不同外源扰动因素对肠道菌群组成结构影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人与动物体是由宿主自身与宿主内定植的微生物共同组成的超级生物体。宿主与宿主内微生物共同与外界环境因子相互作用决定机体的健康或疾病状态。外源环境因子如饮食、药物、化学致癌剂等可以引起肠道菌群组成结构的改变,同时,宿主自身也可能对外界刺激做出相应的反应,改变了的肠道菌群与宿主相互作用,决定了生物体新的健康状态。所以研究外界环境因子诱导下,随着生物体健康状态的改变,肠道菌群组成结构所发生的规律性改变,对解析微生物与宿主之间的相互作用关系,更好地了解微生物的作用,评价完整生物体的健康状态等具有非常重要的意义。
     本研究的第一部分以一种化学致癌剂1,2-二甲肼诱导结肠癌癌前病变大鼠模型为研究对象,对结肠癌癌前病变形成过程中,肠道菌群组成的渐进性变化以及经两种中药预防,随结肠癌癌前病变的减轻,肠道菌群组成发生的相应改变进行分析。28只大鼠被随机分成4组,3组采用化学致癌剂二甲肼皮下注射诱导大鼠形成结肠癌癌前病变,其中两组分别给予黄连吴茱萸水提取物以及中药成药金复康对结肠癌癌前病变的形成加以预防,另设健康对照组,不注射致癌剂。采集实验第3,5,9周大鼠的新鲜粪便样本,应用优势细菌(16S rRNA基因的V3区)PCR-DGGE以及拟杆菌、柔嫩梭菌、乳酸菌和双歧杆菌的类群特异性PCR-DGGE方法结合多变量统计分析包括主成分分析(Principal component analysis,PCA)与最小偏二乘判别分析(Partial least squares discriminant analysis,PLS-DA),对大鼠的肠道菌群组成进行动态分析。
     分析结果显示,单纯二甲肼诱导组大鼠的肠道优势细菌与柔嫩梭菌的组成在实验第3周与健康对照组没有明显差异,在实验第5周与健康对照组具有差异趋势,而在实验第9周,当单纯二甲肼诱导大鼠形成(37.7±2.6)个异常隐窝病灶(Aberrant crypt foci,ACF)/全结肠时,其肠道优势细菌与柔嫩梭菌的组成与未见明显ACF的健康对照组具有明显差异,Martens’uncertainty test结合ANOVA检验(p<0.05)结果提示优势细菌中的2条PCR-DGGE条带与柔嫩梭菌的5条PCR-DGGE条带是区分第9周2组动物肠道菌群的重要PCR-DGGE条带,将这些条带进行割胶测序,这些条带为Ruminococcus obeum与Allobaculum stercoricanis等的类似菌。针对部分差异序列设计特异引物,荧光定量PCR的结果证实,实验9周,单纯二甲肼诱导组大鼠的肠道Ruminococcus obeum与Allobaculum stercoricanis的类似菌数量明显高于健康对照组,差异具有统计学意义,与PCR-DGGE结果相符。单纯二甲肼诱导组大鼠肠道中乳酸菌和双歧杆菌的组成没有发生明显改变,其双歧杆菌数量也没有明显改变。本研究结果提示,与健康对照组相比,动态监控疾病高危动物或人群的肠道菌群组成可能会成为一种无损伤性的评估宿主健康状态的方法,肠道菌群组成偏离健康群体的动物,其机体的健康状态可能也发生了改变。
     另外,实验第9周二甲肼诱导结合黄连吴茱萸水提取物处理组大鼠的ACF数量为(16.7±1.2)个ACF/全结肠,二甲肼诱导结合中药成药金复康处理组大鼠的ACF数量为(15.1±2.9)个ACF/全结肠,与单纯二甲肼诱发组相比,两种不同的中药对结肠癌癌前的形成均有一定的预防效果。优势细菌的PCR-DGGE结果为,两种中药组大鼠的肠道优势细菌与单纯二甲肼诱发组具有明显差异。荧光定量PCR的结果为,随ACF数量的下降,两个给药组大鼠的肠道Ruminococcus obeum与Allobaculum stercoricanis类似菌的数量也均明显低于单纯二甲肼诱发组。目前评价药物预防有效性需要解剖动物,记数ACF数量,我们的结果提示,监控动物粪便中Ruminococcus obeum与Allobaculum stercoricanis类似菌的数量具有非损伤性评估化学药物对结肠癌预防效果的潜能。
     本研究第二部分分析了一种益生元物质对人源菌群(human flora-associated,HFA)仔猪大肠各段粘膜黏附菌、内容物细菌与粪便菌群组成的调节作用。样本取自10只HFA仔猪(5只给予益生元,5只作为对照)的盲肠、结肠近端与结肠远端三个位置的内容物和黏膜以及粪便。应用优势细菌(16S rRNA基因的V3区)PCR-DGGE以及柔嫩梭菌、乳酸菌和双歧杆菌的类群特异性PCR-DGGE方法结合多变量统计分析PCA与PLS-DA,对10只HFA仔猪的大肠各段菌群组成情况进行分析。
     大肠各段的优势细菌组成具有一定的空间分布特征,结肠远端黏膜黏附Clostridium sartagoforme的丰度明显高于其它位置,而Streptococcus pasteuri与Faecalibacterium prausnitzii的丰度在结肠远端黏膜中降低。各段内容物与粪便中的优势细菌组成相似,而黏膜与内容物中优势细菌组成存在明显差异,Escherichia coli与一种非培养的细菌(Uncultured bacterium clone E308(DQ 326831))的类似菌在内容物中的丰度高于黏膜黏附菌。柔嫩梭菌的组成也具有一定的空间分布特征,Clostridiaceae bacterium NML的类似菌出现在所有HFA仔猪结肠远端黏膜以及部分HFA仔猪的结肠远端内容物和粪便中,而在盲肠和结肠近端均不存在。大肠内不同部位的生理环境不同可能是各段细菌组成具有一定的空间分布特征的原因,而位置特异性的细菌可能行使着特定的功能,对宿主生理状态的维持起到一定作用。乳酸菌与双歧杆菌的组成简单且没有明显的空间分布差异。本次实验用益生元对HFA仔猪肠道柔嫩梭菌的组成具有明显的调节作用,可以明显增高盲肠与结肠近端内容物中Ruminococcus bromii strain YE282类似菌的丰度。益生元对大肠各部位优势细菌、乳酸菌与双歧杆菌的组成调节能力均不明显。
     本论文的最后一部分研究是针对我们构建HFA仔猪模型过程中遇到的问题及解决方案。我们的两次HFA仔猪实验中的24只受试仔猪中的17只发生严重腹泻最终死亡,经鉴定死亡原因为供体粪便菌悬液中的一种机会致病菌肺炎克雷伯氏菌引起的仔猪感染。目前用于构建HFA小鼠/大鼠的人供体选择标准为表面健康,距离粪便样本采集日至少3个月内没有任何消化系统症状与代谢性疾病,也没有接受过抗生素治疗及添加剂摄入。本实验所用的人供体符合这样的标准还是引起了HFA仔猪死亡。该现象提示,目前应用的供体选择标准对HFA动物的构建还不完善。本研究提出了新的供体粪便菌群悬液安全性评价标准,首先要用培养及分子生物学方法如PCR等对供体粪便菌群悬液中的致病菌与条件致病菌进行检测。其次,使用大剂量(正常剂量的5-10倍)初筛检验合格的供体粪便菌群悬液灌注自然分娩的初生仔猪,灌注至少3天做为预实验。只有预实验中没有遇到问题的供体粪便菌群悬液才能用于HFA仔猪模型的构建。遵循这样的标准,目前为止,我们的HFA仔猪模型没有再遇到大批动物死亡的问题。
The host and the microbiota harboured in the host buildup a whole superorganism. The whole host and microbiota interacts with the environmental factors and affects the health status of the superorganism. Exogenous compounds such as diet, drug or carcinogen may change the structure of intestinal microbiota and the host also may respond to these environmental perturbations. Monitoring the changes of the intestinal microbiota along with the changes of the health status of the superorganism in response to various perturbations will help us understand the role of the intestinal microbiota in the health of the superorganism.
