氧化物纳米粉体的可控液相合成及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在综述国内外ZnO及钇稳定化氧化锆(YSZ)纳米粒子研究现状的基础上,从化学及材料的角度,发展了低温常压液相一步法制备ZnO及YSZ纳米颗粒的技术,利用各种控制方法和新的合成路线得到了一系列具有特殊形貌、表面特性的氧化物材料。首先,以可溶性的锌盐、锆盐为原料,控制反应条件使中间产物Zn(OH)2、ZrO2·nH2O之间发生脱水作用,在液相中一步生成目标氧化物纳米粒子。另外以微溶的固体前驱体为原料,在水相中直接以固相转移的方式直接得到了球形、片形等一系列形貌特征的ZnO粒子。其次在有机小分子的协调作用下,得到了组元形貌可控的ZnO自组装体。将方法进一步扩展,还得到了系列表面特性的氧化物材料,可以直接应用与系列高分子中制成复合材料。此外还对合成的氧化物材料进行了PL、Raman等光学研究,有望指导未来光催化研究。
ZnO and YSZ nanopowders are important semiconductor materials, which have broad application prospects. It is known that nanostructures with controllable sizes and shapes are important from both fundamental applied and technological viewpoints. It is a longtime and important subject to improve the preparation methods and technologies. Here, we develop the wet chemical techniques and synthesize series of oxide materials under relative mild condition (low temperature, normal air pressure). And materials with special morphologies and surface properties are reported.
     First, a simple one-step wet chemical method for the synthesis of ZnO and YSZ nanopowders is reported. In the presence of NaOH, ZnO nanoparticles can be obtained directly through the dehydration reactions between intermediate products of Zn(OH)2. At the same time, dehydration will be promoted by increasing the reaction temperature, and therefore the reaction time is shortened. As to the synthesis of tetragonal YSZ nanoparticles, NaOH also plays an important role as catalyst, which induces the dehydration reactions between ZrO2·nH2O. The one-step solution-based chemical method does not only shorten the reaction time, but also reduce the energy consumption.
     Second, series ZnO particles like flowers, slices and spheres, are successfully produced by precipitation transformation process, which is conduced by the chemical etching actions of base to insoluble precursors. The solid precursors play an important role in the slow-release of Zn2+ ions, and influence the subsequent formation of ZnO particles. Compared with traditional thermal decomposition method, this kind of solution-based method is facile to obtain series inorganic particles with various morphologies.
     Third, self-assembled ZnO superstructures are produced by the addition of small organic molecules, and the morphology of building blocks can be tailored facilely. In this method, the pre-formation of ZnO seeds is the key parameters to the synthesis of self-assembled ZnO superstructures. In one way, the small organic molecules regulate the morphology of building blocks; on the other hand, they induce the assembly of these building blocks. This method can also be used to produce other inorganic materials, which could be operated in the absence of polymers.
     Finally, series ZnO nanopowders with controllable surface properties are successfully produced via the addition of surfactants. The surfactants will react with the surfaces of ZnO particles by their functional groups. As a result, insoluble salts on the surfaces of ZnO are obtained, which finally realizes the surface modification of ZnO particles. In the addition of sodium oleate and octadecyl dihydrogen phosphate, hydrophobic ZnO particles will be obtained, which has a potential application in organic solvents. In the presence of phosphate betaine and polyethylene glycol-based phosphate, the obtained hydrophilic ZnO particles can stabilize in the glycol solution for a long time.
引文
[1]VISWANATHA R, SAPRA S, SATPATI B, et al. Understanding the quantum size effects in ZnO nanocrystals [J].Journal of Materials Chemistry,2004,14:661-668.
    [2]HOWARD C J, KISI E H. Measurement of single-crystal elastic constants by neutron diffraction from polycrystals [J].Journal of Applied Crystallography,1999,32:624-633.
    [3]BASU B. Toughening of yttria-stabilised tetragonal zirconia ceramics [J].International Materials Reviews,2005,50:239-256.
    [4]TEUFER G. The crystal structure of tetragonal ZrOB2B [J].Acta Crystallographica,1962,15:1187.
    [5]徐祖耀.马氏体相变与马氏体[M].北京:科学出版社,1999.
    [6]DULUB O, BOATNER L A, DIEBOLD U. STM study of the geometric and electronic structure of ZnO(0001)-Zn, (000-1)-O, (10-10), and (11-20) surface [J].Surface Science,2002,519:201-217.
    [7]MEYER B, MARX D. Density-functional study of the structure and stability of ZnO surface [J].Physical Review B,2003,67:035403.
    [8]贾德昌,周玉.陶瓷材料抗热震性研究进展[M].材料科学与工艺,1993: 96-102.
    [9]PAN Z W, DAI Z R, WANG Z L. Nanobelts of Semiconducting Oxides [J].Science,2001,291:1947-1949.
    [10]PARK W I, KIM D H, JUNG S W, et al. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods [J].Applied Physics Letters,2002,80:4232-4234.
    [11]ZHAO Q X, WILLANDER M, MORJAN R E, et al. Optical recombination of ZnO nanowires grown on sapphire and Si substrates [J].Applied Physics Letters,2003,83:165-167.
    [12]WANG Z L. Nanostructures of zinc oxide [J].Materials Today,2004,7:26-33.
    [13]RAO C R, DEEPAK F L, GUNDIAH G, et al. Inorganic nanowires [J].Progress In Solid State Chemistry,2003,31:5-147.
    [14]OHSHIMA E, OGINO H, NIIKURA I, et al. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method [J].Journal of Crystal Growth,2004,260:166-170.
    [15]GOVENDER K, BOYLE DS, KENWAY PB, et al. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution [J].Journal of Materials Chemistry,2004,14:2575-2591.
    [16]LU C H, YEH C H. Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder [J].Ceramics International,2000,26:351-357.
    [17]CHENG B, SAMULSKI E T. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios [J].Chemical Communications,2004,(8):986-987.
    [18]LIANG J B, LIU J W, XIE Q, et al. Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles [J].Journal of Physical Chemistry B,109:9463-9467.
    [19]LIU C H, YIU W C, AU F K, et al. Electrical properties of zinc oxide nanowires and intramolecular p-n junctions [J].Applied Physics Letters,2003,83:3168-3170.
