysis of the cellobiohydrolase Ⅰ from T.reesei.[J],FEBS Lett,1986,204(2):223-227
    [39]王婷,硕士论文,瑞氏木霉内切葡聚糖酶的分子改造,山东大学,2003
    [40]Rouvinen J,Bergfors T Teeri T,Three-dimisional structure of cellobiohydrolase Ⅱ from T,reesei[J],Science,1990 249(4967):380-86
    [41]Juy M,AmitA G,Alzari P M et al.,Crystal structure of a thermostable bacterial cellulose degrading enzyme[J],Nature,1992 357(6373):89-91
    [42]Spezio M,Wilson D B Karplus P A,Crystal structure of the cata-lytic domain of a thermophilic endocellulase.[J],Biochemistry,1993,32(38):9906-9916
    [43]Divne C,Stahlberg J,Reinikainen T et al.,The three-dimensional crystal structure of the catalytic core of cellobiohydrolase Ⅰ from Trichoderma reesei[J],Science,1994,265(5171):524-528
    [44]胡利勇,钟卫鸿,纤维素酶基因克隆及其功能性氨基酸研究进展[J],生物技术,2003,13(2):43-45
    [45]王晓芳,南京师范大学硕士学位论文,产纤维素酶的真菌筛选与纤维素酶的诱导及其理化性质研究,南京师范大学,2002
    [46]刘纯强,王祖农,纤维素酶基因克隆及应用前景[J],生物工程进展,1991,11(3):8-15
    [47]张鸿雁,陈锡时,微生物纤维素酶分子生物学研究进展[J],生物技术,2003,6,41-42
    [48]Tuula Teeri,Irma Salovuori onathan Knowles,The Molecular Cloning of the Major Cellulase Gene from Trichoderma Reesei[J],Bio/Technology,1983,1,696-699
    [49]Teeri T,Lehtovaara P,Kauppinen S et al.,Homologous domain in Trichoderma reesei cellulolytic enzymes:gene sequence and expression of]cellobiohydrolaseⅡ[J],Gene,1987, 51,43-52
    [50]M.Saloheimo,P.Lehtovaara,M.Penttila et aI.,EGⅢ,a new endoglucanase from Trichoderma reesei:the characterization of both gene and enzyme[J],Gene,1988,63(1):11-22
    [51]J.N Van Arsdell,S Kwok,V.L Schweickart et al.,Cloning,characterization,and expression in Saccharomyces cerevisiae of endoglucanase Ⅰ from Trichoderma reesei[J],BioTechnology,1987,5(1):64-68
    [52]Cheng C,Norihiro T Shigezo U,Nucleotide sequence of the cellobiohydrase gene from Trichoderma viride[J],Nucleic Acids Research,1990,18,55-59
    [53]Kwon.I,Keisuke Ekion,Masatoshi Goto et al.,Heterologous Expression and Characterization of endoglucanseⅠ(EGI)from T.virideHK-75[J],Bioscience[J].Biotechonology and biochemistry,1999,63(10):1714-1720
    [54]王建荣 张曼夫,绿色木霉纤维素酶CBHⅡ基因的分子克隆[J],真菌学报,1994,13(3):235-240
    [55]王建荣,张曼夫,黄涛,绿色木霉纤维素酶CBHⅡ基因的结构研究[J],遗传学报,1995,22(1):74-80
    [56]Wey T T,Hseu TH Huang L,Molecular cloning and sequence analysis of the cellobiohydrolase Ⅰ gene from Trichoderma koningii G-39[J],Curr Microbiol,1994,28(1):31-39
    [57]Thomas M,Wood cellulase of Trichoderma koningii[J],Methods in Enzymology,1998,160,221-240