     In the first part of this study, we monitored the gradual shift of intestinal microbiota during the formation of the precancerous lesion of colon cancer induced by the carcinogen 1,2-dimethylhydrazine (DMH) and observed the change of intestinal microbiota when the host was protected with two kinds of Chinese herbs. 28 male Wistar rats weighted 80-100g were divided randomly into four groups. Rats in model group (n=7), Coptidis Rhizoma-Evodiae Fructus herb treated group (n=7) and an oriental prescription consisting of twelve herbs named JFK treated group (n=7) received subcutaneous (s.c.) injection with 1,2-dimethylhydrazine (DMH) and the healthy control group (n=7) with carrier. Coptidis Rhizoma-Evodiae Fructus treated group and JFK treated group were orally dosed with corresponding herbs each day. Fresh feces of the animals in the four groups were collected at the last day of the 3rd, 5th and 9th week of the entire experimental period. V3 region of 16S rRNA gene PCR-DGGE and Bacteroides spp., Clostridium leptum subgroup, Lactic acid bacteria (LAB), Bifidobacterium spp. group specific PCR-DGGE followed by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to monitor the structure of the intestinal microbiota of all rats.
     Fingerprints from V3 region of 16S rRNA gene and Clostridium leptum subgroup PCR-DGGE of fecal samples showed that structures of intestinal microbiota between control and only DMH treated rats were similar at 3rd and slightly different at 5th week, but significantly different from each other at 9th week when (37.7±2.6) aberrant crypt foci(ACF)developed in the only DMH treated rats’colons. Martens’uncertainty test followed by ANOVA test (p<0.05) identified two bands of V3 region of 16S rRNA gene PCR-DGGE which were Ruminococcus-like and Allobaculum-like bacteria by sequence and five bands of Clostridium leptum subgroup PCR-DGGE as key variables for discrimination of ACF rats from controls at the 9th week. Species-specific real-time PCR confirmed the significant abundance increase of Ruminococcus-like and Allobaculum-like bacteria in ACF rats at the 9th week. Fingerprints from Bacteroides spp., Lactic acid bacteria (LAB) and Bifidobacterium spp. group specific PCR-DGGE does not show obvious difference between ACF rats and controls at the 9th week. This structural segregation analysis of intestinal microbiota may become a new strategy for assessing heath status of the host. When the structure of the intestinal microbiota away from the controls, the heath status of the host maybe also change.
     In addition, histopathological examination confirmed formation of (16.7±1.2) ACF in Coptidis Rhizoma-Evodiae Fructus herb treated group and (15.1±2.9) ACF in JFK treated group at 9th week and both of the two formulations of Chinese herbal medicine could significantly reduce the number of ACF in colons. PCA score plot of V3 region of 16S rRNA gene PCR-DGGE fingerprint indicated that structure of intestinal microbiota of the two herbal medicine treated groups were shifted away from the only DMH treated group at the 9th week. Result of species-specific real-time PCR indicated that the abundance of the Ruminococcus obeum and Allobaculum-like bacteria in the two herbal treated groups decreased to the level of healthy control group with the decreased number of ACF, while it is significantly different from the only DMH treated group. Quantifying the decreased number of ACF has been used for evaluating chemoprevention efficiency to colon cancer, but it is an invasive method because it need execute the rats. This work indicates that monitoring the amount of Ruminococcus obeum and Allobaculum-like bacteria may be employed as a non-invasive method for evaluating chemoprevention efficiency of these kinds of complex drugs to colon cancer.
     In the second part of this study, we studied the modulation of fructo-oligosaccharides to mucosa associated bacteria and lumen bacteria of different parts of large intestine and fecal bacteria. Samples were taken from mucosa and content of cecum, proximal colon and distal colon and feces of 10 human flora-associated (HFA) piglets (5 piglets receive prebiotic treatment and 5 piglets as control). V3 region of 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) and Bifidobacterium spp, Lactic acid bacteria (LAB), Clostridium leptum subgroup specific PCR-DGGE followed by PCA and PLS-DA were used to analyze the structure of lumen and mucosa associated bacteria in the different parts of the large intestine and the effect of prebiotic on intestial microbiota.
     Clostridium sartagoforme had higher intensity in the mucosa of distal colon and Streptococcus pasteuri and Faecalibacterium prausnitzii had lower intensity in mucosa of distal colon when compared with other parts. Structure of the predominant bacteria among lumen contents in different parts of large intestine and feces was similar, but, significantly different from mucosa associated bacteria. Escherichia coli and an uncultured bacterium clone E308 (DQ326831)-like bacteria had higher intensity in the content when compared with which in the mucosa sample. Clostridiaceae bacterium NML-like bacteria appeared in the mucosa of distal colon of all piglets but not in the cecum and proximal colon. Structure of Bifidobacterium spp. and LAB had no obvious difference among different sampling positions. The prebiotic supplementation in this study showed modulating effects on the structure of C. leptum in the content of cecum and proximal colon. The intensity of Ruminococcus bromii decreased but Ruminococcus bromii strain YE282-like bacteria increased in the prebiotic treated group. Structure of predominant bacteria, Bifidobacterium spp. and LAB had no obvious difference between the prebiotic treated and control group.
     The last part of of this study is about one problem we met during the HFA piglets establishment and how we solved it. For establishment the HFA piglets, human fecal suspension should be orally inoculated to the newborn piglets. 17 of 24 piglets in two litters died in the first two weeks after the first administration of the human fecal suspension and one strain of opportunistic pathogen Kl. pneumoniae from fecal suspension of an apparently healthy human donor caused the fatal infection in HFA piglets. In most previous studies of establishing HFA rats/mice models, fecal suspension was usually obtained from apparently healthy human donor who had no history of either gastrointestinal or metabolic disorders and did not get any prescriptive supplementary diets and drug treatments for 3 months prior to the fecal collection. However, in these two HFA piglets’trials, our donor according to the current standard still cause death of piglets. This study suggests the previous standard for donor is not safe enough for establishment the HFA animals. Here, we recommend a new protocol for evaluating the safety of the human donor’s flora for HFA animal. First, screening for pathogens and some opportunistic pathogens common for neonatal animal infection should be performed with culture or PCR-based methods. Second, preliminary tests should be performed, in which a large amount of the whole fecal flora (5-10 times of normal dosage) prepared for HFA animals should be orally inoculated to naturally born neonatal animals for at least three days (once a day). Only the whole fecal flora, which does not cause problems in the preliminary test, should be used in the following HFA experiment. According to this standard, until now, we did not meet serious problems during the establishment of HFA piglets.
引文
1. Ley, R.E., D.A. Peterson, and J.I. Gordon, Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006. 124(4): p. 837-48.
    2. Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 2006. 312(5778): p. 1355-9.
    3. Eckburg, P.B., et al., Diversity of the human intestinal microbial flora. Science, 2005. 308(5728): p. 1635-8.
    4. Xu, J. and J.I. Gordon, Inaugural Article: Honor thy symbionts. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10452-9.
    5. Guarner, F. and J.R. Malagelada, Gut flora in health and disease. Lancet, 2003. 361(9356): p. 512-9.
    6. Wilson, K.H. and R.B. Blitchington, Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol, 1996. 62(7): p. 2273-8.
    7. Suau, A., et al., Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol, 1999. 65(11): p. 4799-807.
    8. Moore, W.E. and L.V. Holdeman, Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol, 1974. 27(5): p. 961-79.
    9. Conte, M.P., et al., Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut, 2006. 55(12): p. 1760-7.
    10. Hayashi, H., M. Sakamoto, and Y. Benno, Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol, 2002. 46(8): p. 535-48.
    11. Ventura, M., et al., Molecular microbial analysis of Bifidobacterium isolates from different environments by the species-specific amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol Ecol, 2001. 36(2-3): p. 113-121.
