稻草加筋滨海盐渍土的强度与变形特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滨海盐渍土具有吸湿软化、盐胀和溶陷等不良工程特性,未经处理不能满足填筑高等级公路路堤的强度和变形要求,需要对盐渍土进行加筋或固化处理。
     通过无侧限抗压强度实验和三轴压缩实验,研究了稻草加筋土、稻草加筋石灰土的强度和应力应变。研究内容与取得成果如下:
     (1)完成了不同加筋条件的稻草加筋土、稻草加筋石灰土的无侧限抗压强度实验,直径50 mm高度50 mm试样的适宜加筋率和适宜加筋长度为0.2%和15 mm。在适宜加筋条件下,加筋土、加筋石灰土的抗压强度和抗变形能力明显提高。
     (2)加筋土的无侧限抗压强度随土干密度的增加而增加。低于或高于最优含水率时,土的强度均降低。均匀加筋方式的加筋效果优于层面加筋方式。二分之一圆管状稻草加筋土的强度最大。
     (3)浸水后加筋石灰土试样的抗压强度比相应未浸水的均有不同程度的降低。随养护龄期、石灰掺量的增加,加筋石灰土试样的强度和水稳系数有明显增长。加筋使水泥土的强度有所提高;石灰土、加筋石灰土的强度和水稳系数均高于水泥土、加筋水泥土的。
     (4)稻草的加筋作用能提高土的粘聚力,但对内摩擦角影响较小。直径61.8mm高度125 mm试样的适宜加筋率和适宜加筋长度分别为0.2%和20 mm。加筋能有效地约束土样的横向变形。只有达到一定的轴向应变时,稻草的加筋作用才能发挥出来。借助WU模型理论,建立了稻草加筋土的抗剪强度模型。
     (5)随干密度的增加,加筋土的峰值主应力差逐渐增加,粘聚力增加。含水率20%和24%加筋土的峰值主应力差、粘聚力和内摩擦角均比22%的小。
     中部均匀加筋土的峰值主应力差和粘聚力均高于上部均匀和下部均匀加筋土的。中部平铺加筋土的峰值主应力差和粘聚力比上部平铺、下部平铺加筋土的大。均匀加筋方式加筋土的强度大于平铺加筋的。
     与剥皮稻草加筋土相比,不剥皮稻草加筋土的峰值主应力差和粘聚力较小。与圆管状稻草加筋土相比,碾压状稻草加筋土的峰值主应力差和粘聚力较小,二分之一圆管状稻草的较大。不浸胶稻草加筋土试样的峰值主应力差、粘聚力与浸胶的相差不多。
     (6)进行CU实验的试样以塑性破坏为主,应力应变曲线接近应变硬化型。邓肯一张双曲线模型可较好的反映盐渍土和稻草加筋盐渍土的应力应变特性。CU实验中加筋土试样的粘聚力比UU的大,两种实验条件的内摩擦角相差不多。
     (7)石灰土具有明显的45。剪切面,呈脆性破坏;加筋石灰土不具有明显的剪切面,体现为较弱的塑性破坏。加筋石灰土的峰值主应力差、粘聚力和内摩擦角与加筋土的变化趋势基本相同。水泥土和加筋水泥土的粘聚力与内摩擦角均比石灰土和加筋石灰土的小。
     经加筋固化后,稻草加筋土的无侧限抗压强度和抗剪强度指标具有显著提高,实现了土质改性与加筋固化的目标。研究结果对于深入认识稻草加筋滨海盐渍土的加筋作用机制具有理论指导意义,可在滨海新区高等级公路路堤处理中推广应用,同时也为其它盐渍土地区的公路路堤处理提供技术参考。
Saline soil in inshore has some problems, such as softening, expansion and depression, which make saline soil not meet the requirement of strength and deformation for road embankment if untreated. It could be considered that saline soil may be reinforced or solidified.