    [20]CHIK H, LIANG J, CLOUTIER S G, et al. Periodic array of uniform ZnO nanorods by second-order self-assembly [J].Applied Physics Letters,2004,84: 3376-3378.
    [21]WANG J G, TIAN M L, KUMAR N, et al. Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition [J].Nano Letters,2005,5:1247-1253.
    [22]BREZESINSKI T, ANTONIETTI M, GROENEWOLT M, et al. The generation of mesostructured crystalline CeOB2B, ZrOB2B and CeOB2B-ZrOB2B films using evaporation-induced self-assembly [J].New Journal of Chemistry,2005,29: 237-242.
    [23]ZHAO N N, PAN D C, NIE W, et al. Two-Phase Synthesis of Shape-Controlled Colloidal Zirconia Nanocrystals and Their Characterization [J].Journal of the American Chemical Society,2006,128: 10118-10124.
    [24]VASYLKIV O, SAKKA Y. Synthesis and colloidal processing of zirconia nanopowder [J].Journal of the American Ceramic Society,2001,84:2489-2494.
    [25]TSUKADA T, VENIGALLA S, MORRONE A A, et al. Low-temperature hydrothermal synthesis of yttrium-doped zirconia powders [J].Journal of the American Ceramic Society,1999,82:1169-1174.
    [26]DONNAY J D H, HARKER D. A New of Crystal Morphology Externding the Law of Bravais [J].American Mineralogist,1937,22:446-467.
    [27]HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals [J].Acta Crystallographica,1955,8:49-52.
    [28]HARTMAN P, CHAN H K. Application of the periodic bond chain (PBC) theory and attachment energy consideration to derive the crystal morphology of hexamethylmelamine [J].Pharmaceutical Research,1993,10:1052-1058.
    [29]LI W J, SHI E W, ZHONG W Z, et al. Growth mechanism and growth habit of oxide crystals [J].Journal of Crystal Growth,1999,203:186-196.
    [30]李汶军,施尔畏,仲维卓,等.负离子配位多面体生长基元的理论模型与晶粒形貌[J].人工晶体学报,1999,28:117-125.
    [31]李汶军,施尔畏,殷之文.配位多面体生长机理模型与晶体的生长习性[J].中国科学(E辑),2001,31:487-495.
    [32]MATIJEVIC E. Preparation and properties of uniform size colloids [J].Chemistry of Materials,1993,5:412-426.
    [33]SUN Y G, YIN Y D, MAYERS B B, et al. Uniform Silver Nanowires Synthesis by Reducing AgNOB3B with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) [J].Chemistry of Materials,2002,14:4736-4745.
    [34]CASWELL K K, BENDER C M, MURPHY C J. Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires [J].Nano Letters,2003,3:667-669.
    [35]BANFIELD J F, WELCH S A, ZHANG H, et al. Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products [J].Science,2000,289:751-754.
    [36]LOU XW, ZENG H C. Complexα-MoO3 Nanostructures with External Bonding Capacity for Self-Assembly [J].Journal of the American Chemical Society,2003,125:2697-2704.
    [37]PENN R L, BANFIELD J F. Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals [J].Science,1998,281:969-971.
    [38]YIN Y D, RIOUX R M, ERDONMEZ C K, et al. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect [J].Science,2004,304:711-714.
    [39]FAN H J, KNEZ M, SCHOLZ R, et al. Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect:The Basic Concept [J].Nano Letters,2007,7(4):993-997.
    [40]LI Y, MENG G W, ZHANG L D, et al. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J].Applied Physics Letters,2000,76:2011-2013.
    [41]HUANG M H, MAO S, FEICK H, et al. Room-temperature ultraviolet nanowire nanolasers [J].Science,2001,292:1897-1899.
    [42]HUANG M H, WU Y Y, FEICK H, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J].Advanced Materials,2001,13:113-116.
    [43]KONG Y C, YU D P, ZHANG B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach [J].Applied Physics Letters,2001,78:407-409.
    [44]YANG P D, YAN H Q, MAO S, et al. Controlled growth of ZnO nanowires and their optical properties [J].Advanced Functional Materials,2002,12:323-331.
    [45]KINDH, YAN H Q, MESSER B, et al. Nanowire ultraviolet photodetectors and optical switches [J].Advanced Materials,2002,14:158-160.
    [46]LEE C J, LEE T J, LYU S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature [J].Applied Physics Letters,2002,81:3648-3650.
    [47]VAYSSIERES L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J].Advanced Materials,2003,15:464-466.
    [48]PARK W I, KIM D H, JUNG S W, et al. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods [J].Applied Physics Letters,2002,80:4232-4234.
    [49]PACHOLSKI C, KORNOWSKI A, WELLER H. Self-assembly of ZnO: From nanodots, to nanorods [J].Angewandte Chemie-International Editon,2002,41:1188-1191.
    [50]WU J J, LIU S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition [J].Advanced Materials,2002,14:215-218.
    [51]GUO L, JI Y L, XU H B, et al. Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure [J].Journal of the American Chemical Society,2002,124:14864-14865.
    [52]LIU B, ZENG H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm [J].Journal of the American Chemical Society,2003,125:4430-4431.
    [53]WANG X D, SUMMERS C J, WANG Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays [J].Nano Letters,2004,4:423-426.
    [54]VAYSSIERES L, KEIS K, HAGFELDT A, et al. Three-dimensional array of highly oriented crystalline ZnO microtubes [J].Chemistry of Materials,2001,13:4395-4398.
    [55]ZHANG J, SUN L D, LIAO C S, et al. A simple route towards tubular ZnO [J].Chemical Communications,2002,(3):262-263.
    [56]XING Y J, XI Z H, XUE Z Q, et al. Optical properties of the ZnO nanotubes synthesized via vapor phase growth [J].Applied Physics Letters,2003,83:1689-1691.
    [57]YU H D, ZHANG Z P, HAN M Y, et al. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays [J].Journal of the American Chemical Society,2005,124:2378-2379.
    [58]WEI A, SUN X W, XU C X, et al. Stable field emission from hydrothermally grown ZnO nanotubes [J].Applied Physics Letters,2006,88:213102.