    12. Weidner, S., W. Arnold, and A. Puhler, Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol, 1996. 62(3): p. 766-71.
    13. Hulton, C.S., C.F. Higgins, and P.M. Sharp, ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria.Mol Microbiol, 1991. 5(4): p. 825-34.
    14. Versalovic, J., T. Koeuth, and J.R. Lupski, Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res, 1991. 19(24): p. 6823-31.
    15. Gonzalez, A., et al., Application of molecular methods for the differentiation of acetic acid bacteria in a red wine fermentation. J Appl Microbiol, 2004. 96(4): p. 853-60.
    16. de Bruijn, F.J., Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol, 1992. 58(7): p. 2180-7.
    17. Di Giovanni, G.D., et al., Fingerprinting of mixed bacterial strains and BIOLOG gram-negative (GN) substrate communities by enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR). Curr Microbiol, 1999. 38(4): p. 217-23.
    18. Di Giovanni, G.D., et al., Comparison of Parental and Transgenic Alfalfa Rhizosphere Bacterial Communities Using Biolog GN Metabolic Fingerprinting and Enterobacterial Repetitive Intergenic Consensus Sequence-PCR (ERIC-PCR). Microb Ecol, 1999. 37(2): p. 129-139.
    19. Wei, G., et al., ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J Microbiol Methods, 2004. 59(1): p. 91-108.
    20. Yan, X., et al., Cloning of environmental genomic fragments as physical markers for monitoring microbial populations in coking wastewater treatment system. Microb Ecol, 2007. 53(1): p. 163-72.
    21. Fischer, S.G. and L.S. Lerman, DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A, 1983. 80(6): p. 1579-83.
    22. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    23. Muyzer, G., DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol, 1999. 2(3): p. 317-22.
    24. Zoetendal, E.G., et al., Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol, 2002. 68(7): p. 3401-7.
    25. Zhang, X., et al., Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system. J Microbiol Methods, 2005. 60(1): p. 1-11.
    26. Shen, J., et al., Molecular profiling of the Clostridium leptum subgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol, 2006. 72(8): p. 5232-8.
    27. Heilig, H.G., et al., Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol, 2002. 68(1): p. 114-23.
    28. Pang, X., et al., Molecular profiling of Bacteroides spp. in human feces by PCR-temperature gradient gel electrophoresis. J Microbiol Methods, 2005. 61(3): p. 413-7.
    29. Li, M., et al., Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A, 2008. 105(6): p. 2117-22.
    30. Sghir, A., et al., Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol, 2000. 66(5): p. 2263-6.
    31. Lee, S. and J.A. Fuhrman, DNA hybridization to compare species compositions of natural bacterioplankton assemblages. Appl Environ Microbiol, 1990. 56(3): p. 739-46.
    32. Kuhbacher, T., et al., Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis. Gut, 2006. 55(6): p. 833-41.
    33. Licht, T.R., et al., Dietary carbohydrate source influences molecular fingerprints of the rat faecal microbiota. BMC Microbiol, 2006. 6: p. 98.
    34. Wang, M., et al., T-RFLP combined with principal component analysis and 16S rRNA gene sequencing: an effective strategy for comparison of fecal microbiota in infants of different ages. J Microbiol Methods, 2004. 59(1): p. 53-69.
    35. Wold, S., Martens, H. and Wold, H., The Multivariate Calibration Problem in Chemistry solved by the PLS Method. Proc. Conf. Matrix Pencils, (A. Ruhe and B. K°agstr¨om, Eds.), March 1982. . Lecture Notes in Mathematics 973, Springer Verlag, Heidelberg,, 1983: p. 286–293.
    36. Osten., D.W., Selection of optimal regression models via cross-validation. . J. Chemom., 1988. 2: p. 39–48.
    37. Westad, F., Martens, H,, Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression. J Near Infrared Spectrosc, 2000(8): p. 117-124.
    38. Wang, Y., et al., Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc Natl Acad Sci U S A, 2004. 101(34): p. 12676-81.
    39. Seibel, B.A. and P.J. Walsh, Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J Exp Biol, 2002. 205(Pt 3): p. 297-306.
    40. Nicholls, A.W., R.J. Mortishire-Smith, and J.K. Nicholson, NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem Res Toxicol, 2003. 16(11): p. 1395-404.
    41. Giannella, R.A., S.A. Broitman, and N. Zamcheck, Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut, 1972. 13(4): p. 251-6.
    42. Franklin, M.A. and S.C. Skoryna, Studies on natural gastric flora. I. Bacterial flora of fasting human subjects. Can Med Assoc J, 1966. 95(26): p. 1349-55.
    43. Drasar, B.S., M. Shiner, and G.M. McLeod, Studies on the intestinal flora. I. The bacterial flora of the gastrointestinal tract in healthy and achlorhydric persons. Gastroenterology, 1969. 56(1): p. 71-9.
    44. Bik, E.M., et al., Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A, 2006. 103(3): p. 732-7.
    45. Wang, M., et al., Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol, 2005. 54(2): p. 219-31.
    46. Phillips, M., A. Lee, and W.D. Leach, The mucosa-associated microflora of the rat intestine: a study of normal distribution and magnesium sulphate induced diarrhoea. Aust J Exp Biol Med Sci, 1978. 56(6): p. 649-62.
    47. Edmiston, C.E., Jr., G.R. Avant, and F.A. Wilson, Anaerobic bacterial populations on normal and diseased human biopsy tissue obtained at colonoscopy. Appl Environ Microbiol, 1982. 43(5): p. 1173-81.
    48. Knorr, M.,über die fusospirillare Symbiose, die Gattung Fusobacterium (K. B. Lehmann) und Spirillum sputigenum. II. Mitteilung. Die Gattung Fusobacterium. Zbl. Bakteriol. Parasitenk. Infektkr. Hyg. Abt. , 1923. 1 Orig.(89): p. 4–22.
    49. Pribram, E., A Contribution to the Classification of Microorganisms. J Bacteriol, 1929. 18(6): p. 361-94.
    50. Breed, R.S., E. G. D. Murray, N. R. Smith (ed.). Bergey’s manual of determinative bacteriology, 7th ed. Williams & Wilkins, Baltimore., 1957.
    51. Moore, W.E.C., Holdeman, L. V. & Kelley, R. W. , Genus Fusobacteria Knorr 1922. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, 1984. 1: p. 631- 637.
    52. Jalava, J. and E. Eerola, Phylogenetic analysis of Fusobacterium alocis and Fusobacterium sulci based on 16S rRNA gene sequences: proposal of Filifactor alocis (Cato, Moore and Moore) comb. nov. and Eubacterium sulci (Cato, Moore and Moore) comb. nov. Int J Syst Bacteriol, 1999. 49 Pt 4: p. 1375-9.
    53. Duncan, S.H., et al., Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol, 2002. 52(Pt 6): p. 2141-6.
    54. Croucher, S.C., et al., Bacterial populations associated with different regions of the human colon wall. Appl Environ Microbiol, 1983. 45(3): p. 1025-33.
    55. Peach, S.L. and S. Tabaqchali, Some studies of the bacterial flora associated with the mucosa of the human gastrointestinal tract. Nahrung, 1984. 28(6-7): p. 627-34.
    56. Robinson, I.M., et al., Characterization of predominant bacteria from the colons of normal and dysenteric pigs. Appl Environ Microbiol, 1984. 48(5): p. 964-9.
    57. Green, G.L., et al., Molecular characterization of the bacteria adherent to human colorectal mucosa. J Appl Microbiol, 2006. 100(3): p. 460-9.
    58. Pryde, S.E., et al., Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig. Appl Environ Microbiol, 1999. 65(12): p. 5372-7.
    59. Simpson, J.M., et al., Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J Microbiol Methods, 1999. 36(3): p. 167-79.
    60. Hayashi, H., et al., Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal humancolonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol, 2005. 54(Pt 11): p. 1093-101.
