Survivin、Bax基因与人晶状体上皮细胞增殖凋亡的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     后发性白内障又称晶状体后囊膜混浊(posterior capsule opacification,PCO),是目前白内障术后导致视力下降的最主要并发症。研究指出PCO的发生率从5%至50%不等;儿童白内障患者若术中保留后囊膜,PCO的发生率几乎100%。
     激光后囊膜切开术是目前治疗PCO的主要方法,但该方法有可能引起其他并发症,如视网膜脱离、黄斑囊样水肿、继发性青光眼、人工晶状体(intraocular lens,IOL)激光损伤及IOL移位等。对于儿童,由于其无法配合,这一方法也难以适用。而现有的其他预防PCO发生方法,如白内障手术技术改进、IOL设计,以及各种抗增殖药物的应用,虽然在一定程度上降低了PCO的发生率,但都没有从根本上解决这一问题。因此,探索新的PCO防治途径具有重要意义。
     近年来研究表明PCO形成的病理过程主要为白内障术后赤道部的晶状体上皮细胞(lens epithelial cells,LECs)过度增殖并移行至晶状体后囊膜,其中大量细胞发生上皮-间质转化(epithelial-mesenchymal transition,EMT)并分化为成纤维细胞。而白内障术后房水中细胞因子如转化生长因子β(transforming growthfactorβ,TGF-β)、成纤维生长因子(fibroblast growth factor,FGF)等浓度改变是造成LECs的增殖,移行,分化的重要因素。
     目前PCO基因治疗的研究主要集中于自杀基因、细胞周期调控基因和细胞因子相关基因。这些方法为PCO的治疗提供了新思路,但仍存在一些缺陷。而本研究拟通过进行有关凋亡基因的转导来实现对LECs增殖的抑制。细胞凋亡(apoptosis)又称程序性细胞死亡(programmed cell death,PCD),是受基因调控的细胞主动自杀过程。Bax/Bcl-2以及Survivin是细胞凋亡通路上的重要调控基因,TGF-β与FGF信号通路中也可以观察到上述基因表达的改变。研究表明抑制Bcl-2、Survivin基因或者增强Bax基因表达均可有效抑制肿瘤细胞的生长,明显增强放疗或化疗对肿瘤细胞的杀伤作用。
     本研究首先对TGF-β与FGF作用下体外培养的人晶状体上皮细胞(humanlens epithelial cells,HLECs)的增殖情况进行观察,检测Bax、Bcl2、Survivin基因表达的变化;并通过脂质体Bax基因转染以及siRNA技术沉默Survivin表达,从而诱导对HLECs细胞的凋亡,比较不同方法对HLECs凋亡的作用,为基因治疗PCO提供新思路。
     第一部分Survivin、Bax与生长因子诱导下人晶状体上皮细胞增殖凋亡的关系
     目的比较TGF-β与FGF作用下HLECs增殖过程中Survivin与Bcl-2/Bax基因的表达变化。
     方法体外培养HLECs系SRA01/04,并分别加入不同浓度的TGF-β与FGF。通过相差显微镜观察HLECs的增殖情况,同时采用CCK-8方法检测细胞增殖率。应用Western Blot与RT-PCR技术检测HLECs中Bcl-2、Bax、Survivin基因的表达情况。
     结果随着浓度的增加,TGF-β能抑制HLECs的增殖,而FGF能够促进HLECs的增殖,且TGF-β对HLECs的抑制作用能被FGF所阻断。TGF-β作用下Survivin与Bcl-2基因表达下调,Bax基因表达上调。而FGF作用下,可检测到Survivin与Bcl-2的表达上调,Bax表达下调。
     结论在细胞因子促进或抑制晶状体上皮细胞增殖过程中,细胞内凋亡调控因子如Bcl-2,Bax,Survivin表达水平也发生变化,参与细胞增殖的调控。
     第二部分Bax基因转染人晶状体上皮细胞诱导凋亡
     目的观察EGFP-N1-Bax质粒转染后HLECs,Bax基因的表达情况及其对细胞凋亡的影响。
     方法对体外培养的HLECs采用脂质体技术对进行Bax基因转染。在转染后48小时,采用相差显微镜与流式细胞仪观察Bax基因转染情况。以RT-PCR的方法检测Bax基因mRNA表达,Western Blot法检测Bax基因蛋白表达蛋白的表达。流式细胞仪联合Annexin V染色法检测转染成功的HLECs的凋亡情况。
     结果采用流式细胞仪检测的EGFP-N1-Bax的转染效率为45.47±1.30%。转染后48hr,EGFP-N1-Bax组细胞Bax蛋白与mRNA的表达量较对照组均表达上升,流式细胞仪检测细胞凋亡率为23.98±1.88%。转染后细胞内survivin基因表达下调,而Bcl-2 mRNA表达也发生下调。
     结论EGFP-N1-Bax质粒转染HLECs后成功表达Bax基因,诱导细胞凋亡。细胞内Bcl-2/Bax比值,Survivin表达也发生相应变化。
     第三部分Survivin siRNA转染对人晶状体上皮细胞凋亡的影响
     目的通过siRNA转染抑制Survivin基因表达,诱导HLECs凋亡;并联合EGFP-N1-Bax质粒转染诱导细胞凋亡。
     方法经脂质体法将siRNA转染至HLECs。转染后48小时,采用相差显微镜与流式细胞仪观察siRNA转染情况。并分别以Western Blot、RT-PCR方法检测三对Survivin siRNA对HLECs中Survivin基因蛋白表达、mRNA表达的影响。流式细胞仪联合Annexin V染色法检测转染成功的HLECs的凋亡效率。选择诱导凋亡效率最好的一对Survivin siRNA联合EGFP-N1-Bax共转染HLECs,采用同样方法观察细胞凋亡情况。
     结果采用流式细胞仪检测siRNA转染HLECs的效率为56.58±2.67%。转染后48小时,Survivin siRNA-51组细胞的Survivin蛋白与mRNA的表达量较其余各组明显下调。流式细胞仪联合Annexin V方法检测显示该组细胞凋亡率为24.49±2.42%。联合EGFP-N1-Bax共转染HLECs后,细胞内Bax表达上调,Survivin与Bcl-2表达下调。HLECs凋亡率为33.28±2.69%。
     结论通过RNA干扰方法抑制Survivin mRNA表达翻译可成功诱导HLECs发生凋亡。联合EGFP-N1-Bax共转染HLECs可以明显提高凋亡效率。
     全文小结
     1.FGF与TGF-β调控HLECs细胞增殖过程中,凋亡相关蛋白Bax、Survivin也参与其中,各自表达都发生一定变化。
     2.EGFP-N1-Bax质粒转染HLECs后可上调Bax表达,下调Bcl-2/Bax比值与Survivin表达并诱导细胞凋亡。
     3.RNA干扰技术可成功下调HLECs内Survivin表达,诱导细胞凋亡。
     4.Survivin siRNA联合EGFP-N1-Bax共转染HLECs可以明显提高凋亡效率
Preface
     Posterior capsule opacification(PCO) is a common complication of cataract surgery,which incidence is approximately 50%in adults and 100%in children.PCO develops in a significant proportion of patients to such an extant that a secondary vision loss,which consequently requires further corrective laser surgery.The proliferation,migration and abnormal differentiation of residual lens epithelial cells (LECs) and fiber cells in the capsular bag have been implicated in the pathogenesis of PCO.Growth factors such as TGF-beta(TGFβ) and FGF appear to play a key role in this process.