    [59]LI Y B, BANDO Y, SATO T, et al. ZnO nanobelts grown on Si substrate [J].Applied Physics Letters,2002,81:144-146.
    [60]BAI X D, GAO P X, WANG Z L, et al. Dual-mode mechanical resonance of individual ZnO nanobelts [J].Applied Physics Letters,2003,82:4806-4808.
    [61]DAI Y, ZHANG Y, LI Q K, et al. Synthesis and optical properties of tetrapod-like zinc oxide nanorods [J].Chemical Physics Letters,2002,358:83-86.
    [62]WAN Q, YU K, WANG T H, et al. Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation [J].Applied Physics Letters,2003,83:2253-2255.
    [63]WANG Z, QIAN X F, YIN J, et al. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route [J].Langmuir,2004,20:3441-3448.
    [64]ZHANG H, YANG D, JI Y J, et al. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process [J].Journal of Physical Chemistry B,2004,108:3955-3958.
    [65]ZHANG H, YANG D, MA X Y, et al. Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process [J].Nanotechnology,2004,15:622-626.
    [66]SUN X H, LAM S, SHAM T K, et al. Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: Nanowires, nanoneedles, nanoflowers, and tubular whiskers [J].Journal of Physical Chemistry B,2005,109:3120-3125.
    [67]UMAR A, LEE S, IM Y H, et al. Flower-shaped ZnO nanostructures obtained by cyclic feeding chemical vapour deposition: structural and optical properties [J]. Nanotechnology,2005,16:2462-2468.
    [68]LI F, DING Y, GAO P X, et al. Single-cystal hexagonal disks and rings of ZnO: Low-temperature, large-scale synthesis and growth mechanism [J].Angewandte Chemie-International Editon,2004,43:5238-5242.
    [69]PENG Y, XU A W, DENG B, et al. Polymer-controlled crystallization of zinc oxide hexagonal nanorings and disks [J].Journal of Physical Chemistry B,2006,110:2988-2993.
    [70]HUGHES W L, WANG Z L. Formation of piezoelectric single-crystal nanorings and nanobows [J].Journal of the American Chemical Society,2004,126:6703-6709.
    [71]LAO J Y, HUANG J Y, WANG D Z, et al. ZnO nanobridges and nanonails [J].Nano Letters,2003,3:235-238.
    [72]LIU B, ZENG H C. Fabrication of ZnO "dandelions" via a modified kirkendall process [J].Journal of the American Chemical Society,2004,126:16744-16746.
    [73]SUN X M, LIU J F, LI Y D. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres [J].Chemistry-A European Journal,2006,12:2039-2047.
    [74]GAO P X, WANG Z L. Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals [J].Journal of the American Chemical Society,2003,125:11299-11305.
    [75]HU J Q, BANDO Y, ZHAN J H, et al. Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets [J].Applied Physics Letters,2003,83:4414-4416.
    [76]ZHANG J, SUN L D, YIN J L, et al. Control of ZnO morphology via a simple solution route [J].Chemistry of Materials,2002,14:4172-4177.
    [77]XU C X, SUN X W. Field emission from zinc oxide nanopins [J].Applied Physics Letters,2003,83:3806-3808.
    [78]WANG L N, MUHAMMED M. Synthesis of zinc oxide nanoparticles with controlled morphology [J].Journal of Materials Chemistry,1999,9:2871-2878.
    [79]TANG H, CHANG J C, SHAN Y Y, et al. Surfactant-assisted alignment of ZnO nanocrystals to superstructures [J].Journal of Physical Chemistry B,2008,112:4016-4021.
    [80]YOO S I, SOHN B H, ZIN W C, et al. Self-assembled arrays of zinc oxide nanoparticles from monolayer films of diblock copolymer micelles [J]Chemical Communications,2004,(24):2850-2851.
    [81]LIU J P, HUANG X T, SULIEMAN K M, et al. Solution-based growth and optical properties of self-assembled monocrystalline ZnO ellipsoids [J].Journal of Physical Chemistry B,2006,110:10612-10618.
    [82]PENG Y, XU A W, DENG B, et al. Polymer-controlled crystallization of zinc oxide hexagonal nanorings and disks [J].Journal of Physical Chemistry B,2006,110:2988-2993.
    [83]GAO S Y, ZHANG H J, WANG X M, et al. ZnO-based hollow microspheres: Biopolymer-assisted assemblies from ZnO nanorods [J].Journal of Physical Chemistry B,2006,110:15847-15852.
    [84]LUPAN O, CHOW L, CHAI G, et al. Biopolymer-assisted self-assembly of ZnO nanoarchitectures from nanorods [J].Superlattices and Microstructures,2008,43:292-302.
    [85]MO M S, LIM S H, MAI Y W, et al. In situ self-assembly of thin ZnO nanoplatelets into hierarchical mesocrystal Microtubules with surface grafting of nanorods: A general strategy towards hollow mesocrystal structures [J].Advanced Materials,2008,20:339-342.
    [86]TENNAKONE K, KOTTEGODA I R M, DE SILVA L A A, et al. Possibility of ballistic electron transport in dye-sensitized semiconductor nanocrystalline particle aggregates [J].Semiconductor Science and Technology,1999,14:975-978.
    [87]WANG Z S, HUANG C H, HUANG Y Y, et al. Solar Cell Made from a Dye-Modified ZnO-Covered TiOB2B Nanoporous Electrode [J].Chemistry of Materials,2001,13:678-682.
    [88]CHEN S G, CHAPPEL S, DIAMANT Y, et al. Preparation of NbB2BOB5B Coated TiOB2B Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells [J].Chemistry of Materials,2001,13:4629-4634.
    [89]YANG S, HUANG Y, HUANG C, et al. Enhanced Energy Conversion Efficiency of the SrP2+P-Modified Nanoporous TiOB2B Electrode Sensitized with a Ruthenium Complex [J].Chemistry of Materials,2002,14:1500-1504.
    [90]KAY A, GR?TZEL M. Dye-Sensitized Core-Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide [J].Chemistry of Materials,2002,14:2930-2935.