    61. Marteau, P., et al., Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol, 2001. 67(10): p. 4939-42.
    62. Leser, T.D., et al., Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol, 2002. 68(2): p. 673-90.
    63. Gossling, J. and J.M. Slack, Predominant gram-positive bacteria in human feces: numbers, variety, and persistence. Infect Immun, 1974. 9(4): p. 719-29.
    64. Hayashi, H., et al., Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol, 2003. 47(8): p. 557-70.
    65. Lepage, P., et al., Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis, 2005. 11(5): p. 473-80.
    66. Ben-Amor, K., et al., Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Appl Environ Microbiol, 2005. 71(8): p. 4679-89.
    67. Franks, A.H., et al., Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol, 1998. 64(9): p. 3336-45.
    68. Wilson, K.H., J.S. Ikeda, and R.B. Blitchington, Phylogenetic placement of community members of human colonic biota. Clin Infect Dis, 1997. 25 Suppl 2: p. S114-6.
    69. Kuwahara, T., et al., Genetic variation in 16S-23S rDNA internal transcribed spacer regions and the possible use of this genetic variation for molecular diagnosis of Bacteroides species. Microbiol Immunol, 2001. 45(3): p. 191-9.
    70. Bry, L., et al., A model of host-microbial interactions in an open mammalian ecosystem. Science, 1996. 273(5280): p. 1380-3.
    71. Ley, R.E., et al., Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A, 2005. 102(31): p. 11070-5.
    72. Corthier, G., F. Dubos, and P. Raibaud, Modulation of cytotoxin production by Clostridium difficile in the intestinal tracts of gnotobiotic mice inoculated with various human intestinal bacteria. Appl Environ Microbiol, 1985. 49(1): p. 250-2.
    73. Moreau, M.C., et al., Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun, 1978. 21(2): p. 532-9.
    74. Xu, J., et al., A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science, 2003. 299(5615): p. 2074-6.
    75. Hooper, L.V., et al., Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001. 291(5505): p. 881-4.
    76. Smith, C.J. and D.R. Callihan, Analysis of rRNA restriction fragment length polymorphisms fromBacteroides spp. and Bacteroides fragilis isolates associated with diarrhea in humans and animals. J Clin Microbiol, 1992. 30(4): p. 806-12.
    77. Elgouhari, H., M. Othman, and W.H. Gerstein, Bacteroides fragilis vertebral osteomyelitis: case report and a review of the literature. South Med J, 2007. 100(5): p. 506-11.
    78. Swidsinski, A., et al., Spatial organisation of microbiota in quiescent adenoiditis and tonsillitis. J Clin Pathol, 2007. 60(3): p. 253-60.
    79. Pryde, S.E., et al., The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett, 2002. 217(2): p. 133-9.
    80. Scanlan, P.D., et al., Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol, 2008. 10(3): p. 789-98.
    81. Zhang, M., et al., Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J Clin Microbiol, 2007. 45(2): p. 496-500.
    82. Fallani, M., et al., Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16S rRNA targeted probes. J Microbiol Methods, 2006. 67(1): p. 150-61.
    83. Matsuki, T., et al., Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol, 1999. 65(10): p. 4506-12.
    84. Shkoporov, A.N., et al., Application of Several Molecular Techniques to Study Numerically Predominant Bifidobacterium spp. and Bacteroidales Order Strains in the Feces of Healthy Children. Biosci Biotechnol Biochem, 2008.
    85. Requena, T., et al., Identification, detection, and enumeration of human bifidobacterium species by PCR targeting the transaldolase gene. Appl Environ Microbiol, 2002. 68(5): p. 2420-7.
    86. Matsuki, T., et al., Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol, 2004. 70(1): p. 167-73.
    87. Pompei, A., et al., Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol, 2007. 73(1): p. 179-85.
    88. Hamilton-Miller, J.M., Probiotics and prebiotics in the elderly. Postgrad Med J, 2004. 80(946): p. 447-51.
    89. Shiba, T., et al., The suppressive effect of bifidobacteria on Bacteroides vulgatus, a putative pathogenic microbe in inflammatory bowel disease. Microbiol Immunol, 2003. 47(6): p. 371-8.
    90. Macfarlane, G.T. and J.H. Cummings, Probiotics, infection and immunity. Curr Opin Infect Dis, 2002. 15(5): p. 501-6.
    91. Stsepetova, J., et al., Molecularly assessed shifts of Bifidobacterium ssp. and less diverse microbial communities are characteristic of 5-year-old allergic children. FEMS Immunol Med Microbiol, 2007. 51(2): p. 260-9.
    92. Stiles, M.E. and W.H. Holzapfel, Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol, 1997. 36(1): p. 1-29.
    93. Bernet, M.F., et al., Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut, 1994. 35(4): p.483-9.
    94. Sanz, Y., I. Nadal, and E. Sanchez, Probiotics as drugs against human gastrointestinal infections. Recent Patents Anti-Infect Drug Disc, 2007. 2(2): p. 148-56.
    95. Ljungh, A. and T. Wadstrom, Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol, 2006. 7(2): p. 73-89.
    96. Servin, A.L. and M.H. Coconnier, Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol, 2003. 17(5): p. 741-54.
    97. Roberfroid, M.B., et al., Colonic microflora: nutrition and health. Summary and conclusions of an International Life Sciences Institute (ILSI) [Europe] workshop held in Barcelona, Spain. Nutr Rev, 1995. 53(5): p. 127-30.
    98. Cummings, J.H., et al., Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 1987. 28(10): p. 1221-7.
    99. Cummings, J.H. and H.N. Englyst, Fermentation in the human large intestine and the available substrates. Am J Clin Nutr, 1987. 45(5 Suppl): p. 1243-55.
    100. Venter, C.S., H.H. Vorster, and J.H. Cummings, Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am J Gastroenterol, 1990. 85(5): p. 549-53.
    101. Brighenti, F., et al., Effect of neutralized and native vinegar on blood glucose and acetate responses to a mixed meal in healthy subjects. Eur J Clin Nutr, 1995. 49(4): p. 242-7.
    102. Thorburn, A., J. Muir, and J. Proietto, Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism, 1993. 42(6): p. 780-5.
    103. Englyst, K.N., et al., Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response. Am J Clin Nutr, 1999. 69(3): p. 448-54.
    104. Macfarlane, G.T., J.H. Cummings, and C. Allison, Protein degradation by human intestinal bacteria. J Gen Microbiol, 1986. 132(6): p. 1647-56.
    105. Smith, E.A. and G.T. Macfarlane, Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol, 1996. 81(3): p. 288-302.
    106. Salminen, S., et al., Functional food science and gastrointestinal physiology and function. Br J Nutr, 1998. 80 Suppl 1: p. S147-71.
    107. Fallingborg, J., Intraluminal pH of the human gastrointestinal tract. Dan Med Bull, 1999. 46(3): p. 183-96.
    108. Younes, H., et al., Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr, 2001. 86(4): p. 479-85.
    109. Alam, M., T. Midtvedt, and A. Uribe, Differential cell kinetics in the ileum and colon of germfree rats. Scand J Gastroenterol, 1994. 29(5): p. 445-51.
    110. Gordon, J.I., et al., Epithelial cell growth and differentiation. III. Promoting diversity in the intestine: conversations between the microflora, epithelium, and diffuse GALT. Am J Physiol, 1997. 273(3 Pt 1): p. G565-70.
    111. Siavoshian, S., et al., Butyrate and trichostatin A effects on the proliferation/differentiation ofhuman intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut, 2000. 46(4): p. 507-14.
    112. Gibson, P.R., et al., Contrasting effects of butyrate on the expression of phenotypic markers of differentiation in neoplastic and non-neoplastic colonic epithelial cells in vitro. J Gastroenterol Hepatol, 1992. 7(2): p. 165-72.