     Unconfined compressive strength tests and triaxial tests were carried out in order to understand the stress-strain relationship and strength property of reinforced soil and reinforced lime soil. Main contents and results are as follows:
     (1) The unconfined compressive strength in different conditions of reinforced soil and reinforced lime soil was tested. The best reinforced effect is of 15 mm reinforced length and 0.2% reinforced rate which the size of sample is diameter 50 mm and height 50 mm. Under the right reinforced condition, unconfined compressive strength and resistance to deformation of reinforced soil and reinforced lime soil significantly improved.
     (2) The unconfined compressive strength increased with the increasing of dry density. Below or above the optimum water content, the strength decreased. Homogeneous method of reinforced soil was better than the tiled. The strength of half round tubular rice straw was bigger than other form of reinforced material.
     (3) The unconfined compressive strength of reinforced lime soil after immersion in water decreased. With the increasing of conservation periods and lime content, the strength and water stability coefficient increased. Strength of cement soil increased after reinforced. Strength and water stability coefficient of cement soil and reinforced cement soil is less than that of lime soil and reinforced lime soil.
     (4) The triaxial test (UU) of reinforced soil indicated that the reinforcement improved mainly cohesion and less influence to the internal friction angle. The reinforced effect is best at reinforced length and rate of 20 mm and 0.2% separately which the size of sample is diameter 61.8 mm and height 125 mm. Rice straw may decrease availably the lateral deformation of reinforced saline soil. The reinforcement effect plays out only when soil sample arriving a certain axial strain. Strength model of reinforced soil with rice straw by WU Model theory was discussed.
     (5) Peak of deviator stress and cohesive increased along with dry density increasing. Peak of deviator stress, cohesive and internal friction angle of reinforced soil with 20% and 24% water content were less than that of 22%.
     Peak of deviator stress and cohesive of middle homogeneous and middle tiled were bigger than that of upper and lower. Homogeneous method of reinforced soil was better than the tiled.
     Compared with peeled rice straw, peak of deviator stress and cohesive of unpeeled rice straw were smaller. Compared with tubular rice straw, peak of deviator stress and cohesive was smaller than that of laminated rice straw, and bigger than that of half round tubular rice straw. The shear performance of reinforced soil with original rice straw was almost as same as that of anti-decayed rice straw.
     (6) The samples which doing CU tests showed plastic failure, their stress-strain were close to the hardening. By means of Duncan-Chang model, the stress-strain characteristic of saline soil and reinforced saline soil with rice straw can be well indicated. Cohesion of CU experiment sample was more than that of UU test. Their internal friction angle was almost the same.
     (7) Lime soil showed significantly 45°shear planes and brittle failure, while reinforced soil with lime showed insignificant shear planes, reflecting the weak plastic failure. Peak of deviator stress, cohesive and internal friction angle of reinforced soil with lime were almost as same as that of reinforced soil under different conditions when making samples. Cohesive and internal friction angle of cement soil and reinforced cement soil was less than that of lime soil and reinforced lime soil.
     After reinforced and solidified, unconfined compressive strength and shear strength parameters of reinforced soil with rice straw and lime have been significantly improved to achieve the objectives of improving strength of soil. The research results are of importance for understanding the mechanism of reinforced saline soil with rice straw. And it can be applied in dealing with high grade road embankment in Tianjin Binhai New Area while can provide technical reference for other saline soil region.
引文
[1]柴寿喜,王晓燕,王沛.滨海盐渍土改性固化与加筋利用研究[M].天津:天津大学出版社,2011.
    [2]赵宁雨,荆林立.纤维加筋红粘土强度特性影响因素的试验[J].重庆理工大学学报(自然科学版),2010,24(9):47-51.
    [3]石茜,柴寿喜,李敏,等.潮湿环境中稻草的防腐效果及极限拉伸性能[J].吉林大学学报(地球科学版)2011,41(1):200-206.