    [91]CHAPPEL S, CHEN S G, ZABAN A. TiOB2B-Coated Nanoporous SnOB2B Electrodes for Dye-Sensitized Solar Cells [J].Langmuir,2002,18:3336-3342.
    [92]PALOMARES E, CLIFFORD J N, HAQUE S A, et al. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers [J].Journal of the American Chemical Society,2003,125:475-482.
    [93]DIAMANT Y, CHEN S G, MELAMED O, et al. Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core [J].Journal of Physical Chemistry B,2003,107:1977-1981.
    [94]PARK N G, KANG M G, KIM K M, et al. Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn-O Type Shell on SnOB2B and TiOB2B Cores [J].Langmuir,2004,20:4246-4253.
    [95]ZHAO F, GAO Y F, LI W D, et al. Nanocoating Fe2O3 powders with a homogeneous ultrathin ZrO2 shell [J].Journal of the American Chemical Society,2008,116:1164-1166.
    [96]GUO L, YANG S H, YANG C L, et al. Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles [J].Chemistry of Materials,2000,12:2268-2274.
    [97]YANG C L, WANG J N, GE W K, et al. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots [J].Journal of Applied Physics,2001,90:4489-4493.
    [98]HONG R Y, QIAN J Z, CAO J X. Synthesis and characterization of PMMA grafted ZnO nanoparticles [J].Powder Technology,2006,163:160-168.
    [99]GUO L, YANG S H, YANG C L, et al. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties [J].Applied Physics Letters,2000,76:2901-2903.
    [100]HOFER R, TEXTOR M, SPENCER N D. Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces [J].Langmuir,2001,17:4014-4020.
    [101]GRASSET F, SAITO N, LI D, et al. Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane [J].Journal of Alloys and Compounds,2003,360:298-311.
    [102]CARRIERE D, MOREAU M, BARBOUX P, et al. Modification of the surface properties of porous nanometric zirconia particles by covalent grafting [J].Langmuir,2004,20:3449-3455.
    [103]LAO C S, LI Y, WONG C P, et al. Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization [J].Nano Letters,2007,7:1323-1328.
    [104]SHIM M, GUYOT-SIONNEST P. Organic-capped ZnO nanocrystals: Synthesis and n-type character [J].Journal of the American Chemical Society,2001,123:11651-11654.
    [105]WONG E M, HOERTZ P G, LIANG C J, et al. Influence of organic capping ligands on the growth kinetics of ZnO nanoparticles [J].Langmuir,2001,17:8362-8367.
    [1]WU N L, WANG S Y, RUSAKOVA I A. Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides [J].Science,1999,285:1375-1377.
    [2]NATSUME Y, SAKATA H. Zinc oxide films prepared by sol-gel spin-coating [J].Thin Solid Films,2000,372:30-36.
    [3]JOO J, YU T, KIM Y W, et al. Multigrarn scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals [J].Journal of the American Chemical Society,2003,125:6553-6557.
    [4]LEE J H, KO K H, PARK B O. Electrical and optical properties of ZnO transparent conducting films by the sol-gel method [J].Journal of Crystal Growth,2003,247:119-125.
    [5]AHN S E, LEE J S, KIM H, et al. Photoresponse of sol-gel-synthesized ZnO nanorods [J].Applied Physics Letters,2004,84:5022-5024.
    [6]HU M Z C, HUNT R D, PAYZANT E A, et al. Nanocrystallization and phase transformation in monodispersed ultrafine zirconia particles from various homogeneous precipitation methods [J].Journal of the American Ceramic Society,1999,82:2313-2320.
    [7]WANG L N, MUHAMMED M. Synthesis of zinc oxide nanoparticles with controlled morphology [J].Journal of Materials Chemistry,1999,9:2871-2878.
    [8]RODRIGUEZ-PAEZ J E, CABALLERO A C, VILLEGAS M, et al. Controlled precipitation methods: formation mechanism of ZnO nanoparticles [J].Journal of the European Ceramic Society,2001,21:925-930.
    [9]YANG X F, LI W B. Preparation of zirconia nanoparticles in reverse microemulsion [J].Acta Physico-Chimica Sinica,2002,18:5-9.
    [10]ZHANG J, SUN L D, JIANG X C, et al. Shape evolution of one-dimensional single-crystalline ZnO nanostructures in a microemulsion system [J].Crystal Growth and Design,2004,4:309-313.
    [11]INOGUCHI M, SUZUKI K, KAGEYAMA K, et al. Monodispersed and Well-Crystallized Zinc Oxide Nanoparticles Fabricated by Microemulsion Method [J].Journal of the American Ceramic Society,2008,91:3850-3855.
    [12]SOMIYA S, AKIBA T. Hydrothermal zirconia powders: A bibliography [J].Journal of the European Ceramic Society,1999,19:81-87.
    [13]KAYA C, HE J Y, GU X, et al. Nanostructured ceramic powders by hydrothermal synthesis and their applications [J].Microporous and Mesoporous Materials,2002,54:37-49.
    [14]LIU B, ZENG H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm [J].Journal of the American Chemical Society,2003,125:4430-4431.
    [15]ZHANG H, YANG D, JI Y J, et al. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process [J].Journal of Physical Chemistry B,2004,108:3955-3958.
    [16]GE J C, TANG B, ZHOU L H, et al. A rapid hydrothermal route to sisal-like 3D ZnO nanostructures via the assembly of CTA and Zn(OH) : growth mechanism and photoluminescence properties+42?[J].Nanotechnology,2006,17:1316-1322.
    [17]LI L R, WANG W Z, Synthesis and characterization of monoclinic ZrO2 nanorods by a novel and simple precursor thermal decomposition approach [J].Solid State Communications,2003,127:639-643.
    [18]STEFANIC G, GRZETA B, POPOVIC S, et al. In situ phase analysis of the thermal decomposition products of zirconium salts [J].Croatica Chemica Acta,1999,72:395-412.
    [19]YANG Y, CHEN H L, ZHAO B, et al. Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives [J].Journal of Crystal Growth,2004,263:447-453.
    [20]VAN WERDE K, MONDELAERS D, VANHOYLAND G, et al. Thermal decomposition of the ammonium zinc acetate citrate precursor for aqueous chemical solution deposition of ZnO [J].Journal of Materials Science,2002,37:81-88.