    113. Shanahan, F., The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol, 2002. 16(6): p. 915-31.
    114. Umesaki, Y., et al., Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol, 1995. 39(8): p. 555-62.
    115. Cebra, J.J., Influences of microbiota on intestinal immune system development. Am J Clin Nutr, 1999. 69(5): p. 1046S-1051S.
    116. Sudo, N., et al., The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol, 1997. 159(4): p. 1739-45.
    117. Duchmann, R., et al., Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur J Immunol, 1996. 26(4): p. 934-8.
    118. Duchmann, R., et al., Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol, 1995. 102(3): p. 448-55.
    119. Mowat, A.M., et al., Oral tolerance: overview and historical perspectives. Ann N Y Acad Sci, 2004. 1029: p. 1-8.
    120. van der Waaij, D., The ecology of the human intestine and its consequences for overgrowth by pathogens such as Clostridium difficile. Annu Rev Microbiol, 1989. 43: p. 69-87.
    121. Baba, E., et al., The role of intestinal microflora on the prevention of Salmonella colonization in gnotobiotic chickens. Poult Sci, 1991. 70(9): p. 1902-7.
    122. Hooper, L.V., et al., A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A, 1999. 96(17): p. 9833-8.
    123. Brook, I., Bacterial interference. Crit Rev Microbiol, 1999. 25(3): p. 155-72.
    124. Lievin, V., et al., Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut, 2000. 47(5): p. 646-52.
    125. Van Leeuwen, P.A., et al., Clinical significance of translocation. Gut, 1994. 35(1 Suppl): p. S28-34.
    126. Berg, R.D., Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol, 1999. 473: p. 11-30.
    127. Lichtman, S.M., Bacterial [correction of baterial] translocation in humans. J Pediatr Gastroenterol Nutr, 2001. 33(1): p. 1-10.
    128. Guarner, C. and G. Soriano, Spontaneous bacterial peritonitis. Semin Liver Dis, 1997. 17(3): p.203-17.
    129. Bingham, S.A., High-meat diets and cancer risk. Proc Nutr Soc, 1999. 58(2): p. 243-8.
    130. Rafter, J. and B. Glinghammar, Interactions between the environment and genes in the colon. Eur J Cancer Prev, 1998. 7 Suppl 2: p. S69-74.
    131. Hughes, R., et al., Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis, 2001. 22(1): p. 199-202.
    132. Rieger, M.A., et al., A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of 'faecal water'. Carcinogenesis, 1999. 20(12): p. 2311-6.
    133. Wollowski, I., G. Rechkemmer, and B.L. Pool-Zobel, Protective role of probiotics and prebiotics in colon cancer. Am J Clin Nutr, 2001. 73(2 Suppl): p. 451S-455S.
    134. Onoue, M., et al., Specific species of intestinal bacteria influence the induction of aberrant crypt foci by 1,2-dimethylhydrazine in rats. Cancer Lett, 1997. 113(1-2): p. 179-86.
    135. Horie, H., et al., Effects of intestinal bacteria on the development of colonic neoplasm II. Changes in the immunological environment. Eur J Cancer Prev, 1999. 8(6): p. 533-7.
    136. Singh, J., et al., Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis, 1997. 18(4): p. 833-41.
    137. Pool-Zobel, B.L., et al., Lactobacillus- and bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr Cancer, 1996. 26(3): p. 365-80.
    138. O'Mahony, L., et al., Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. Aliment Pharmacol Ther, 2001. 15(8): p. 1219-25.
    139. Moore, W.E. and L.H. Moore, Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol, 1995. 61(9): p. 3202-7.
    140. Crogan, N.L. and B.C. Evans, Clostridium difficile: an emerging epidemic in nursing homes. Geriatr Nurs, 2007. 28(3): p. 161-4.
    141. Pakalniskiene, J., et al., A foodborne outbreak of enterotoxigenic E. coli and Salmonella Anatum infection after a high-school dinner in Denmark, November 2006. Epidemiol Infect, 2008: p. 1-6.
    142. Halfvarson, J., et al., Environmental factors in inflammatory bowel disease: a co-twin control study of a Swedish-Danish twin population. Inflamm Bowel Dis, 2006. 12(10): p. 925-33.
    143. Seksik, P., et al., Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut, 2003. 52(2): p. 237-42.
    144. Backhed, F., et al., The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A, 2004. 101(44): p. 15718-23.
    145. Turnbaugh, P.J., et al., Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 2008. 3(4): p. 213-23.
    146. Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444(7122): p. 1027-31.
    147. Backhed, F., et al., Mechanisms underlying the resistance to diet-induced obesity in germ-freemice. Proc Natl Acad Sci U S A, 2007. 104(3): p. 979-84.
    148. Ley, R.E., et al., Microbial ecology: human gut microbes associated with obesity. Nature, 2006. 444(7122): p. 1022-3.
    149. Brugman, S., et al., Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia, 2006. 49(9): p. 2105-8.
    150. Hansen, A.K., et al., Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice. Diabetes Metab Res Rev, 2006. 22(3): p. 220-5.
    151. Yadav, H., S. Jain, and P.R. Sinha, Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition, 2007. 23(1): p. 62-8.
    152. Cani, P.D., et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007. 56(7): p. 1761-72.
    153. Cani, P.D., et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007. 50(11): p. 2374-83.
    154. Shaw, W., E. Kassen, and E. Chaves, Increased urinary excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features. Clin Chem, 1995. 41(8 Pt 1): p. 1094-104.
    155. Bolte, E.R., Autism and Clostridium tetani. Med Hypotheses, 1998. 51(2): p. 133-44.
    156. Parracho, H.M.R.T., et al., Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. Journal of Medical Microbiology, 2005. 54(10): p. 987-991.
    157. Hatheway, C.L., Toxigenic clostridia. Clin Microbiol Rev, 1990. 3(1): p. 66-98.
    158. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 1995. 125(6): p. 1401-12.
    159. Pangburn, M.K., Analysis of the mechanism of recognition in the complement alternative pathway using C3b-bound low molecular weight polysaccharides. J Immunol, 1989. 142(8): p. 2759-65.
    160. Flamm, G., et al., Inulin and oligofructose as dietary fiber: a review of the evidence. Crit Rev Food Sci Nutr, 2001. 41(5): p. 353-62.
    161. Waligora-Dupriet, A.J., et al., Effect of oligofructose supplementation on gut microflora and well-being in young children attending a day care centre. Int J Food Microbiol, 2007. 113(1): p. 108-13.
    162. Mitsuoka, T., H. Hidaka, and T. Eida, Effect of fructo-oligosaccharides on intestinal microflora. Nahrung, 1987. 31(5-6): p. 427-36.
    163. Kleessen, B., et al., Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr, 1997. 65(5): p. 1397-402.
    164. Gibson, G.R., et al., Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology, 1995. 108(4): p. 975-82.
    165. Bouhnik, Y., et al., Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutr Cancer, 1996. 26(1): p. 21-9.
    166. Campbell, J.M., G.C. Fahey, Jr., and B.W. Wolf, Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr, 1997. 127(1): p. 130-6.
    167. Djouzi, Z. and C. Andrieux, Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr, 1997. 78(2): p. 313-24.
    168. Kleessen, B., L. Hartmann, and M. Blaut, Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr, 2003. 89(5): p. 597-606.
    169. Howard, M.D., et al., Effects of dietary supplementation with fructooligosaccharides on colonic microbiota populations and epithelial cell proliferation in neonatal pigs. J Pediatr Gastroenterol Nutr, 1995. 21(3): p. 297-303.
    170. Wang, X. and G.R. Gibson, Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol, 1993. 75(4): p. 373-80.
    171. Fiordaliso, M., et al., Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids, 1995. 30(2): p. 163-7.
    172. Kok, N., et al., Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats. Br J Nutr, 1996. 76(6): p. 881-90.
    173. Ohta, A., et al., Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J Nutr, 1995. 125(9): p. 2417-24.
    174. Ohta, A., et al., Dietary fructooligosaccharides change the concentration of calbindin-D9k differently in the mucosa of the small and large intestine of rats. J Nutr, 1998. 128(6): p. 934-9.