    [4]张苇.土工带加筋碎石垫层的试验研究与有限元分析[D].太原:太原理工大学,2003.
    [5]吴景海.土工合成材料加筋的试验研究和有限元分析[D].天津:天津大学,2002.
    [6]中华人民共和国交通部.JTJT 060-98公路土工合成材料试验规程[S].北京:人民交通出版社,1998.
    [7]魏丽,骆福英,王沛.加筋土技术的发展及工程应用问题[J].天津城市建设学院院报,2006,12(2):96-99.
    [8]Dietz M. S., Lings M. L.. Postpeak strength of interfaces in a stress-dilatancy framework[J]. Journal of Geotechnical and Geoenvironmental,2006,132(11):1474-1484.
    [9]Moracia N., Recalcatib P.. Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil[J]. Geotextiles and Geomembranes,2006(24):220-242.
    [10]Chiara Mattia, Gian Battista Bischetti, Francesco Gentile. Biotechnical characteristics of root systems of typical Mediterranean species[J]. Plant and Soil,2005, (278):23-32.
    [11]Ehsan Abdi, Baris Majnounian, Hassan Rahimi, et al. Distribution and tensile strength of Hornbeam (Carpinus betulus) roots growing on slopes of Caspian Forests, Iran[J]. Journal of Forestry Research,2009,20(2):105-110.
    [12]S. De Baets, J. Poesen, B. Reubens, et al. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength[J]. Plant Soil,2008, (305):207-226.
    [13]Docker B. B., Hubble TCT. Quantifying root-reinforcement of river bank soils by four Australian tree species[J].Geomorphology,2008,100(4):401-418.
    [14]M. Burylo. F. Rey, C. Roumet, et al. Linking plant morphological traits to uprooting resistance in eroded marly lands (Southern Alps, France)[J]. Plant Soil,2009, (324):31-42.
    [15]Heineek K.S., Consoli N. C.. Discrete framework for limit equilibrium analysis of fibre-reinforced soil[J]. Geotechnique,2004,54(1):72-73.
    [16]Hankyu Yoo, Hongtaek Kim, Hanyong Jeon. Evaluation of pullout and drainage properties of geosynthetic reinforcements in weathered granite backfill soils[J]. Fibers and Polymers,2007, 8(6):635-641.
    [17]张嘎,张建民.循环荷载作用下粗粒土与结构接触面变形特性的试验研究[J].岩土工程学报,2004,26(2):254-258.
    [18]张嘎,张建民.土与土工织物接触面力学特性的试验研究[J].岩土力学,2006,27(1):51-55.
    [19]刘炜,汪益敏,陈页开,等.土工格室加筋土的大尺寸直剪试验研究[J].岩土力学,2008,29(11):3133-3139.
    [20]黄英,何发祥.玻璃纤维与红土的界面作用特性研究[J].水文地质工程地质,2003,30(4): 7-12.
    [21]高翔,石名磊,刘松玉.加筋粘性土筋土界面剪切特性的试验研究[J].公路交通科技,2002(5):8-10.
    [22]唐朝生,施斌,高玮,等.纤维加筋土中单根纤维的拉拔试验及临界加筋长度的确定[J].岩土力学,2009,30(8):2225-2230.
    [23]施有志,马时冬.土工格栅的界面特性试验[J].岩土力学,2003,24(2):296-299.
    [24]喻泽红,魏红卫,邹银生.加筋红砂岩风化土强度和变形特性[J].岩石力学与工程学报,2005,24(15):2271-2279.
    [25]Schlosser F., Long N. T.. Recent results in French research on reinforced earth[J]. Journal of the Construction Division,1974,100(3):223-237.
    [26]G. Venkatappa Rao, R. K. Dutta. Compressibility and strength behaviour of sand-tyre chip mixtures[J]. Geotechnical and Geological Engineering,2006, (24):711-724.
    [27]吴景海.土工合成材料与土工合成材料加筋砂土的相关特性[J].岩土力学,2005,26(4):538-541.