    [21]WANG X, ZHUANG J, PENG Q, et al. A general strategy for nanocrystal synthesis [J].Nature,2005,437:121-124.
    [22]ZHAO N N, PAN D C, NIE W, et al. Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization [J].Journalof the American Chemical Society,2006,128:10118-10124.
    [23]LI W J, SHI E W, ZHONG W Z, et al. Growth mechanism and growth habit of oxide crystals [J].Journal of Crystal Growth,1999,203:186-196.
    [24]YE X R, JIA D Z, XIN X Q. Preparation and Characterization of CuO Nanocrystals [J].Journal of Solid State Chemistry,1999,147:516-519.
    [25]ZHONG L S, HU J S, LIANG H P, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment [J].Advanced Materials,2006,18:2426-2431.
    [26]JUNG K T, BELL A T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia [J].Journal of Molecular Catalysis A-Chemical,2000,163:27-42.
    [27]ZHANG Y W, JIA J T, LIAO C S, et al. Synthesis of scandia-stabilized zirconia via thermo-decomposition of precursor complexes [J].Journal of Materials Chemistry,2000,10:2137-2141.
    [28]CHEN S Y, JANG L Y, CHENG S. Synthesis of thermally stable zirconia-based mesoporous materials via a facile post-treatment [J].Journal of Physical Chemistry B,2006,110:11761-11771.
    [29]NAVIO J A, COLóN G, SáNCHEZ-SOTO P J, et al. Effects of H2O2 and SO42- Species on the Crystalline Structure and Surface Properties of ZrO2 Processed by Alkaline Precipitation [J].Chemistry of Materials,1997,9:1256-1261.
    [30]郑燕青,施尔畏,李汶军,等.水热反应条件二氧化锆同质变体的形成[J].中国科学(E辑),2001,31:289-295.
    [31]TANABE K, YAMAGUCHI T. Acid-base bifunctional catalysis by ZrO2 and its mixed oxides [J].Catalysis Today,1994,20:185-197.
    [32]SILVER R G, HOU C J, ECKERDT J G. The role of lattice anion vacancies in the activation of CO and as the catalytic site for methanol synthesis over zirconium dioxide and yttria-doped zirconium dioxide [J].Journal of Catalysis, 1989,118:400-416.
    [33]MORTERRA C, CERRATO G, FERRONI L, et al. Surface characterization of tetragonal ZrO2 [J].Applied Surface Science,1993,65-66:257-264.
    [34]TANI E, YOSHIMURA M. Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions [J].Journal of the American Ceramic Society,1983,66:11-14.
    [35]ADAIR J H, DENKEWICZ R P. Precipitation and in- situ transformation in the hydrothermal synthesis of crystalline zirconium dioxide [J].Ceramic Powder Science,1988,1:135-145.
    [36]DENKEWICZ R P, TENHUISEN K S. Hydrothermal crystallization kinetics of m-ZrO2 and t-ZrO2 [J].Journal of Materials Research,1990,5:2698-2705.
    [1]XU P, WEN X, ZHENG Z, et al. Two-photon optical characteristics of zinc oxide in bulk, low dimensional and nanoforms [J].Journal of Luminescence,2007,126:641-643.
    [2]LU J J, LU Y M, TASI S I, et al. Conductivity enhancement and semiconductor-metal transition in Ti-doped ZnO films [J].Optical Materials,2007,29:1548-1552.
    [3]ZHANG Y Y, MU J. One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites [J].Journal of Colloid and Interface Science,2007,309:478-484.
    [4]GHIMBEU C M, SCHOONMAN J, LUMBRERAS M, et al. Electrostatic spray deposited zinc oxide films for gas sensor applications [J].Applied Surface Science,2007,253:7483-7489.
    [5]LAO J Y, HUANG J Y, WANG D Z, et al. ZnO nanobridges and nanonails [J].Nano Letters,2003,3:235-238.
    [6]GAO P X, WANG Z L. Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals [J].Journal of the American Chemical Society,2003,125:11299-11305.
    [7]ZHANG Y, JIA H B, LUO X H, et al. Synthesis, microstructure, and growth mechanism of dendrite ZnO nanowires [J].Journal of Physical Chemistry B,2003,107:8289-8293.
    [8]ZHANG S C, LI X G. Preparation of ZnO particles by precipitation transformation method and its inherent formation mechanisms [J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2003,226:35-44.
    [9]WANG Z, QIAN X F, YIN J, et al. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route [J].Langmuir,2004,20:3441-3448.
    [10]SHEN G Z, BANDO Y, LEE C J. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process [J].Journal of Physical Chemistry B,2005,109:10578-10583.
    [11]TONG Y H, LIU Y C, DONG L, et al. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique [J].Journal of Physical Chemistry B,2006,110:20263-20267.
    [12]TANG L Q, ZHOU B, TIAN Y M, et al. Preparation and surface modification of uniform ZnO nanorods via a one-step process [J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2007,296:92-96.
    [13]PARK N K, LEE Y J, HAN G B, et al. Synthesis of various zinc oxide nanostructures with zinc acetate and activated carbon by a matrix-assisted method [J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2008,313:66-71.
    [14]TRINDADE T, PEDROSA DE JESUS J D, O’Brien P. Preparation of Zinc Oxide and Zinc Sulfide Powders by Controlled Precipitation from Aqueous Solution [J].Journal of Materials Chemistry,1994,4:1611-1617.
    [15]OLIVEIRA A P A, HOCHEPIED J F, GRILLON F, et al. Controlled precipitation of zinc oxide particles at room temperature [J].Chemistry of Materials,2003,15:3202-3207.
    [16]CHEN J F, HU Y, ZHENG X S. Surfactant-assisted self-assembly growth of single-crystalline ZnO microflowers at low temperature [J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2008,313:576-580.
    [17]LI P, WEI Y, LIU H, et al. Growth of well-defined ZnO microparticles with additives from aqueous solution [J].Journal of Solid State Chemistry,2005,178:855-860.
    [18]XIE R G, LI D S, ZHANG H, et al. Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns [J].Journal of Physical Chemistry B,2006,110:19147-19153.