    175. Pierre, F., et al., Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in Min mice. Cancer Res, 1997. 57(2): p. 225-8.
    176. Benyacoub, J., et al., Feeding a diet containing a fructooligosaccharide mix can enhance Salmonella vaccine efficacy in mice. J Nutr, 2008. 138(1): p. 123-9.
    177. Mizubuchi, H., et al., Isomalto-oligosaccharides polarize Th1-like responses in intestinal and systemic immunity in mice. J Nutr, 2005. 135(12): p. 2857-61.
    178. Jacobsen, H., et al., Carbohydrate digestibility predicts colon carcinogenesis in azoxymethane-treated rats. Nutr Cancer, 2006. 55(2): p. 163-70.
    179. Poulsen, M., A.M. Molck, and B.L. Jacobsen, Different effects of short- and long-chained fructans on large intestinal physiology and carcinogen-induced aberrant crypt foci in rats. Nutr Cancer, 2002. 42(2): p. 194-205.
    180. Yeh, S.L., M.S. Lin, and H.L. Chen, Inhibitory effects of a soluble dietary fiber from Amorphophallus konjac on cytotoxicity and DNA damage induced by fecal water in Caco-2 cells. Planta Med, 2007. 73(13): p. 1384-8.
    181. Morita, A., D. Tsao, and Y.S. Kim, Effect of sodium butyrate on alkaline phosphatase in HRT-18, a human rectal cancer cell line. Cancer Res, 1982. 42(11): p. 4540-5.
    182. Olano-Martin, E., et al., In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. Br J Nutr, 2000. 83(3): p. 247-55.
    183. Butel, M.J., A.J. Waligora-Dupriet, and O. Szylit, Oligofructose and experimental model of neonatal necrotising enterocolitis. Br J Nutr, 2002. 87 Suppl 2: p. S213-9.
    184. Guarner, F., Prebiotics in inflammatory bowel diseases. Br J Nutr, 2007. 98 Suppl 1: p. S85-9.
    185. Jemal, A., et al., Cancer statistics, 2006. CA Cancer J Clin, 2006. 56(2): p. 106-30.
    186. Ji, B.T., et al., Colorectal cancer incidence trends by subsite in urban Shanghai, 1972-1994. Cancer Epidemiol Biomarkers Prev, 1998. 7(8): p. 661-6.
    187. Hou, L., et al., Commuting physical activity and risk of colon cancer in Shanghai, China. Am J Epidemiol, 2004. 160(9): p. 860-7.
    188. Pretlow, T.P., et al., Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res, 1991. 51(5): p. 1564-7.
    189. Goss, K.H. and J. Groden, Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol, 2000. 18(9): p. 1967-79.
    190. Nathke, I., APC at a glance. J Cell Sci, 2004. 117(Pt 21): p. 4873-5.
    191. Galiatsatos, P. and W.D. Foulkes, Familial adenomatous polyposis. Am J Gastroenterol, 2006. 101(2): p. 385-98.
    192. Hegde, M., et al., Assay validation for identification of hereditary nonpolyposis colon cancer-causing mutations in mismatch repair genes MLH1, MSH2, and MSH6. J Mol Diagn, 2005. 7(4): p. 525-34.
    193. Pedroni, M., et al., Microsatellite instability and mismatch-repair protein expression in hereditary and sporadic colorectal carcinogenesis. Cancer Res, 2001. 61(3): p. 896-9.
    194. Weitz, J., H.P. Knaebel, and M.W. Buchler, [Sporadic and hereditary colorectal cancer. Pathogenetically different with different therapeutic indications]. Chirurg, 2003. 74(8): p. 717-25.
    195. Diergaarde, B., et al., Dietary factors and microsatellite instability in sporadic colon carcinomas. Cancer Epidemiol Biomarkers Prev, 2003. 12(11 Pt 1): p. 1130-6.
    196. Sanjoaquin, M.A., et al., Nutrition, lifestyle and colorectal cancer incidence: a prospective investigation of 10998 vegetarians and non-vegetarians in the United Kingdom. Br J Cancer, 2004. 90(1): p. 118-21.
    197. O'Keefe, S.J., et al., Why do African Americans get more colon cancer than Native Africans? J Nutr, 2007. 137(1 Suppl): p. 175S-182S.
    198. Spiller, G.A., et al., Effect of tartaric acid and dietary fibre from sun-dried raisins on colonic function and on bile acid and volatile fatty acid excretion in healthy adults. Br J Nutr, 2003. 90(4): p. 803-7.
    199. Ridlon, J.M., S.E. McGarr, and P.B. Hylemon, Development of methods for the detection and quantification of 7alpha-dehydroxylating clostridia, Desulfovibrio vulgaris, Methanobrevibactersmithii, and Lactobacillus plantarum in human feces. Clin Chim Acta, 2005. 357(1): p. 55-64.
    200. Pai, R., A.S. Tarnawski, and T. Tran, Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell, 2004. 15(5): p. 2156-63.
    201. Chung, K.T., S.E. Stevens, Jr., and C.E. Cerniglia, The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol, 1992. 18(3): p. 175-90.
    202. Reddy, B.S., et al., Effect of dietary fiber on colonic bacterial enzymes and bile acids in relation to colon cancer. Gastroenterology, 1992. 102(5): p. 1475-82.
    203. Goldin, B.R. and S.L. Gorbach, Alterations of the intestinal microflora by diet, oral antibiotics, and Lactobacillus: decreased production of free amines from aromatic nitro compounds, azo dyes, and glucuronides. J Natl Cancer Inst, 1984. 73(3): p. 689-95.
    204. Hu, J., et al., Diet and vitamin or mineral supplementation and risk of colon cancer by subsite in Canada. Eur J Cancer Prev, 2007. 16(4): p. 275-91.
    205. Bolognani, F., et al., Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. Eur J Nutr, 2001. 40(6): p. 293-300.
    206. Park, E., et al., A probiotic strain of Bacillus polyfermenticus reduces DMH induced precancerous lesions in F344 male rat. Biol Pharm Bull, 2007. 30(3): p. 569-74.
    207. Larsson, S.C. and A. Wolk, Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am J Clin Nutr, 2007. 86(3): p. 556-65.
    208. Kim, S.E., et al., An association between obesity and the prevalence of colonic adenoma according to age and gender. J Gastroenterol, 2007. 42(8): p. 616-23.
    209. Limburg, P.J., et al., Diabetes mellitus and subsite-specific colorectal cancer risks in the Iowa Women's Health Study. Cancer Epidemiol Biomarkers Prev, 2005. 14(1): p. 133-7.
    210. Terai, K., et al., Greater development of 1,2-dimethylhydrazine-induced colon cancer in a rat model of type 2 diabetes mellitus. J Int Med Res, 2006. 34(4): p. 385-9.
    211. Gillen, C.D., et al., Ulcerative colitis and Crohn's disease: a comparison of the colorectal cancer risk in extensive colitis. Gut, 1994. 35(11): p. 1590-2.
    212. Lichtenstein, P., et al., Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med, 2000. 343(2): p. 78-85.
    213. Whittemore, A.S., et al., Diet, physical activity, and colorectal cancer among Chinese in North America and China. J Natl Cancer Inst, 1990. 82(11): p. 915-26.
    214. Gomez, S.L., et al., Longitudinal, population-based study of racial/ethnic differences in colorectal cancer survival: impact of neighborhood socioeconomic status, treatment and comorbidity. BMC Cancer, 2007. 7: p. 193.
    215. Nelson, R.L., et al., The relation of age, race, and gender to the subsite location of colorectal carcinoma. Cancer, 1997. 80(2): p. 193-7.
    216. Sarli, L., et al., The changing distribution and survival of colorectal carcinoma: an epidemiological study in an area of northern Italy. Eur J Gastroenterol Hepatol, 2005. 17(5): p. 567-72.