    [28]赵川,周亦唐.土工格栅加筋碎石土大型三轴试验研究[J].岩土力学,2001,22(4):419-422.
    [29]傅华,凌华,蔡正银.加筋土强度影响因素的试验研究[J].岩土力学,2008,28(增刊):481-484.
    [30]刘桂香,孙常新,梁波.青藏铁路多年冻土区加筋土特性试验研究[J].路基工程,2008,(6): 133-134.
    [31]ZHANG M. X., JAVADI A. A., MIN X.. Triaxial tests of sand reinforced with 3D inclusions[J]. Geotextiles and Geomembranes,2006,24(4):201-209.
    [32]张孟喜,闵兴.单层立体加筋砂土性状的三轴试验研究[J].岩土工程学报,2006,28(8):931-936.
    [33]张孟喜,张贤波,段晶晶.H-V加筋粘性土的强度与变形特性[J].岩土力学,2009,30(6):1563-1568.
    [34]Zhang M. X., Zhou H., Javadib A. A., et al. Experimental and theoretical investigation of strength of soil reinforced with multi-layer horizontal-vertical orthogonal elements[J]. Geotextiles and Geomembranes,2008, (26):1-13.
    [35]雷胜友.加筋黄土的三轴试验研究[J].西安公路交通大学学报,2000,20(2):1-5.
    [36]黄英,符必昌.不同排水条件加筋红土三轴试验研究[J].昆明理工大学学报,2006,31(1):56-60.
    [37]魏红卫,喻泽红,邹银生.排水条件对土工合成材料加筋粘性土特性的影响[J].水利学报,2006,37(7):838-845.
    [38]张艳美,张旭东,张鸿儒.土工合成纤维土补强机理试验研究及工程应用[J].岩土力学,2005,26(8):1323-1326.
    [39]谢婉丽,王家鼎,王亚玲.加筋黄土变形和强度特性的三轴试验研究[J].地球科学进展,2004,19(增刊):333-339.
    [40]王琛,雷运波,刘浩吾.加筋红土大型三轴试验研究[J].四川大学学报(工程科学版),2003,35(4):14-28.
    [41]周健,孔祥利,王孝存.加筋地基承载力特性及破坏模式的试验研究[J].岩土工程学报,2008,30(9):1265-1269.
    [42]高永涛,曲兆军,王孝存.竖向加筋砂土地基承载力的模型试验研究[J].北京科技大学学 报,2008,30(4):349-353.
    [43]孙星亮,汪稔,胡明鉴.冻土三轴剪切过程中细观损伤演化CT动态试验[J].岩土力学,2005,26(8):1298-1231.
    [44]方祥位,陈正汉,申春妮,等.非饱和原状Q2黄土屈服硬化过程的细观结构演化分析[J].岩土工程学报,2008,30(7):1044-1050.
    [45]葛修润.岩石疲劳破坏的变形控制律、岩土力学实验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J].岩土工程学报,2008,30(1):1-20.
    [46]Joseph Khedari, Pornnapa Watsanasathaporn, Jongjit Hirunlabh. Development of fibre-based soil-cement block with low thermal conductivity[J]. Cement & Concrete Composites.2005, (27):111-116.
    [47]M. Bouhicha, F. Aouissi, S. Kenai. Performance of composite soil reinforced with barley straw[J]. Cement & Concrete Composites,2005, (27):617-621.
    [48]Zornberg J.G., CabralA.R., Viratjandr C.. Behaviour of tire shred-sand mixtures[J]. Canadian Geotechnical Journal,2004,41(2):227-241.
    [49]J. Prabakar, R.S. Sridhar. Effect of random inclusion of sisal fibre on strength behaviour of soil[J]. Construction and Building Materials,2002, (16):123-131.
    [50]F. Chalencon, L. Orgeas, P. J. J. Dumont, et al. Lubricated compression and X-ray microtomography to analyse the rheology of a fibre-reinforced mortar[J]. Rheol Acta,2009, (14):10-13.