    [19]SHISHIDO T, YUBUTA K, SATO T, et al. Synthesis of zinc oxide fibers from precursor bis(acetylacetonato) zinc - Tracking the mineralization process and micro- and nano-structural changes [J].Journal of Alloys and Compounds,2007,439:227-231.
    [20]BAN T, SAKAI T, OHYA, Y. Synthesis of zinc oxide crystals with differentshapes from zincate aqueous solutions stabilized with triethanolamine [J].Crystal Research and Technology,2007,42:849-855.
    [21]中本一雄.无机和配位化合物的红外和拉曼光谱(第一版)[M].北京:化学工业出版社,1986.
    [22]LI W J, SHI E W, ZHONG W Z, et al. Growth mechanism and growth habit of oxide crystals [J].Journal of Crystal Growth,1999,203:186-196.
    [23]李汶军,施尔畏,仲维卓,等.负离子配位多面体生长基元的理论模型与晶粒形貌[J].人工晶体学报,1999,28:117-125.
    [24]李汶军,施尔畏,殷之文.配位多面体生长机理模型与晶体的生长习性[J].中国科学(E辑),2001,31:487-495.
    [25]MONTICONE S, TUFEU R, KANAEV A V, Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles [J].The Journal of Physical Chemistry B,1998,102:2854-2862.
    [26]DIJKEN V A, MEULENKAMP E A, VANMAEKELBERGH D, et al. The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission [J].Journal of Luminescence,2000,87:454-456.
    [27]ZHANG D H, WANG Q P, XUE Z Y. Photoluminescence of ZnO films excited with light of different wavelength [J].Applied Surface Science,2003,207:20-25.
    [1]MINNE S C, MANALIS S R, QUATE C F. Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators [J].Applied Physics Letters,1995,67:3918-3920.
    [2]KEIS K, VAYSSIERES L, LINDQUIST S, et al. Nanostructured ZnO electrodes for photovoltaic applications [J].Nanostructured Materials,1999,12:487-490.
    [3]GORLA C R, EMANETOGLU N W, LIANG S, et al. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01(1)over-bar2) sapphire by metalorganic chemical vapor deposition [J].Journal of Applied Physics,1999,85:2595-2602.
    [4]LIU C H, ZAPIEN J A, YAO Y, et al. High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays [J].Advanced Materials,2003,15:838-841.
    [5]CUI J B, DAGHLIAM C P, GIBSON U J, et al. Low temperature growth and field emission of ZnO nanowire arrays [J].Journal of Applied Physics,2005,97:044315.
    [6]HSU H C, WU C Y, HSIEH W F. Stimulated emission and lasing of random-growth oriented ZnO nanowires [J].Journal of Applied Physics,2005,97:064315.
    [7]PAN Z W, WANG Z L. Nanobelts of semiconducting oxides [J].Science,2001,291:1947-1949.
    [8]YAO B D, CHAN Y F, WANG N. Formation of ZnO nanostructures by a simple way of thermal evaporation [J].Applied Physics Letters,2002,81:757-759.
    [9]XU C X, SUN X W. Field emission from zinc oxide nanopins [J].Applied Physics Letters,2003,83:3806-3808.
    [10]PARK J H, CHOI H J, CHOI Y J, et al. Ultrawide ZnO nanosheets [J].Journal of Materials Chemistry,2004,14:35-36.
    [11]DENNIS N. Nanotubes Generate Full-Color Displays [J].Science,1999,286 :2056-2057.
    [12]GAO P X, WANG Z L. Mesoporous Polyhedral Cages and Shells formed byTextured Self-assembly of ZnO Nanocrystals [J].Journal of the American Chemical Society,2003,125:11299-11305.
    [13]WANG Z L, DAI Z R, SUN S. Polyhedral Shapes of Cobalt Nanocrystals and Their Effect on Ordered Nanocrystal Assembly [J].Advanced Materials,2000,12:1944-1946.
    [14]PUNTES V F, ZANCHET D, ERDONMEZ C K, et al. Synthesis of hcp-Co Nanodisks [J].Journal of the American Chemical Society,2002,124:12874-12880.
    [15]DUMESTRE F, CHAUDRET B, AMIENS C, et al. Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)(2)](2) [J].Science,2004,303:821-823.
    [16]PARK J, AN K, HWANG Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals [J].Nature Materials,2004,3:891-895.
    [17]PENN R L, BANFIELD J F. Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals [J].Science,1998,281:969-971.
    [18]GINGER D S, ZHANG H, MIRKIN C A. The Evolution of Dip-Pen Nanolithography [J].Angewandte Chemie International Edition,2003,43:30-45.
    [19]YANG H G, ZENG C H. Self-Construction of Hollow SnO2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites [J].Angewandte Chemie International Edition,2004,43:5930-5933.
    [20]LIU B, ZENG H C. Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors [J].Small,2005,1:566-571.
    [21]Huang J X, Tao A R, Connor S, et al. A general method for assembling single nanoparticle lines [J].Nano Letters,2006,6:524-529.
    [22]DINSMORE A D, HSU M F, NIKOLAIDES M G, et al. Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles [J].Science,2002,298:1006-1009.
    [23]PARK S, LIM J H, CHUANG S W, et al. Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles [J].Scinece,2004,303:348-351.
    [24]KATZ E, WILLNER I. Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications [J].Angewandte Chemie International Edition,2004,43,6042-6108.
    [25]SMITH P A, NORDQUIST C D, JACKSON T N, et al. Electric-field assisted assembly and alignment of metallic nanowires [J].Applied Physics Letters,2000,77:1399-1401.
    [26]PUNTES V F, KRISHNAN K M, ALIVISATOS A P. Colloidal Naonocrystal Shape and Size Control: The Case of Cobalt [J].Science,2001,291:2115-2117.
    [27]LOVE J C, URBACH A R, PRENTISS M G, et al. Three-Dimensional Self-Assembly of Metallic Rods with Submicron Diameters Using Magnetic Interactions [J].Journal of the American Chemical Society,2003,125:12696-12697.
    [28]HUBER D L. Synthesis, properties and application of iron nanoparticles [J].Small,2005,1:482-501.