     At present PCO is treated by YAG capsulotomy,which carries a some risk of sight threatening complications such as cystoid macular edema or retinal detachment Several attempts have been made to find an appropriate therapeutic concept to significantly lower the rate of PCO,which include mechanical strategies by striving to remove all LECs during surgery,certain IOL materials and sharp-edged IOL designs. Different pharmacological studies have been conducted in vitro and in vivo,using immunotoxins,cytotoxins,and antimetabolic agents.Such approaches have shown promising results regarding the reduction of the PCO rate,but are limited in clinical application by the possible side effects affecting the surrounding normal structures inside the eye.Therefore,the development of an alternative therapy for preventing PCO is of critical importance.
     Apoptosis is the physiological,energy-dependent form of cell death.It is,in contrast to necrosis,controlled and,under certain conditions,even initiated by the cell itself.Apoptosis causes no inflammatory side effects.The programmed cell death is initiated either extracellularly by death ligands binding specifically to death receptors or cellular stress factors such as ionizing radiation,heat or hypoxia,thereby initiating an intracellular signalling cascade leading finally to the death of the cell.
     The IAPs(inhibitor of apoptosis proteins) and the Bcl-2 families are among the most important regulators of the cell suicide process.Bcl-2 and Bax are,respectively, anti-apoptotic and pro-apoptotic proteins of the Bcl-2 family mainly involved in the regulation of the intrinsic apoptosis pathway.And Survivin is a recently identified member of the IAPs,with an intriguing bifunctional role:it facilitates cell cycle progression while counteracting a large variety of stimuli involved both in the extrinsic and in the intrinsic apoptotic pathways.
     Research on apoptosis,its intracellular signalling cascade has made apoptosis a central issue in the development of anti-proliferative chemotherapies.In turn,this information could provide new opportunities and targets for therapies to prevent PCO. In this study we focused on LECs proliferation inhibition strategy,reducing PCO by means of inducing Bax gene overexpression and silencing Survivin gene expression, characterizing the pathway of apoptosis in LECs.
     PartⅠSurvivin and Bax gene expressions in LECs by FGF or TGF-βstimuli
     Purpose To investigate the impact of FGF or TGF-βstimuli on Survivin and Bax gene expressions.
     Method Human Lens cell line(SRA01/04) was cultured in vitro and treated with different concentrations of TGF-βor FGF respectively.LECs proliferation was monitored by phase contrast microscopy,and determined using CCK-8 regent.Protein expressions of Survivin,Bcl-2 and Bax were observed by western blot analysis.And mRNA expressions of target gene were investigated by means of RT-PCR using specific primers.
     Results It was found that LEC proliferation was suppressed when exposed to the increasing concentration of TGF-β,whereas FGF enhanced proliferation. Proliferation suppression by TGF-βwas blocked by FGF.TGF-βcaused a significant down-regulated in expression of Survivin and Bcl-2,while increased Bax expression. FGF could up-regulate Survivin and Bcl-2 protein and mRNA expression while reduce Bax expression.
     Conclusion Growth factor TGF-βor FGF regulated the proliferation of LECs.Survivin,Bcl-2 and Bax,the members of the apoptosis regulatory gene,might play a role in these processes.The findings suggest that these genes are good candidates for blocking proliferation of LEC.