    [51]Sang Muk Lee, Donghwan Cho, Won Ho Park, et al. Novel silk/poly (butylene succinate) biocomposites:the effect of short fibre content on their mechanical and thermal properties[J]. Composites Science and Technology,2005, (65):647-657.
    [52]Li J., DING D. W.. Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading[J]. Soil Dynamics and Earthquake Engineering,2002,19(2):977-983.
    [53]Ghiassian H., Poorebrahim G., Gray D. H.. Soil reinforcement with recycled carpet wastes[J]. Waste Management & Research,2004,22(2):108-114.
    [54]张旭东,战永亮,张艳美.纤维土强度特性的试验研究[J].路基工程,2001,(1):36-38.
    [55]Joanne E. Norris. Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England[J]. Plant and Soil,2005, (278):43-53.
    [56]S. B. Mickovski, L. P. H van Beek, F. Salin. Uprooting of vetiver uprooting resistance of vetiver grass[J]. Plant and Soil,2005, (278):33-41.
    [57]Marie Genet, Alexia Stokes, Franck Salin, et al. The influence of cellulose content on tensile strength in tree roots[J]. Plant and Soil,2005, (278):1-9.
    [58]Lionel Dupuy, Thierry Fourcaud, Alexia Stokes. A numerical investigation into the influence of soil type and root architecture on tree anchorage[J]. Plant and Soil,2005, (278):119-134.
    [59]Alexia Stokes, Claire Atger, Anthony Glyn Bengough, et al. Desirable plant root traits for protecting natural and engineered slopes against landslides[J]. Plant Soil,2009, (32):1-30.
    [60]I. R. Mcivor, G.B.Douglas, S. E. Hurst, et al. Structural root growth of young Veronese poplars on erodible slopes in the southern North Island, New Zealand[J]. Agroforest Syst, 2008, (72):75-86.
    [61]Chia-Cheng Fan, Chih-Feng Su. Effect of soil moisture content on the deformation behaviour of root-reinforced soils subjected to shear[J]. Plant Soil,2009, (324):57-69.
    [62]Mandy Pohl, Dominik Alig, Christian Korner. Higher plant diversity enhances soil stability in disturbed alpine ecosystems[J]. Plant Soil,2009, (324):91-102.
    [63]Alexia Stokes, Claire Atger, Anthony Glyn Bengough, et al. Desirable plant root traits for protecting natural and engineered slopes against landslides[J]. Plant Soil,2009, (324):1-30.
    [64]L.P.H. van Beek, J. Wint, L.H. Cammeraat, et al. Observation and simulation of root reinforcement on abandoned Mediterranean slopes[J]. Plant and Soil,2005, (278):55-74.
    [65]Gian Battista Bischetti, Enrico Antonio Chiaradia, Thomas Epis, et al. Root cohesion of forest species in the Italian Alps[J]. Plant Soil,2009, (324):71-89.
    [66]Waldron L. J., Dakessian S.. Soil reinforcement by roots calculation of increased soil shear resistance from root properties[J]. Soil Science,1981,132(3):427-435.
    [67]Waldron L. J.. The shear resistance of root-permeated homogeneous and stratified [J]. Journal of Soil Science Association American,1977,41(5):843-849.
    [68]Baker D. H.. Enhancement of slope stability by vegetation[J]. Ground Engineering,1986, 19(3):11-15.
    [69]赵廷宁,王玉杰,阿部和时.吉县黄土的剪切强度及油松刺槐人工林的固坡作用[C].全国首届水土保持青年学术讨论会论文集.北京:中国林业出版社,1993,113-117.
    [70]姚环,沈骅,李颢,等.香根草固土护坡工程特性初步研究[J].中国地质灾害与防治学报,2007,18(2):63-68.