    [29]GAO J, ZHANG B, ZHANG X, et al. Magnetic-Dipolar-Interaction-Induced Self-Assembly Affords Wires of Hollow Nanocrystals of Cobalt Selenide [J].Angewandte Chemie International Edition,2006,45:1220-1223.
    [30]CHEN H M, LIU R S, LI H L, et al. Generating Isotropic Superparamagnetic Interconnectivity for the Two-Dimensional Organization of Nanostructured Building Blocks [J].Angewandte Chemie International Edition,2006,45:2713-2717.
    [31]MO J C, YU M, ZHANG L, et al. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres [J].Advanced Materials,2005,17:756-760.
    [32]GAO S Y, ZHANG H J , WANG X M, et al. [J].Journal of Physical Chemistry B,2006,110:15847-15852.
    [33]LIU J P, HUANG X T, SULIEMAN K M, et al. Solution-Based Growth and Optical Properties of Self-Assembled Monocrystalline ZnO Ellipsoids [J].Journal of Physical Chemistry B,2006,110:10612-10618.
    [34]BAI P, WU P P, YAN Z F, et al. Self-Assembly of Clewlike ZnO Superstructures in the Presence of Copolymer [J].Journal of Physical Chemistry C,2007,111:9729-9733.
    [35]LAKSHMI B B, PATRISSI C J, MARTINn C R. Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures [J].Chemistry of Materials,1997,9(11):2544-2550.
    [36]XIE R, LI D, ZHANG H, et al. Low-Temperature Growth of Uniform ZnO Particles with Controllable Ellipsoidal Morphologies and Characteristic Luminescence Patterns [J].Journal of Physical Chemistry B,2006,110:19147-19153.
    [37]ANDRéS VERGéS M, MIFSUD A, SERNA C J. Formation of rod-like zinc oxide microcrystals in homogeneous solutions [J].Journal of the Chemical Society, Faraday Transactions,1990,86:959-963.
    [38]MCBRIDE R A, KELLY J M, MCCORMACK D E. Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts [J].Journal of Materials Chemistry,2003,13:1196-1201.
    [39]LI W J, SHI E W, ZHONG W Z, et al. Growth mechanism and growth habit of oxide crystal [J].Journal of Crystal Growth,1999,203:186-196.
    [40]TRINDADE T, PEDROSA DE JESUS J D, O’BRIEN P. Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution [J].Journal of Materials Chemistry,1994,4:1611-1617.
    [41]JIANG H, HU J, GU F, et al. ZnO-Based Hollow Microspheres: Biopolymer-Assisted Assemblies from ZnO Nanorods Large-Scaled, Uniform, Monodispersed ZnO Colloidal Microspheres [J].Journal of Physical Chemistry C,2008,112(32):12138-12141.
    [42]WYMAN J L, KIZILEL S, SKARBEK R, et al. Immunoisolating Pancreatic Islets by Encapsulation with Selective Withdrawal [J].Small,2007,3:683-690.
    [1]WEIDINGER A, GIL J M, ALBERTO H V, et al. Shallow donor versus deep acceptor state in II-VI semiconductor compounds [J].Physica B-Condensed Matter,2003,326:124-127.
    [2]MOCHINAGA R, YAMASAKI T, ARAKAWA T. The gas-sensing of SmCoOX/MOX (M=Fe, Zn, In, Sn) having a heterojunction [J].Sensors and Actuators B: Chemical,1998,52:96-99.
    [3]SINHA A, SHARMA B P. Novel route for preparation of high voltage varistor powder [J].Materials Research Bulletin,1997,32:1571-1579.
    [4]GAL D, HODES G, LINCOT D, et al. Electrochemical deposition of zinc oxide films from non-aqueous solution: a new buffer/window process for thin film solar cells [J].Thin Solid Films, 2000,361:79-83.
    [5]HARA K, HORIGUCHI T, KINOSHITA T, et al. Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells [J].Solar Energy Materials and Solar Cells,2000,64:115-134.
    [6]PAUPORTE T, LINCOT D. Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide [J].Electrochimica Acta,2000,45:3345-3353.
    [7]PINEDA M, PALACIOS J M, ALONSO L, et al. Performance of zinc oxide based sorbents for hot coal gas desulfurization in multicycle tests in a fixed-bed reactor [J].Fuel,2000,79:885-895.
    [8]JIN B J, IM S, LEE S Y. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition [J].Thin Solid Films,2000,366:107-110.
    [9]LIM J M, SHIN K C, KIM H W, et al. Photoluminescence Studies of ZnO thin films grown by atomic layer epitaxy [J].Journal of Luminescence,2004,109:181-185.
    [10]MITCHNICK M A, FAIRHURST D, PINNELL S R. Microfine zinc oxide (Z-Cote) as a photostable UVA/UVB sunblock agent [J].Journal of the AmericanAcademy of Dermatology,1999,40:85-90.
    [11]ZHOU Z W, CHU L S, TANG W M, et al. Studies on the antistatic mechanism of tetrapod-shaped zinc oxide whisker [J].Journal of Electrostatics,2003,57:347-354.
    [12]SHIM J W, KIM J W, HAN SH, et al. Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study [J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2002,207:105-111.
    [13]GRASSET F, SAITO N, LI D, et al. Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane [J].Journal of Alloys and Compounds,2003,360:298-311.
    [14]HONG R Y, PAN T T, QIAN J Z, et al. Synthesis and surface modification of ZnO nanoparticles [J].Chemical Engineering Journal,2006,119:71-81.
    [15]WU Y L, TOK A I Y, BOEY F Y C, et al. Surface modification of ZnO nanocrystals [J].Applied Surface Science,2007,253:5473-5479.
    [16]LI Y, CAI W P, DUAN G T, et al. Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method [J].Journal of Colloid and Interface Science,2005,287:634-639.
    [17]HUANG M H, MAO S, FEICK H, et al. Room-temperature ultraviolet nanowire nanolasers [J].Science,2001,292:1897-1899.
    [18]ZHANG S C, LI X G. Preparation of ZnO particles by precipitation transformation method and its inherent formation mechanisms [J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2003,226:35-44.
    [19]ZHANG H, YANG D, JI Y J, et al. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process [J].Journal of Physical Chemistry B,2004,108:3955-3958.