    [58]祝令香,于巍,康宁木霉K801纤维素酶CBHⅡ基因的克隆及序列分析[J],菌物系统,2001,20(2):174-177
    [59]H.Okada,K.Tada,T.Sekiya et al.,Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414[J],Appl Environ Microbiol,1998,64(2):555-563
    [60]R.CMilleretal,Biochemistry and Geneticsof cellulose Degradation[J],1988,235-248
    [61]E.V.Winzeler R.W.Davis,Functional Analysis of the Yeast Genome[J],Current Opinion in Genetics&Development,1997,7(6):771-776
    [62]S.G.Oliver,M.K.Winson,D.B.Kell et al.,Systematic Functional Analysis of the Yeast Genome[J],Trends in Biotechnology,1998,16(9):373-378
    [63]J.DeRisi,B.Hazel,P.Marc et al.,Genome Microarray Analysis of Transcriptional Activation in Multidrug Resistance Yeast Mutants[J],FEBS Letters,2000,470(2):156-160
    [64]D.E.Bassett,M.A.Basrai,C.Connelly et al.,Exploiting the CompleteYeast Genome Sequen -ce[J],Current opinionin Genetics &Development,1996,6(6):763-766
    [65]周璐,李越中,李健,酿酒酵母基因组学研究进展[J],生命科学,1999,11(2):87-91
    [66]Saloheimo,Tuna Nakar,Setala et aI.,cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast.[J],Eur.J.Biochem,1997,249,584-591
    [67]刘北东,杨谦 周麒,绿色木霉AS3.3711的葡聚糖内切酶Ⅰ基因的克隆与表达[J],北京林业大学学报,2004,26(6):71-76
    [68]刘北东,杨谦,周麒等,绿色木霉AS3.3711的葡聚糖内切酶Ⅴ基因的克隆与表达[J],高技术通讯,2004,28-32
    [69]刘北东,杨谦,周麒等,绿色木霉AS3.3711的葡聚糖内切酶Ⅲ基因的克隆与表达[J],环境科学,2004,25(5),127-132
    [70]Chen Keqin Arnold F.H,Tuning the activity of an enzyme for unusual encironments:sequential random mutagenesis of subtilisin E for catalysis in dimathylformanide[J],Proc.Nat I.Acal.Sci.USA;,1993,90,5618-5622
    [71]Stemmer W.P.C,Rapid evolution of a protein in vitro by DNA shuffling[J],Nature,1994,370
    [72]Moore Jeffrey C Arnold Frances H,Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents[J],Nature,1996,14,458-467
    [73]王志珍 邹承鲁,后基因组-蛋白质组研究[J],生物化学与生物物理学报,1998,30,533-539
    [74]JaenickeR,Protein folding local structures,omains,subunits and assemblies[J],Biochemis -try,1991,30,3148-3160
    [75]邹承鲁,第二遗传密码-新生肽链及蛋白质折叠的研究[M],湖南科学技术出版社,1997,
    [76]世纪的生命科学[P],邹承鲁教授访谈录[J],生物化学与生物物理进展,2000,27(1):3-5
    [77]张阳德,生物信息学,北京:科学出版社,2005,204-207
    [78]谌容,陈敏,杨春贤等,基于SWISS-MODEL的蛋白质三维结构建模[J],生命的化学,2006,26(1):54-56
    [79]Schwede T.et al,Nucleic Acids Research,2003,31(13):3381-3385
    [80]Peitsch MC et al,Pharmacogenomics,2000,1(3):257-266
    [81]AlberT,Mutational effects on protein stability[J],Annual review of biochemistry,1989,58,765-798.