    [71]张栋梁,王炳龙.香根草应用于铁路边坡防护的力学研究[J].水土保持通报,2006,26(6):94-96.
    [72]程洪,颜传盛,李建庆,等.草本植物根系网的固土机制模式与力学试验研究[J].水土保持研究,2006,13(1):62-65.
    [73]陈昌富,刘怀星,李亚平.草根加筋土的护坡机理及强度准则试验研究[J].中南公路工程,2006,31(2):14-17.
    [74]陈昌富,刘怀星,李亚平.草根加筋土的室内三轴试验研究[J].岩土力学,2007,28(10):2041-2045.
    [75]张飞,陈静曦,陈向波.边坡生态防护中表层含根系土抗剪试验研究[J].土工基础,2005,19(3):25-27.
    [76]李绍才,孙海龙,杨志荣,等.坡面岩体—基质—根系互作的力学特性[J].岩石力学与工程学报,2005,24(12):2074-2051.
    [77]毛瑢,孟广涛,周跃.植物根系对土壤侵蚀性控制机理的研究[J].水土保持研究,2006,13(2):241-243.
    [78]侍倩.植被对斜坡土体土力学参数影响的试验研究[J].岩土力学,2005,26(12):2027-2030.
    [79]肖东升,张涛.边坡土体强度与植被根系作用的研究[J].路基工程,2008,(1):135-137.
    [80]宋维峰,陈丽华,刘秀萍.根系与土体接触面相互作用特性试验[J].中国水土保持科学,2006,4(2):62-70.
    [81]晏益力,宋云.植物根系—土体的相互作用力学模型[J].湖南城市学院学报(自然科学版),2006,15(2):10-11.
    [82]解明曙.林木根系固坡土力学机制研究[J].水土保持学报,1990,4(3):7-14.
    [83]周跃,徐强,骆华松.乔木侧根对土体的斜向牵引效应—原理和数学模型[J].山地学报,1999,17(1):4-9.
    [84]周跃,骆华松,徐强.乔木的斜向支撑效能及其坡面稳定意义[J].山地学报,2000,18(4): 306-312.
    [85]张云伟,刘跃明,周跃.云南松侧根摩擦型根土粘合键的破坏机制及模型[J].山地学报,2002,20(5):628-631.
    [86]熊燕梅,夏汉平,李志安,等.植物根系固坡抗蚀的效应与机理研究进展[J].应用生态学报,2007,18(4):895-904.
    [87]汤劲松,刘松玉,童立元.植物根系的加筋作用对浅埋公路隧道施工稳定的影响[J].东南大学学报(自然科学版),2009,39(2):334-338.
    [88]刘跃明,张云伟,周跃.侧根的根土粘合键模型及牵引效应测试系统[J].南京林业大学学报(自然科学版),2003,27(1):50-54.
    [89]郭维俊,黄高宝,王芬娥,等.土壤—根系复合体本构关系的理论研究[J].中国农业大学学报,2006,11(2):35-38.
    [90]欧阳仲春.现代土工加筋技术[M].北京:人民交通出版社,1991.
    [91]何光春.加筋土工程设计与施工[M].北京:人民交通出版社,2000.
    [92]王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    [93]杨晓松,党进谦,王利莉.饱和氯盐渍土抗剪强度特性的试验研究[J].工程勘察,2008,(11):6-9.
    [94]柴寿喜,杨宝珠,王晓燕,等.渤海湾西岸滨海盐渍土的盐渍化特征分析[J].岩土力学,2008,29(5):1217-1222.
    [95]荆志东,王春雷,谢强.冻区盐渍土水热耦合效应及对力学性能的影响[J].路基工程,2009,(3):16-18.
    [96]包卫星,李志农.喀什地区不同盐渍土冻融变形特性试验[J].长安大学学报(自然科学版),2008,28(2):26-30.
    [97]张莎莎,杨晓华,谢永利,等.路用粗粒盐渍土盐胀特性[J].长安大学学报(自然科学版),2009,29(1):20-25.