    [20]BAHNEMANN D W, KORMANN C, HOFFMANN M R. Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study [J].The Journal of Physica l Chemistry,1987,91:3789-3798.
    [21]DEGEN A, KOSEC M. Effect of pH and impurities on the surface charge ofzinc oxide in aqueous solution [J].Journal of the European Ceramic Society,2000,20:667-673.
    [22]ALIMENTI G A, GSCHAIDER M E, BAZAN J C, et al. Theoretical and experimental study of the interaction of O-2 and H2O with metallic zinc - discussion of the initial step of oxide formation [J].Journal of Colloid and Interface Science,2004,276:24-38.
    [23]KUO S, MIKKELSEN D S. Effect of magnesium on phosphate adsorption by calcium carbonate [J].Soil Science Society of America Journal,1979,127:65-69.
    [24]SHENG Y, ZHOU B, ZHAO J Z, et al. Influence of octadecyl dihydrogen phosphate on the formation of active super-fine calcium carbonate [J].Journal of Colloid and Interface Science,2004,272:326-329.
    [1]NEL A, XIA T, MADLER L, et al. Toxic potential of materials at the nanolevel [J].Science,2006,311:622-627.
    [2]HUANG X H, EL-SAYED I H, QIAN W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J].Journal of the American Chemical Society,2006,128:2115-2120.
    [3]ASTRUC D, LU F, ARANZAES J R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis [J].Angewandte Chemie-International Edition,2005,44,7852-7872.
    [4]MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J].Progress in Materials Science,2006,51:427-556.
    [5]SHEVCHENKO E V, TALAPIN D V, KOTOV N A, et al. Structural diversity in binary nanoparticle superlattices [J].Nature,2006,439:55-59.
    [6]ALIVISATOS A P, GU W W, LARABELL C. Quantum dots as cellular probes [J].Annual Review of Biomedical Engineering,2005,7:55-76.
    [7]NOGUES J, SORT J, LANGLAIS V, et al. Exchange bias in nanostructures [J].Physics Reports-Review Section of Physics Letters,2005,422:65-117.
    [8]LU A H, SALABAS E L, SCHUTH F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application [J].Angewandte Chemie-International Edition,2007,46:1222-1244.
    [9]ALEXANDRE M, DUBOIS P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials [J].Materials Science and Engineering R-Reports,2000,28:1-63.
    [10]WAGNER H D, LOURIE O, FELDMAN Y, et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix [J].Applied Physics Letters,1998,72:188-190.
    [11]CURRAN S A, AJAYAN P M, BLAU W J, et al. A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics [J].Advanced Materials,1998,10:1091-1093. 144
    [12]NGUYEN T Q, WU J J, DOAN V, et al. Control of energy transfer in oriented conjugated polymer-mesoporous silica composites [J].Science,2000,288:652-656.
    [13]GANGOPADHYAY R, DE A. Conducting polymer nanocomposites: A brief overview [J].Chemistry of Materials,2000,12:608-622.
    [14]PYUN J, MATYJASZEWSKI K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled"living" radical polymerization [J].Chemistry of Materials,2001,13:3436-3448.
    [15]CARUSO F, SPASOVA M, SUSHA A, et al. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach [J].Chemistry of Materials,2001,13:109-116.
    [16]CARUSO R A, SUSHA A, CARUSO F. Multilayered titania, silica, and Laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres [J].Chemistry of Materials,2001,13:400-409.
    [17]BARRAZA H J, POMPEO F, O'REAR E A, et al. SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization [J].Nano Letters,2002,2:797-802.
    [18]ZHOU Z W, CHU L S, TANG W M, et al. Studies on the antistatic mechanism of tetrapod-shaped zinc oxide whisker [J].Journal of Electrostatics,2003,57:347-354.
    [19]CHEN K, XIONG C X, LI L B, et al. Conductive Mechanism of Antistatic Poly(ethylene terephthalate)/ZnOw Composites [J].Polymer Composites,2009,30:226-231.
    [20]GUO L, YANG S H, YANG C L, et al. Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles [J].Chemistry of Materials,2000,12:2268-2274.
    [21]YANG C L, WANG J N, GE W K, et al. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots [J].Journal of Applied Physics,2001,90:4489-4493.
    [22]NORBERG N S, GAMELIN D R. Influence of surface modification on theluminescence of colloidal ZnO nanocrystals [J].Journal of Physical Chemistry B,2005,109:20810-20816.
    [23]GRASSET F, SAITO N, LI D, et al. Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane [J].Journal of Alloys and Compounds,2003,360:298-311.
    [24]WU Y L, TOK A I Y, BOEY F Y C, et al. Surface modification of ZnO nanocrystals [J].Applied Surface Science,2007,253:5473-5479.
    [25]ALBERS J, KLOPPERPIEPER A, ROTHER H J, et al. Antiferroelectricity in Betaine Phosphate [J].Physica Status Solidi A-Applied Research,1982,74:553-557.
    [26]SCHILDKAMP W, SPILKER J. Structural and Antiferroelectric Phase-Transitions in Betaine Phosphate, (CH3)3NCH2COO.H3PO4 [J].Zeitschrift Fur Kristallographine,1984,168:159-171.
    [27]MAEDA M, Elastic Anomalies in Antiferroelectric Betaine Phosphate [J].Journal of the Physical Society of Japan,1988,57:3059-3063.
    [28]HUTTON S L, FEHST I, BOHMER R, et al. Proton Glass Behavior and Hopping Conductivity in Solid-Solutions of Antiferroeltctric Betaine Phosphate and Ferroelectric Betaine Phosphite [J].Physical Review Letters,1991,66:1990-1993.
    [29]PIKOVSKAYA O G, DERBENEVA T E, PANOVA L N, et al. Polyethylene glycol phosphate-An antistatic agent for man-made fibres [J].Fibre Chemistry,1983,15:14-15.
    [30]刘红,李国威,魏少华.磷酸酯甜菜碱表面活性剂的研究[J].科技进展,1998,12:19-21.
    [31]DONNAY J D H, HARKER D. A New of Crystal Morphology Externding the Law of Bravais [J].American Mineralogist,1937,22:446-467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700