    [82]Mitsuishi Y,Nitisinprasert S,Saloheimo M et al.,Site-directe mutagenesis of the putative catalytic residure of T.reesei.[J],FEBS Lett,1990,275(1):135-138
    [83]Macarron R,Beeumen J,Henrissat B et al.,Identification of an essential Glutamate residure in the active site of endoglucanase Ⅲ.[J],European journal of biochemistry,1993,316(2):137-140
    [84]Trimbur D E,Warren R A Withers S G,Region-directed mutagenesis of residues surrounding the active site nucleophile in beta-glucosidase from Agrobacterium faecalis[J],Biol Chem 1992,267(15):10248-10251
    [85]Tull D,Withers S G,Gilkes N R et al.,Glutamic acid 274 is the2 nucleophile in the active site of a retaining exoglueanase[J],Biol Chem,1991,266(24):15621-15625
    [86]Wang Q,Tull D,Meinke A et al.,Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC,a family A endo-beta-1,4-glucanase[J],Biol Chem,1993,268(19):14096-140102
    [87]Tomme P,Warren R A Gilkes N R,Cellulose hydrolysis by bacteria and fungi[J],Adv Microb Physiol,1995,37(1):1-81
    [88]Kraulis P J Jones T A,Determination of three-dimensional protein structures from nuclear magnetic resonance data using fragments of known structures[J],Proteins,1987,2(1):188-201
    [89]Xiao Zhizhuang,Wang Pan,Qu Yinbo et al.,Cold adaptation of a mesophilic cellulase,EGⅢ from Trichoderma reesei,by directed evolution[J],Science in China,2002,45(4):337-343
    [90]Ting Wang,Xiangmei,Qian Yu Liu et al.,Directed evolution for engineering pH profile of endoglucanase Ⅲ from Trichoderma reesei[J],Biomolecular Engineering,2005,22,1-3
    [91]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯 et al.,分子克隆实验指南[M],第2版,北京: 中国科学出版社,2002,
    [92]Ronald M.Teather Peter J.Wood,Use of Congo Red-Polysaccharide Interactions in Enumeration and Characterization of Cellulolytic Bacteria from the Bovine Rument[J],Applied and Environmental Microbiology,1982,43(2):777-780
    [93]郭尧君,蛋白质电泳实验技术[M],北京:科学出版社,1999,
    [94]ZHU Qi-xia QI Xiang-hui,WEI Yu-tuo,HUANG Ri-bo Gene cloning and expression of glycerol dehydratase from Citrobacter freundii in Escherichia coli.in INDUSTRIAL MICROBIOLOGY,20053,5,10-13
    [95]汪家政 范明,蛋白质技术手册[M],北京:中国科学出版社,2001,
    [96]周丽萍,周政 袁中一,青霉素酰化酶的定点突变及其稳定性研究[J],工业微生物,2003,33(1):9-13
    [97]颜思旭 蔡红玉,酶催化动力学原理与方法[M],厦门:厦门大学出版社,1987,
    [98]Macarron R,Acebal C,Castillon MP et al.,Mode of action of endoglucanase Ⅲ from Trichoderma reesei[J],Biochemical Journal,1993,289(3):867-873
    [99]Gilkes NR,Henrissat B,Kilbum G et al.,Domains in microbial beta-1,4-glycanases:sequence conservation,function,and enzyme families[J],Microbiology and Molecular Biology Reviews,1991,55(2):303-315
    [100]李衍达,生物信息学—基因和蛋白质分析的使用指南,北京:清华大学出版社,2000,246-247
    [101]齐向辉,学位论文,甘油脱水酶的克隆表达及定向进化,广西大学,2006
    [102]W.A.Koppensteiner M.J.Sippl,Knowledge-based potentials-back to the roots[J],Biochemistry(Mosc),1998,63(3),247-252
    [103]M.J.Sippl,Knowledge-based potentials for proteins[J],Current opinion in structure biology,1995,5(2):229-235
    [104]F.Gardebien,R.R.Thangudu,B.Gontero et al.,Construction of a 3D model of CP12,a protein linker[J],Journal of molecular graphics and modelling,2006,25(2):186-195
    [105]M.Wiederstein M.J.Sippl,Protein sequence randomization:efficient estimation of protein stability using knowledge-based potentials[J],Journal molecular biology,2005,345(5),1199-1212
    [106]R.B.Guo,P.Rigolet,L.Zargarian et al.,Structural and functional characterizations reveal the importance of a zinc binding domain in Bloom's syndrome helicase[J],Nucleic Acids Research,2005,33(10):3109-3124
    [107]A.Prlic,F.S.Domingues,P.Lackner et al.,WILMA-automated annotation of protein sequences[J],Bioinformatics,2004,20(1):127-128
    [108]卡尔.布兰登约翰.图兹,蛋白质结构导论,上海科学出版社,2005,42-43
    [109]王大成,蛋白质工程[M],北京:化学工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700