    [98]杨永俊,骆亚生,董雷.氯盐渍土的湿化特性研究[J].人民黄河,2008,30(8):100-102.
    [99]杨永俊,骆亚生,郭鸿.氯盐渍土的失水变形机理研究[J].工程勘察,2008,(10):11-14.
    [100]王春雷,谢强,姜崇喜,等.青藏铁路冻区盐渍土热特性及力学性能分析[J].岩土力学,2009,30(3):836-839.
    [101]雷华阳,张文殊,张喜发,等.超氯盐渍土的工程特性指标研究[J].长春科技大学学报,2001,31(1):70-73.
    [102]于青春,孙婉,陈波,等.松嫩平原苏打型盐渍土强度特性研究研究[J].岩土力学,2008,29(7):1793-1797.
    [103]李斐彦,刘晓军,吴爱红.压实度对盐渍土湿胀干缩的影响分析[J].工程勘察,2008,(5):20-22.
    [104]周永祥,阎培渝,冷发光,等.固化盐渍土的力学性能[J].铁道科学与工程学报,2009,6(1): 31-35.
    [105]王利莉,党进谦,杨晓松.盐渍土土水特征曲线的研究[J].工程勘察,2009,(2):4-7.
    [106]蔡德凯.滨海高速公路路基填料改良及其应用研究(硕士学位论文)[D].天津:天津大学,2005.
    [107]杨建永,杨军,陈耀光,等.高原盐渍土地基强夯处理方法[J].辽宁工程技术大学学报(自然科学版),2008,27(2):224-226.
    [108]张丽娟,刘占良.盐渍土地区改建道路早期破损原因与防治[J].路基工程,2009,(4): 218-219.
    [109]李敏.麦秸秆加筋滨海盐渍土的击实性能和强度指标研究(硕士学位论文)[D].天津:天津城市建设学院,2009.
    [110]韩森,李娜,肖利明.高速公路路基改良盐渍土力学试验研究[J].路基工程,2009,(4):72-73.
    [111]王旭鹏.滨海地区改性盐渍土的微观结构及动力特性[J].工程勘察,2009,(5):13-17.
    [112]平树江,申爱琴,耿恩朋.滨海地区加固盐渍土的路用性能[J].中外公路,2008,28(3):22-26.
    [113]平树江,李炜光,申爱琴,等.黄河中下游冲积平原细粒氯盐渍土的加固原理[J].长安大学学报(自然科学版),2008,28(4):21-26.
    [114]庞巍,叶朝良,杨广庆,等.电石灰改良滨海地区盐渍土路基可行性研究[J].岩土力学,2009,30(4):1068-1072.
    [115]刘镇.二灰稳定滨海盐渍土底基层的配合比研究[J].路基工程,2008,(5):134-136.
    [116]周琦,邓安,韩文峰,等.固化滨海盐渍土耐久性试验研究[J].岩土力学,2007,28(6):1229-1232.
    [117]余云燕,赵德安,彭典华,等.南疆铁路路基填料改良盐渍土的盐胀冻胀试验研究[J].兰州交通大学学报,2009,28(1):1-5.
    [118]李长洪,张吉良,林清华,等.西藏扎布耶盐田盐渍土的改性配比试验[J].吉林大学学报(地球科学版),2008,38(2):273-278.
    [119]柴寿喜,王晓燕,魏丽,等.五种固化滨海盐渍土强度与工程适用性评价[J].辽宁工程技术大学学报(自然科学版),2009,28(1):59-62.
    [120]柴寿喜,杨宝珠,王晓燕,等.含盐量对石灰固化滨海盐渍土力学强度影响试验研究[J].岩土力学,2008,29(7):1769-1773.
    [121]柴寿喜,王晓燕,魏丽,等.滨海盐渍土的工程地质问题与防护固化方法[J].工程勘察,2009,(7):1-5.