     PartⅡBax gene overexpression to induce LECs apoptosis
     Purpose To investigate the influence of Bax overexpression on the apoptosis of LECs.
     Methods The plasmid EGFP-N1-Bax,EGFP-N1 were transferred to LECs using lipofectamine 2000.48 hours after transfection,Bax gene mRNA expression was measured using RT-PCR and protein expression was determined by western blot analysis.The expression level of Bcl2 and Survivin gene was also examined using the same techniques.Flow cytometry was used to evaluate Bax transfection and the effect of Bax on apoptosis.
     Results EGFP-N1-Bax transfection rate was 45.47±1.30%evaluated by cytometry.48 hours after Bax gene transfection,LECs exhibited a significant increase in the expression level of Bax gene mRNA and protein,compared to cells transferred with plasmid EGFP-N1.The apoptosis rate in EGFP-N1-Bax group was approximately 23.98±1.88%.The Bax transfection group also showed a significant decrease in the mRNA expression of Survivin and Bcl-2.
     Conclusion After treatment with plasmid EGFP-N1-Bax,expression of Bax gene was greatly enhanced.Overexpression of Bax gene could trigger the apoptosis of LECs.
     PartⅢInducing apoptosis of LECs by Silencing Survivin gene expression
     Purpose To investigate the role of silencing Survivin gene expression in apoptosis pathway and the response of LECs death induced by silencing Survivin and over expressing Bax.
     Methods Survivin siRNA was introduced into LECs using lipofectamine alone and combining with EGFP-N1-GFP.The transfection rates and apoptosis rates were assayed by flow cytometry.The change of mRNA and protein of the Survivin gene and Bax/Bcl-2 gene were detected by RT-PCR and Western blot,respectively.
     Results Survivin siRNA transfection rate was 56.58±2.67%evaluated by cytometry. LECs showed a significant apoptosis by 24.49±2.42%,33.28±2.69%when they transferred with Survivin siRNA,and combining with EGFP-N1-Bax.The Survivin mRNA and protein were knocked down in LECs.Combined with Bax transfection, the cell presented a decrease in apoptosis index Bcl-2/Bax and Survivin expression.
     Conclusion Small interfering RNA can exert a knockdown of Survivin gene expression in LECs,and induce apoptosis significantly.Combined with Bax transfection could enhanc cell apoptosis.
     Summary
     1.Survivin,Bcl-2 and Bax,the members of the apoptosis regulatory gene,might play a role in the process of LEC proliferation mediated by growth factor(FGF and TGF-β).
     2.Overexpression of Bax gene by transfection EGFP-N1-Bax could trigger the apoptosis of LEC.
     3.Small interfering RNA could exert a knockdown of Survivin gene expression in LECs,and effectively induce apoptosis.
     4.Combined Survivin gene inhibition with Bax overexpression may enhance LEC apoptosis.
引文
1. Schaumberg, D.A., et al. A systematic overview of the incidence of posterior capsule opacification[J]. Ophthalmology, 1998,105:1213-1221.
    2. Moisseiev, J., et al. Long-term study of the prevalence of capsular opacification following extracapsular cataract extraction[J]. J Cataract Refract Surg, 1989,15:531-533.
    3. Schmidbauer, J.M., et al. Evaluation of neodymium:yttrium-aluminum-garnet capsulotomies in eyes implanted with AcrySof intraocular lenses[J]. Ophthalmology, 2002, 109:1421-1426.
    4. Thompson, A.M., et al. The Auckland Cataract Study: 2 year postoperative assessment of aspects of clinical, visual, corneal topographic and satisfaction outcomes[J]. Br J Ophthalmol, 2004, 88:1042-1048.
    5. Koch, D .D. and T. Kohnen. Retrospective comparison of techniques to prevent secondary cataract formation after posterior chamber intraocular lens implantation in infants and children[J]. J Cataract Refract Surg, 1997, 23 Suppl 1:657-663.
    6. Malecaze, F., et al. Adenovirus-mediated suicide gene transduction: feasibility in lens epithelium and in prevention of posterior capsule opacification in rabbits[J]. Hum Gene Ther, 1999,10:2365-2372.
    7. Wormstone, I.M. Posterior capsule opacification: a cell biological perspective[J]. Exp Eye Res, 2002, 74:337-347.
    8. Ellis, R.E., J.Y. Yuan, and H.R. Horvitz. Mechanisms and functions of cell death[J]. Annu Rev Cell Biol, 1991, 7:663-698.
    9. Kroemer, G., N. Zamzami, and S.A. Susin. Mitochondrial control of apoptosis[J]. Immunol Today, 1997, 18:44-51.
    10. Pirocanac, E.C., et al. Bax-induction gene therapy of pancreatic cancer[J]. J Surg Res, 2002, 106:346-351.
    11. Li, X., et al. Adenovirus-mediated Bax overexpression for the induction of therapeutic apoptosis in prostate cancer[J]. Cancer Res, 2001,61:186-191.
    12. Kaliberov, S.A., et al. Adenovirus-mediated transfer of BAX driven by the vascular endothelial growth factor promoter induces apoptosis in lung cancer cells[J]. Mol Ther, 2002,6:190-198.
    13. Croci, D.O., et al. Silencing survivin gene expression promotes apoptosis of human breast cancer cells through a caspase-independent pathway[J]. J Cell Biochem, 2008, 105:381-390.