    217. McCashland, T.M., et al., Gender differences in colorectal polyps and tumors. Am J Gastroenterol, 2001. 96(3): p. 882-6.
    218. Savas, N., et al., Colorectal cancer localization in young patients: should we expand the screening program? Dig Dis Sci, 2007. 52(3): p. 798-802.
    219. Terry, P., et al., Long-term tobacco smoking and colorectal cancer in a prospective cohort study. Int J Cancer, 2001. 91(4): p. 585-7.
    220. Paskett, E.D., et al., Association between cigarette smoking and colorectal cancer in the Women's Health Initiative. J Natl Cancer Inst, 2007. 99(22): p. 1729-35.
    221. Watson, P., et al., Tobacco use and increased colorectal cancer risk in patients with hereditary nonpolyposis colorectal cancer (Lynch syndrome). Arch Intern Med, 2004. 164(22): p. 2429-31.
    222. Thune, I. and E. Lund, Physical activity and risk of colorectal cancer in men and women. Br J Cancer, 1996. 73(9): p. 1134-40.
    223. Slattery, M.L., et al., Physical activity and colorectal cancer. Am J Epidemiol, 2003. 158(3): p. 214-24.
    224. Fisher, J.A., C. Fikry, and A.B. Troxel, Cutting cost and increasing access to colorectal cancer screening: another approach to following the guidelines. Cancer Epidemiol Biomarkers Prev, 2006. 15(1): p. 108-13.
    225. Veingerl, B., Serum carcinoembryonic antigen levels in patients operated for colorectal carcinoma. Wien Klin Wochenschr, 2001. 113 Suppl 3: p. 32-8.
    226. Ahlquist, D.A., et al., Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology, 2000. 119(5): p. 1219-27.
    227. Katsuki, T., et al., Aged garlic extract has chemopreventative effects on 1,2-dimethylhydrazine-induced colon tumors in rats. J Nutr, 2006. 136(3 Suppl): p. 847S-851S.
    228. Xiao, H., et al., Green tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats. Carcinogenesis, 2008. 29(1): p. 113-9.
    229. Nalini, N., V. Manju, and V.P. Menon, Effect of coconut cake on the bacterial enzyme activity in 1,2-dimethyl hydrazine induced colon cancer. Clin Chim Acta, 2004. 342(1-2): p. 203-10.
    230. Nalini, N., V. Manju, and V.P. Menon, Effect of spices on lipid metabolism in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. J Med Food, 2006. 9(2): p. 237-45.
    231. Kim, C.S., et al., Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J Med Food, 2004. 7(3): p. 267-73.
    232. Fukutake, M., et al., Inhibitory effect of Coptidis Rhizoma and Scutellariae Radix on azoxymethane-induced aberrant crypt foci formation in rat colon. Biol Pharm Bull, 1998. 21(8): p. 814-7.
    233. Iizuka, N., et al., Anticachectic effects of the natural herb Coptidis rhizoma and berberine on mice bearing colon 26/clone 20 adenocarcinoma. Int J Cancer, 2002. 99(2): p. 286-91.
    234. Hsu, W.H., et al., Berberine induces apoptosis in SW620 human colonic carcinoma cells throughgeneration of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Arch Toxicol, 2007. 81(10): p. 719-28.
    235. Ogasawara, M., T. Matsubara, and H. Suzuki, Inhibitory effects of evodiamine on in vitro invasion and experimental lung metastasis of murine colon cancer cells. Biol Pharm Bull, 2001. 24(8): p. 917-20.
    236. Ogasawara, M., et al., Anti-invasive and metastatic activities of evodiamine. Biol Pharm Bull, 2002. 25(11): p. 1491-3.
    237. Ogasawara, M. and H. Suzuki, Inhibition by evodiamine of hepatocyte growth factor-induced invasion and migration of tumor cells. Biol Pharm Bull, 2004. 27(4): p. 578-82.
    1. Jemal, A., et al., Cancer statistics, 2006. CA Cancer J Clin, 2006. 56(2): p. 106-30.
    2. Bingham, S.A., High-meat diets and cancer risk. Proc Nutr Soc, 1999. 58(2): p. 243-8.
    3. Lee, K.J., et al., Physical activity and risk of colorectal cancer in Japanese men and women: the Japan Public Health Center-based prospective study. Cancer Causes Control, 2007. 18(2): p. 199-209.
    4. Gillen, C.D., et al., Ulcerative colitis and Crohn's disease: a comparison of the colorectal cancer risk in extensive colitis. Gut, 1994. 35(11): p. 1590-2.
    5. Moore, W.E. and L.H. Moore, Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol, 1995. 61(9): p. 3202-7.
    6. McGarr, S.E., J.M. Ridlon, and P.B. Hylemon, Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J Clin Gastroenterol, 2005. 39(2): p. 98-109.
    7. Bird, R.P., Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett, 1987. 37(2): p. 147-51.
    8. Pretlow, T.P., et al., Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res, 1991. 51(5): p. 1564-7.
    9. Shimizu, K., et al., Dietary artepillin C suppresses the formation of aberrant crypt foci induced by azoxymethane in mouse colon. Cancer Lett, 2006. 240(1): p. 135-42.
    10. Onoue, M., et al., Specific species of intestinal bacteria influence the induction of aberrant crypt foci by 1,2-dimethylhydrazine in rats. Cancer Lett, 1997. 113(1-2): p. 179-86.
    11. Bolognani, F., et al., Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. Eur J Nutr, 2001. 40(6): p. 293-300.
    12. McIntosh, G.H., P.J. Royle, and M.J. Playne, A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats. Nutr Cancer, 1999. 35(2): p. 153-9.
    13. Goldin, B. and S.L. Gorbach, Alterations in fecal microflora enzymes related to diet, age, lactobacillus supplements, and dimethylhydrazine. Cancer, 1977. 40(5 Suppl): p. 2421-6.
    14. Reddy, B.S., et al., Effect of high-risk diets for colon carcinogenesis on intestinal mucosal and bacterial beta-glucuronidase activity in F344 rats. Cancer Res, 1977. 37(10): p. 3533-6.
    15. Nalini, N., et al., Influence of spices on the bacterial (enzyme) activity in experimental coloncancer. J Ethnopharmacol, 1998. 62(1): p. 15-24.
    16. Deeptha, K., et al., Dose dependent inhibitory effect of dietary caraway on 1,2-dimethylhydrazine induced colonic aberrant crypt foci and bacterial enzyme activity in rats. Invest New Drugs, 2006.
    17. Salyers, A.A., et al., Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol, 1977. 33(2): p. 319-22.
    18. Hoskins, L.C. and N. Zamcheck, Bacterial degradation of gastrointestinal mucins. I. Comparison of mucus constituents in the stools of germ-free and conventional rats. Gastroenterology, 1968. 54(2): p. 210-7.
    19. Nalini, N., V. Manju, and V.P. Menon, Effect of coconut cake on the bacterial enzyme activity in 1,2-dimethyl hydrazine induced colon cancer. Clin Chim Acta, 2004. 342(1-2): p. 203-10.
    20. Inamine, M., et al., Inhibitory effect of dietary monoglucosylceramide 1-O-beta-glucosyl-N-2'-hydroxyarachidoyl-4,8-sphingadienine on two different categories of colon preneoplastic lesions induced by 1,2-dimethylhydrazine in F344 rats. Cancer Sci, 2005. 96(12): p. 876-81.
    21. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    22. Shen, J., et al., Molecular profiling of the Clostridium leptum subgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol, 2006. 72(8): p. 5232-8.
    23. Pang, X., et al., Molecular profiling of Bacteroides spp. in human feces by PCR-temperature gradient gel electrophoresis. J Microbiol Methods, 2005. 61(3): p. 413-7.
    24. Walter, J., et al., Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol, 2001. 67(6): p. 2578-85.
    25. Matsuki, T., et al., Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol, 2004. 70(1): p. 167-73.
    26. Thompson, J.R., L.A. Marcelino, and M.F. Polz, Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by 'reconditioning PCR'. Nucleic Acids Res, 2002. 30(9): p. 2083-8.