    [122]S. Jayasekera, S. Hall. Modification of the properties of salt affected soils using electrochemical treatments[J]. Geotechnical Geological Engineering,2007, (25):1-10.
    [123]杨继位.麦秸秆加筋条件与加筋滨海盐渍土的抗压强度研究(硕士学位论文)[D].天津:天津城市建设学院,2008.
    [124]中华人民共和国交通部.JTG D30-2008公路路基设计规范[S].北京:人民交通出版社,2004.
    [125]王银梅,谌文武,韩文峰.SH固沙机理的微观探讨[J].岩土力学,2005,26(4):650-654.
    [126]连海兰,潘明珠,周丽丽,等.稻草纤维板吸水性能的研究[J].林产工业,2009,36(5):30-34.
    [127]石茜.加筋稻草的物理力学特性及与加筋麦秸秆对比研究(硕士学位论文)[D].天津:天津城市建设学院,2008.
    [128]张争奇,胡长顺.纤维加强沥青混凝土几个问题和讨论[J].西安公路交通大学学报,2001,21(1):21-24.
    [129]刘志明,王逢瑚,苏润洲.麦秆表面形貌及表面元素分析[J].东北林业大学学报,2002,30(2):62-65.
    [130]丁万涛,雷胜友.加筋膨胀土不同布筋型式三轴试验研究[J].岩土力学,2010,31(4):1147-1151.
    [131]尤明庆,邹友峰.关于岩石非均质性与强度尺寸效应的讨论[J].岩石力学与工程学报,2000,19(3):391-395.
    [132]陈建峰,俞松波,叶铁峰,等.软土地基加筋石灰土路堤离心模型试验研究[J].岩石力学与工程学报,2008,27(2):287-293.
    [133]蔡奕,施斌,高玮,等.纤维石灰土工程性质的试验研究[J].岩土工程学报,2006,28(10):1283-1287.
    [134]柴寿喜.固化滨海盐渍土的强度特性研究(博士学位论文)[D].兰州:兰州大学,2006.
    [135]骆昊舒.天津市滨海新区固化氯盐渍土综合性能研究(硕士学位论文)[D].西安:长安大学,2009.
    [136]Bell F. G. Stabilization and treatment of clay soils with lime[J]. Ground Engineering,1988, 21(1):12-15.
    [137]董谷生,刘永胜,吴秋兰.玄武岩纤维布约束混凝土方柱的尺寸效应研究[J].混凝土,2009,(3):6-8.
    [138]Bazant Z. P., Pfeiffer P. A.. Determination of fracture energy properties from size effect and brittleness number[J]. ACI Mater Journal,1987,18(4):463-480.
    [139]Incea R., Arici E.. Size effect in bearing strength of concrete cubes[J]. Construction and Building Materials,2004, (18):603-609.
    [140]中华人民共和国交通部.JTG E40-2007公路土工试验规程[S].人民交通出版社,2007,北京.
    [141]Wu T. H., McKinell W. P., Swanston D. N.. Strength of tree roots, landslides on Prince of Wales Island, Alaska. Canadian Geotechnical. J.1979,16(1):19-33.
    [142]李敏,柴寿喜,杜红普,等.麦秸秆加筋土的合理布筋位置和抗剪强度模型[J].岩石力学与工程学报,2010,29(增2):3923-3929.
    [143]冀晓东,陈丽华,张超波.林木根系对土壤的增强作用与机理分析[J].中国水土保持,2009,(10):19-21.
    [144]Duncan J. M., Chang C. Y.. Nonlinear analysis of stress and strain in soil[J]. Proc. ASCE, JSMFD,1970,96(SM5):1629-1653.
    [145]Duncan J. M., Byrne P., Wong K. S., et al. Strength, stress-strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses[R]. Geotechnical Engineering Research Report, No. UCB/GT/80-01, Dept. of Civil Engineering, University of California, Berkeley, August,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700