    14. Francis, P.J., et al. Lens biology: development and human cataractogenesis[J]. Trends Genet, 1999, 15:191-196.
    15. Taylor, H.R. Cataract: how much surgery do we have to do?[J]. Br J Ophthalmol, 2000, 84:1-2.
    16. Meacock, W.R., et al. The effect of posterior capsule opacification on visual function[J]. Invest Ophthalmol Vis Sci, 2003,44:4665-4669.
    17. Kurosaka, D. and T. Nagamoto. Inhibitory effect of TGF-beta 2 in human aqueous humor on bovine lens epithelial cell proliferation[J]. Invest Ophthalmol Vis Sci, 1994, 35:3408-3412.
    18. Saika, S., et al. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury[J]. Am J Pathol, 2004, 164:651-663.
    19. Wormstone, I.M., et al. TGF-beta2-induced matrix modification and cell transdifferentiation in the human lens capsular bag[J]. Invest Ophthalmol Vis Sci, 2002, 43:2301-2308.
    20. Meacock, W.R., D.J. Spalton, and M.R. Stanford. Role of cytokines in the pathogenesis of posterior capsule opacification[J]. Br J Ophthalmol, 2000, 84:332-336.
    21. Lee, E.H. and C.K. Joo. Role of transforming growth factor-beta in transdifferentiation and fibrosis of lens epithelial cells[J]. Invest Ophthalmol Vis Sci, 1999,40:2025-2032.
    22. Nishi, O., et al. Effects of the cytokines on the proliferation of and collagen synthesis by human cataract lens epithelial cells[J]. Br J Ophthalmol, 1996, 80:63-68.
    23. Wormstone, I.M., et al. FGF: an autocrine regulator of human lens cell growth independent of added stimuli[J]. Invest Ophthalmol Vis Sci, 2001, 42:1305-1311.
    24. Wallentin, N., K. Wickstrom, and C. Lundberg. Effect of cataract surgery on aqueous TGF-beta and lens epithelial cell proliferation[J]. Invest Ophthalmol Vis Sci, 1998, 39:1410-1418.
    25. Gross, A., J.M. McDonnell, and S.J. Korsmeyer. BCL-2 family members and the mitochondria in apoptosis[J]. Genes Dev, 1999, 13:1899-1911.
    26. Antonsson, B. and J.C. Martinou. The Bcl-2 protein family[J]. Exp Cell Res, 2000, 256:50-57.
    27. Tsujimoto, Y. and S. Shimizu. Bcl-2 family: life-or-death switch[J]. FEBS Lett, 2000, 466:6-10.
    28. Wolter, K.G., et al. Movement of Bax from the cytosol to mitochondria during apoptosis[J]. J Cell Biol, 1997, 139:1281-1292.
    29. Nomura, M., et al. Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2[J]. Cancer Res, 1999, 59:5542-5548.
    30. Eskes, R., et al. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane[J]. Mol Cell Biol, 2000, 20:929-935.
    31. Shima, Y., et al. Activation of caspase-8 in transforming growth factor-beta-induced apoptosis of human hepatoma cells[J]. Hepatology, 1999, 30:1215-1222.
    32. Saltzman, A., et al. Transforming growth factor-beta-mediated apoptosis in the Ramos B-lymphoma cell line is accompanied by caspase activation and Bcl-XL downregulation[J]. Exp Cell Res, 1998, 242:244-254.
    33. Motyl, T., et al. Expression of bcl-2 and bax in TGF-beta 1-induced apoptosis of L1210 leukemic cells[J]. Eur J Cell Biol, 1998, 75:367-374.
    34. Motyl, T., et al. Expression and subcellular redistribution of Bax during TGF-beta 1-induced programmed cell death of HC11 mouse mammary epithelial cells[J]. Cell Mol Biol (Noisy-le-grand), 2000, 46:175-185.
    35. Ahmed, M.M., et al. Restoration of transforming growth factor-beta signaling enhances radiosensitivity by altering the Bcl-2/Bax ratio in the p53 mutant pancreatic cancer cell line MIA PaCa-2[J]. J Biol Chem, 2002, 277:2234-2246.
    36. Lee, J.H., et al. TGF-beta-induced apoptosis and reduction of Bcl-2 in human lens epithelial cells in vitro[J]. Curr Eye Res, 2002, 25:147-153.
    37. Lin, P.H., et al. Overexpression of Bax sensitizes prostate cancer cells to TGF-beta induced apoptosis[J]. Cell Res, 2005,15:160-166.
    38. Deveraux, Q.L. and J.C. Reed. IAP family proteins-suppressors of apoptosis[J]. Genes Dev, 1999, 13:239-252.
    39. Ambrosini, G., C. Adida, and D.C. Altieri. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma[J]. Nat Med, 1997, 3:917-921.
    40. Tamm, I., et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs[J]. Cancer Res, 1998, 58:5315-5320.
    41. Yang, D., A. Welm, and J.M. Bishop. Cell division and cell survival in the absence of survivin[J]. Proc Natl Acad Sci U S A,2004,101:15100-15105.
    42. Lu, Y.H., X.G. Luo, and X. Tao. Survivin gene RNA interference induces apoptosis in human HL60 leukemia cell lines[J]. Cancer Biother Radiopharm, 2007,22:819-825.
    43. Saika, S., et al. Lens epithelial cell death after cataract surgery[J]. J Cataract Refract Surg, 2002,28:1452-1456.
    44. McAvoy, J.W. and C.G. Chamberlain. Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration[J]. Development, 1989, 107:221-228.
    45. Mansfield, K.J., A. Cerra, and C.G. Chamberlain. FGF-2 counteracts loss of TGFbeta affected cells from rat lens explants: implications for PCO (after cataract)[J]. Mol Vis, 2004, 10:521-532.
    46. Ueda, Y., et al. Inhibition of FGF-induced alphaA-crystallin promoter activity in lens epithelial explants by TGFbeta[J]. Invest Ophthalmol Vis Sci, 2000,41:1833-1839.
    47. Kato, K., D. Kurosaka, and T. Nagamoto. Apoptotic cell death in rabbit lens after lens extraction[J]. Invest Ophthalmol Vis Sci, 1997,38:2322-2330.
    48. Ishizaki, Y., et al. Control of lens epithelial cell survival[J]. J Cell Biol, 1993, 121:899-908.
    49. McDonnell, P.J., A. Patel, and W.R. Green. Comparison of intracapsular and extracapsular cataract surgery. Histopathologic study of eyes obtained postmortem[J]. Ophthalmology, 1985,92:1208-1225.
    50. Wormstone, I.M., et al. Human lens epithelial cell proliferation in a protein-free medium[J]. Invest Ophthalmol Vis Sci, 1997, 38:396-404.
    51. Chamberlain, C.G. and J.W. McAvoy. Evidence that fibroblast growth factor promotes lens fibre differentiation[J]. Curr Eye Res, 1987,6:1165-1169.
    52. Adams, J.M. and S. Cory. The Bcl-2 protein family: arbiters of cell survival[J]. Science, 1998,281:1322-1326.
    53. Pardo, O.E., et al. Fibroblast growth factor-2 induces translational regulation of Bcl-XL and Bcl-2 via a MEK-dependent pathway: correlation with resistance to etoposide-induced apoptosis[J]. J Biol Chem, 2002, 277:12040-12046.
    54. del Peso, L., et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt[J]. Science, 1997,278:687-689.
    55. Tang, Y., et al. The Akt proto-oncogene links Ras to Pak and cell survival signals[J]. J Biol Chem, 2000, 275:9106-9109.
    56. Xiao, D., et al. Inhibition of fibroblast growth factor 2-induced apoptosis involves survivin expression, protein kinase C alpha activation and subcellular translocation of Smac in human small cell lung cancer cells[J]. Acta Biochim Biophys Sin (Shanghai), 2008,40:297-303.
    57. Karsan, A., et al. Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms[J]. Am J Pathol, 1997, 151:1775-1784.
    58. Teh, S.H., et al. COX inhibitors modulate bFGF-induced cell survival in MCF-7 breast cancer cells[J]. J Cell Biochem, 2004, 91:796-807.
    59. O'Connor, D.S., et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells[J]. Am J Pathol, 2000, 156:393-398.
    60. Tran, J., et al. A role for survivin in chemoresistance of endothelial cells mediated by VEGF[J]. Proc Natl Acad Sci U S A, 2002, 99:4349-4354.
    61. Adida, C., et al. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation[J]. Am J Pathol, 1998, 152:43-49.
    62. Chiou, S.K., M.K. Jones, and A.S. Tarnawski. Survivin - an anti-apoptosis protein: its biological roles and implications for cancer and beyond[J]. Med Sci Monit, 2003, 9:PI25-29.
    63. Cosgrave, N., A.D. Hill, and L.S. Young. Growth factor-dependent regulation of survivin by c-myc in human breast cancer[J]. J Mol Endocrinol, 2006, 37:377-390.
    64. Pardo, O.E., et al. FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCepsilon, B-Raf and S6K2[J]. EMBO J, 2006, 25:3078-3088.
    65. Pardo, O.E., et al. Fibroblast growth factor 2-mediated translational control of IAPs blocks mitochondrial release of Smac/DIABLO and apoptosis in small cell lung cancer cells[J]. Mol Cell Biol, 2003, 23:7600-7610.
    66. Liu, J., et al. Induction of cataract-like changes in rat lens epithelial explants by transforming growth factor beta[J]. Invest Ophthalmol Vis Sci, 1994, 35:388-401.
    67. Maruno, K.A., et al. Apoptosis is a feature of TGF beta-induced cataract[J]. Clin Exp Optom, 2002, 85:76-82.
    68. Yang, J., et al. Rb/E2F4 and Smad2/3 link survivin to TGF-beta-induced apoptosis and tumor progression[J]. Oncogene, 2008, 27:5326-5338.
    69. Wyllie, A.H., J.F. Kerr, and A.R. Currie. Cell death: the significance of apoptosis [J]. Int Rev Cytol, 1980,68:251-306.
    70. Kerr, J.F., C.M. Winterford, and B.V. Harmon. Apoptosis. Its significance in cancer and cancer therap[J]. Cancer, 1994, 73:2013-2026.
    71. Zheng, J.Y., et al. Overexpression of Bax induces apoptosis and enhances drug sensitivity of hepatocellular cancer-9204 cells[J]. World J Gastroenterol, 2005, 11:3498-3503.
    72. Malecaze, F., et al. Prevention of posterior capsule opacification by the induction of therapeutic apoptosis of residual lens cells[J]. Gene Ther, 2006, 13:440-448.
    73. Kagawa, S., et al. Antitumor effect of adenovirus-mediated Bax gene transfer on p53-sensitive and p53-resistant cancer lines[J]. Cancer Res, 2000, 60:1157-1161.
    74. Raffo, A.J., et al. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo[J]. Cancer Res, 1995, 55:4438-4445.
    75. Ling, X., et al. Forced expression of survivin-2B abrogates mitotic cells and induces mitochondria-dependent apoptosis by blockade of tubulin polymerization and modulation of Bcl-2, Bax, and survivin[J]. J Biol Chem, 2007, 282:27204-27214.
    76. Mita, A.C., et al. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics[J]. Clin Cancer Res, 2008,14:5000-5005.
    77. Hannon, G.J. RNA interference[J]. Nature, 2002,418:244-251.
    78. Reich, S.J., et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model[J]. Mol Vis, 2003,9:210-216.
    79. Tolentino, M.J., et al. Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization[J]. Retina, 2004,24:132-138.
    80. Lingor, R, et al. Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo[J]. Brain, 2005, 128:550-558.
    81. Jia, R.B., et al. VEGF-targeted RNA interference suppresses angiogenesis and tumor growth of retinoblastoma[J]. Ophthalmic Res, 2007, 39:108-115.
    82. Shen, J., et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1[J]. Gene Ther, 2006, 13:225-234.
    83. Dorsett, Y. and T. Tuschl. siRNAs: applications in functional genomics and potential as therapeutics[J]. Nat Rev Drug Discov, 2004, 3:318-329.
    84. Tarnawski, A.S. and I. Szabo. Apoptosis-programmed cell death and its relevance to gastrointestinal epithelium: survival signal from the matrix[J]. Gastroenterology, 2001, 120:294-299.
    85. Guo, F., et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis[J]. Blood, 2002, 99:3419-3426.
    86. Du, C., et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition[J]. Cell, 2000, 102:33-42.
    87. Chawla-Sarkar, M., et al. Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis[J]. Cell Death Differ, 2004, 11:915-923.
    88. Coma, S., et al. Use of siRNAs and antisense oligonucleotides against survivin RNA to inhibit steps leading to tumor angiogenesis[J]. Oligonucleotides, 2004, 14:100-113.
    89. Zhou, H., et al. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector[J]. Biochem Biophys Res Commun, 2006, 347:200-207.
    1 Wyllie,A.H.,J.F.Kerr,and A.R.Currie.Cell death:the significance of apoptosis[J].Int Rev Cytol,1980,68:251-306.
    2.Kerr,J.F.,C.M.Winterford,and B.V.Harmon.Apoptosis.Its significance in cancer and cancer therapy[J].Cancer,1994,73:2013-2026.
    3.GLUCKSMANN,A.Cell death in normal vertebrate ontogeny[J].Biol Rev,1951,26:59-86.
    4.Lockshin,R.A.and C.M.Williams.Programmed Cell Death--I.Cytology of Degeneration in the Intersegmental Muscles of the Pernyi Silkmoth[J].J Insect Physiol,1965,11:123-133.
    5.Kerr,J.F.,A.H.Wyllie,and A.R.Currie.Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics[J].Br J Cancer,1972,26:239-257.
    6.Horvitz,H.R.,S.Shaham,and M.O.Hengartner.The genetics of programmed cell death in the nematode Caenorhabditis elegans[J].Cold Spring Harb Symp Quant Biol,1994,59:377-385.
    7.Miura,M.and J.Yuan.Mechanisms of programmed cell death in Caenorhabditis elegans and vertebrates[J].Curr Top Dev Biol,1996,32:139-174.
    8.McAvoy,J.W.,et al.Lens development[J].Eye,1999,13(Pt 3b):425-437.
    9.Bassnett,S.and D.Mataic.Chromatin degradation in differentiating fiber cells of the eye lens[J].J Cell Biol,1997,137:37-49.
    10.Wride,M.A.Cellular and molecular features of lens differentiation:a review of recent advances[J].Differentiation,1996,61:77-93.
    11.Appleby,D.W.and S.P.Modak.DNA degradation in terminally differentiating lens fiber cells from chick embryos[J].Proc Natl Acad Sci U S A,1977,74:5579-5583.
    12.Bozanic,D.,R.Tafra,and M.Saraga-Babic.Role of apoptosis and mitosis during human eye development[J].Eur J Cell Biol,2003,82:421-429.
    13.Dahm,R.Lens fibre cell differentiation-A link with apoptosis?[J].Ophthalmic Res,1999,31:163-183.
    14.Counis,M.F.,et al.Analysis of nuclear degradation during lens cell differentiation[J].Cell Death Differ,1998,5:251-261.
    15.Wride,M.A.and E.J.Sanders.Nuclear degeneration in the developing lens and its regulation by TNFalpha[J].Exp Eye Res,1998,66:371-383.
    16.Nishimoto,S.,et al.Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens[J]. Nature, 2003, 424:1071-1074.
    17. Vrensen, G.F., J. Graw, and A. De Wolf. Nuclear breakdown during terminal differentiation of primary lens fibres in mice: a transmission electron microscopic study[J]. Exp Eye Res, 1991, 52:647-659.
    18. He, H.Y., et al. Transient activation of cyclin B/Cdc2 during terminal differentiation of lens fiber cells[J]. Dev Dyn, 1998, 211:26-34.
    19. Ishizaki, Y., M.D. Jacobson, and M.C. Raff. A role for caspases in lens fiber differentiation[J]. J Cell Biol, 1998, 140:153-158.
    20. Zandy, A.J. and S. Bassnett. Proteolytic mechanisms underlying mitochondrial degradation in the ocular lens[J]. Invest Ophthalmol Vis Sci, 2007, 48:293-302.
    21. Zandy, A.J., et al. Role of the executioner caspases during lens development[J]. J Biol Chem, 2005, 280:30263-30272.
    22. Fromm, L. and P.A. Overbeek. Inhibition of cell death by lens-specific overexpression of bcl-2 in transgenic mice[J]. Dev Genet, 1997, 20:276-287.
    23. Sanders, E.J. and E. Parker. Retroviral overexpression of bcl-2 in the embryonic chick lens influences denucleation in differentiating lens fiber cells[J]. Differentiation, 2003, 71:425-433.
    24. Girao, H., et al. Subcellular redistribution of components of the ubiquitin-proteasome pathway during lens differentiation and maturation[J]. Invest Ophthalmol Vis Sci, 2005, 46:1386-1392.
    25. Gao, C.Y., et al. Expression of Cdk5, p35, and Cdk5-associated kinase activity in the developing rat lens[J]. Dev Genet, 1997, 20:267-275.
    26. Gao, C.Y., et al. Changes in cyclin dependent kinase expression and activity accompanying lens fiber cell differentiation[J]. Exp Eye Res, 1999, 69:695-703.
    27. Morozov, V. and E.F. Wawrousek. Caspase-dependent secondary lens fiber cell disintegration in alphaA-/alphaB-crystallin double-knockout mice[J]. Development, 2006, 133:813-821.
    28. Donehower, L.A., et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours[J]. Nature, 1992, 356:215-221.
    29. Reichel, M.B., et al. High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice[J]. Cell Death Differ, 1998, 5:156-162.
    30. Ikeda, S., et al. Severe ocular abnormalities in C57BL/6 but not in 129/Sv p53-deficient mice[J]. Invest Ophthalmol Vis Sci, 1999, 40:1874-1878.
    31. Cecconi, F., et al. Apafl (CED-4 homolog) regulates programmed cell death in mammalian development[J]. Cell, 1998, 94:727-737.
    32. Liu, J.P., et al. Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK and AKT signaling pathways[J]. Exp Eye Res, 2004, 79:393-403.
    33. Boyle, D.L., et al. Morphological characterization of the Alpha A- and Alpha B-crystallin double knockout mouse lens[J]. BMC Ophthalmol, 2003, 3:3.
    34. de Iongh, R.U., et al. Requirement for TGFbeta receptor signaling during terminal lens fiber differentiation[J]. Development, 2001, 128:3995-4010.
    35. Chen, Q., et al. Inhibition of crystallin expression and induction of apoptosis by lens-specific ElAexpression in transgenic mice[J]. Oncogene, 2002, 21:1028-1037.
    36. Nguyen, M.M., S.J. Potter, and A.E. Griep. Deregulated cell cycle control in lens epithelial cells by expression of inhibitors of tumor suppressor function[J]. Mech Dev, 2002, 112:101-113.
    37. Mozes, M.M., et al. Congenital nuclear cataracts and uveitis in HIV-transgenic mice[J]. Eye, 2002, 16:177-184.
    38. Spector, A., et al. A brief photochemically induced oxidative insult causes irreversible lens damage and cataract. I. Transparency and epithelial cell layer[J]. Exp Eye Res, 1995, 60:471-481.
    39. Li, W.C., et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals[J]. J Cell Biol, 1995, 130:169-181.
    40. Harocopos, G.J., et al. Human age-related cataract and lens epithelial cell death[J]. Invest Ophthalmol Vis Sci, 1998, 39:2696-2706.
    41. Long, A.C., C.M. Colitz, and J.A. Bomser. Apoptotic and necrotic mechanisms of stress-induced human lens epithelial cell death[J]. Exp Biol Med (Maywood), 2004, 229:1072-1080.
    42. Truscott, R.J. Age-related nuclear cataract-oxidation is the key[J]. Exp Eye Res, 2005, 80:709-725.
    43. Ayala, M., et al. p53 expression and apoptosis in the lens after ultraviolet radiation exposure[J]. Invest Ophthalmol Vis Sci, 2007, 48:4187-4191.
    44. Zhou, J., et al. Mechanism of Src kinase induction of cortical cataract following exposure to stress: destabilization of cell-cell junctions[J]. Mol Vis, 2007, 13:1298-1310.
    45. Ayala, M.N., R. Michael, and P.G. Soderberg. Influence of exposure time for UV radiation-induced cataract[J]. Invest Ophthalmol Vis Sci, 2000, 41:3539-3543.
    46. Michael, R., et al. Repair in the rat lens after threshold ultraviolet radiation injury[J]. Invest Ophthalmol Vis Sci, 2000, 41:204-212.
    47. Ramana, K.V., et al. Aldose reductase mediates cytotoxic signals of hyperglycemia and TNF-alpha in human lens epithelial cells[J]. FASEB J, 2003, 17:315-317.
    48. Allen, D.A., M.M. Yaqoob, and S.M. Harwood. Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications[J]. J Nutr Biochem, 2005, 16:705-713.
    49. Takamura, Y., et al. Apoptotic cell death in the lens epithelium of rat sugar cataract[J]. Exp Eye Res, 2003, 77:51-57.
    50. Tamada, Y., et al. Evidence for apoptosis in the selenite rat model of cataract[J]. Biochem Biophys Res Commun, 2000, 275:300-306.
    51. Nakajima, T., et al. Differential gene expression in the lens epithelial cells from selenite injected rats[J]. Exp Eye Res, 2002, 74:231-236.
    52. Pandya, U., et al. Dietary curcumin prevents ocular toxicity of naphthalene in rats[J]. Toxicol Lett, 2000, 115:195-204.
    53. Schaumberg, D.A., et al. A systematic overview of the incidence of posterior capsule opacification[J]. Ophthalmology, 1998, 105:1213-1221.
    54. Koch, D.D. and T. Kohnen. Retrospective comparison of techniques to prevent secondary cataract formation after posterior chamber intraocular lens implantation in infants and children[J]. J Cataract Refract Surg, 1997, 23 Suppl 1:657-663.
    55. Malecaze, F., et al. Adenovirus-mediated suicide gene transduction: feasibility in lens epithelium and in prevention of posterior capsule opacification in rabbits[J]. Hum Gene Ther, 1999, 10:2365-2372.
    56. Kato, K., D. Kurosaka, and T. Nagamoto. Apoptotic cell death in rabbit lens after lens extraction[J]. Invest Ophthalmol Vis Sci, 1997, 38:2322-2330.
    57. Jampel, H.D., et al. Transforming growth factor-beta in human aqueous humor[J]. Curr Eye Res, 1990, 9:963-969.
    58. Saika, S., et al. Lens epithelial cell death after cataract surgery[J]. J Cataract Refract Surg, 2002, 28:1452-1456.
    59. Lee, J.H., et al. TGF-beta-induced apoptosis and reduction of Bcl-2 in human lens epithelial cells in vitro[J]. Curr Eye Res, 2002, 25:147-153.
    60. Ishizaki, Y., et al. Control of lens epithelial cell survival[J]. J Cell Biol, 1993, 121:899-908.
    61. Mansfield, K.J., A. Cerra, and C.G. Chamberlain. FGF-2 counteracts loss of TGFbeta affected cells from rat lens explants: implications for PCO (after cataract)[J]. Mol Vis, 2004, 10:521-532.
    62. Meacock, W.R., D.J. Spalton, and M.R. Stanford. Role of cytokines in the pathogenesis of posterior capsule opacification[J]. Br J Ophthalmol, 2000, 84:332-336.
    63. Awasthi, N. and B.J. Wagner. Suppression of human lens epithelial cell proliferation by proteasome inhibition, a potential defense against posterior capsular opacification[J]. Invest Ophthalmol Vis Sci, 2006, 47:4482-4489.
    64. Geissler, F.T., D.W. Li, and E.R. James. Inhibition of lens epithelial cell growth by induction of apoptosis: potential for prevention of posterior capsule opacification[J]. J Ocul Pharmacol Ther, 2001, 17:587-596.
    65. Jordan, J.F., et al. Specific features of apoptosis in human lens epithelial cells induced by mitomycin C in vitro[J]. Graefes Arch Clin Exp Ophthalmol, 2001, 239:613-618.
    66. Nishi, O., et al. Inhibition of lens epithelial cells by Fas-specific antibody activating Fas-Fas ligand system[J]. Curr Eye Res, 2001, 23:192-198.
    67. Futter, C.E., J.G. Crowston, and B.D. Allan. Interaction with collagen IV protects lens epithelial cells from Fas-dependent apoptosis by stimulating the production of soluble survival factors[J]. Invest Ophthalmol Vis Sci, 2005, 46:3256-3262.
    68. Nebe, B., et al. Induction of apoptosis by the calcium antagonist mibefradil correlates with depolarization of the membrane potential and decreased integrin expression in human lens epithelial cells[J]. Graefes Arch Clin Exp Ophthalmol, 2004, 242:597-604.
    69. Malecaze, F., et al. Prevention of posterior capsule opacification by the induction of therapeutic apoptosis of residual lens cells[J]. Gene Ther, 2006, 13:440-448.
    70. van Tenten, Y., et al. A preliminary study on the prevention of posterior capsule opacification by photodynamic therapy with bacteriochlorin A in rabbits[J]. Ophthalmic Res, 2002, 34:113-118.
    71. Tarsio, J.F., et al. Inhibition of cell proliferation on lens capsules by 4197X-ricin A immunoconjugate[J]. J Cataract Refract Surg, 1997, 23:260-266.
    72. Vargas, L.G., et al. Pharmacologic prevention of posterior capsule opacification: in vitro effects of preservative-free lidocaine 1% on lens epithelial cells[J]. J Cataract Refract Surg, 2003, 29:1585-1592.
    73. Chandler, H.L., et al. Prevention of posterior capsular opacification through cyclooxygenase-2 inhibition[J]. Mol Vis, 2007, 13:677-691.
    74. Duncan, G. and I.M. Wormstone. Calcium cell signalling and cataract: role of the endoplasmic reticulum[J]. Eye, 1999, 13 ( Pt 3b):480-483.
    75. Wang, L., et al. Growth factor receptor signalling in human lens cells: role of the calcium store[J]. Exp Eye Res, 2005, 80:885-895.
    76. Zhang, H., et al. Arsenic trioxide initiates ER stress responses, perturbs calcium signalling and promotes apoptosis in human lens epithelial cells[J]. Exp Eye Res, 2007, 85:825-835.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700