    27. Wold, S., Martens, H. and Wold, H., The Multivariate Calibration Problem in Chemistry solved by the PLS Method. Proc. Conf. Matrix Pencils, (A. Ruhe and B. K°agstr¨om, Eds.), March 1982. . Lecture Notes in Mathematics 973, Springer Verlag, Heidelberg,, 1983: p. 286–293.
    28. Osten., D.W., Selection of optimal regression models via cross-validation. . J. Chemom., 1988. 2: p. 39–48.
    29. Westad, F., Martens, H,, Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression. J Near Infrared Spectrosc, 2000(8): p. 117-124.
    30. Wang, R.F., W.W. Cao, and C.E. Cerniglia, PCR detection of Ruminococcus spp. in human andanimal faecal samples. Mol Cell Probes, 1997. 11(4): p. 259-65.
    31. Fiala, E., Investigations into the metabolism and mode of action of the colon carcinogen 1, 2-dimethylhydrazine. Cancer, 1975. 36(6 Suppl): p. 2407-12.
    32. Pozharisski, K.M., et al., Distribution and carcinogenic action of 1,2-dimethylhydrazine (SDMH) in rats. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol, 1976. 87(1): p. 67-80.
    33. Decaens, C., et al., Early oncofetal antigenic modifications during rat colonic carcinogenesis. Cancer Res, 1983. 43(1): p. 355-62.
    34. Ishizuka, S., T. Nagai, and T. Kasai, Administration of anti-asialo GM1 serum increases aberrant crypt foci induced by 1,2-dimethylhydrazine in the large bowel of rats. J Nutr Sci Vitaminol (Tokyo), 1996. 42(6): p. 603-8.
    35. Smith, T.K., R. Mithen, and I.T. Johnson, Effects of Brassica vegetable juice on the induction of apoptosis and aberrant crypt foci in rat colonic mucosal crypts in vivo. Carcinogenesis, 2003. 24(3): p. 491-5.
    36. O'Keefe, S.J., et al., Why do African Americans get more colon cancer than Native Africans? J Nutr, 2007. 137(1 Suppl): p. 175S-182S.
    37. Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 2006. 312(5778): p. 1355-9.
    38. Eckburg, P.B., et al., Diversity of the human intestinal microbial flora. Science, 2005. 308(5728): p. 1635-8.
    39. Gorbach, S.L., et al., Studies of intestinal microflora. I. Effects of diet, age, and periodic sampling on numbers of fecal microorganisms in man. Gastroenterology, 1967. 53(6): p. 845-55.
    40. Holdeman, L.V., I.J. Good, and W.E. Moore, Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol, 1976. 31(3): p. 359-75.
    41. Zoetendal, E.G., A.D. Akkermans, and W.M. De Vos, Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol, 1998. 64(10): p. 3854-9.
    42. Wei, G., et al., ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J Microbiol Methods, 2004. 59(1): p. 91-108.
    43. Ley, R.E., et al., Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A, 2005. 102(31): p. 11070-5.
    44. Backhed, F., et al., Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A, 2007. 104(3): p. 979-84.
    45. Ley, R.E., D.A. Peterson, and J.I. Gordon, Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006. 124(4): p. 837-48.
    46. Halfvarson, J., et al., Environmental factors in inflammatory bowel disease: a co-twin control study of a Swedish-Danish twin population. Inflamm Bowel Dis, 2006. 12(10): p. 925-33.
    47. Seksik, P., et al., Alterations of the dominant faecal bacterial groups in patients with Crohn'sdisease of the colon. Gut, 2003. 52(2): p. 237-42.
    48. Shaw, W., E. Kassen, and E. Chaves, Increased urinary excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features. Clin Chem, 1995. 41(8 Pt 1): p. 1094-104.
    49. Bolte, E.R., Autism and Clostridium tetani. Med Hypotheses, 1998. 51(2): p. 133-44.
    50. Ley, R.E., et al., Microbial ecology: human gut microbes associated with obesity. Nature, 2006. 444(7122): p. 1022-3.
    51. Kaneko, T., S. Tahara, and F. Takabayashi, Inhibitory effect of natural coumarin compounds, esculetin and esculin, on oxidative DNA damage and formation of aberrant crypt foci and tumors induced by 1,2-dimethylhydrazine in rat colons. Biol Pharm Bull, 2007. 30(11): p. 2052-7.
    52. Fukutake, M., et al., Inhibitory effect of Coptidis Rhizoma and Scutellariae Radix on azoxymethane-induced aberrant crypt foci formation in rat colon. Biol Pharm Bull, 1998. 21(8): p. 814-7.
    53. Tai, W.P. and H.S. Luo, [The inhibit effect of berberine on human colon cell line cyclooxygenase-2]. Zhonghua Nei Ke Za Zhi, 2003. 42(8): p. 558-60.
    54. Ogasawara, M., et al., Anti-invasive and metastatic activities of evodiamine. Biol Pharm Bull, 2002. 25(11): p. 1491-3.
    55. Ogasawara, M. and H. Suzuki, Inhibition by evodiamine of hepatocyte growth factor-induced invasion and migration of tumor cells. Biol Pharm Bull, 2004. 27(4): p. 578-82.
    56. Nicholson, J.K., E. Holmes, and I.D. Wilson, Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol, 2005. 3(5): p. 431-8.
    57. Martin, F.P., et al., A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol, 2007. 3: p. 112.
    58. Stellwag, E.J. and P.B. Hylemon, Characterization of 7-alpha-dehydroxylase in Clostridium leptum. Am J Clin Nutr, 1978. 31(10 Suppl): p. S243-S247.
    59. Hirano, S., et al., Isolation and characterization of thirteen intestinal microorganisms capable of 7 alpha-dehydroxylating bile acids. Appl Environ Microbiol, 1981. 41(3): p. 737-45.
    60. Kozoni, V., et al., The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis: differential effect on apoptosis in the presence of a colon carcinogen. Carcinogenesis, 2000. 21(5): p. 999-1005.
    1. Hill, M.J., Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev, 1997. 6 Suppl 1: p. S43-5.
    2. Shanahan, F., The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol, 2002. 16(6): p. 915-31.
    3. Umesaki, Y., et al., Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol, 1995. 39(8): p. 555-62.
    4. Elia, M. and J.H. Cummings, Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates. Eur J Clin Nutr, 2007. 61 Suppl 1: p. S40-74.
    5. Murphy, S.J., T.A. Ullman, and M.T. Abreu, Gut microbes in Crohn's disease: getting to know you better? Am J Gastroenterol, 2008. 103(2): p. 397-8.
    6. Moore, W.E. and L.H. Moore, Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol, 1995. 61(9): p. 3202-7.
    7. Ley, R.E., et al., Microbial ecology: human gut microbes associated with obesity. Nature, 2006. 444(7122): p. 1022-3.
    8. Hansen, A.K., et al., Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice. Diabetes Metab Res Rev, 2006. 22(3): p. 220-5.
    9. Shaw, W., E. Kassen, and E. Chaves, Increased urinary excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features. Clin Chem, 1995. 41(8 Pt 1): p. 1094-104.
    10. O'Keefe, S.J., et al., Why do African Americans get more colon cancer than Native Africans? J Nutr, 2007. 137(1 Suppl): p. 175S-182S.
    11. Zoetendal, E.G., et al., Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol, 2002. 68(7): p. 3401-7.
    12. Eckburg, P.B., et al., Diversity of the human intestinal microbial flora. Science, 2005. 308(5728): p. 1635-8.
    13. Lepage, P., et al., Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis, 2005. 11(5): p.473-80.
    14. Bowey, E., H. Adlercreutz, and I. Rowland, Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem Toxicol, 2003. 41(5): p. 631-6.
    15. Kleessen, B., L. Hartmann, and M. Blaut, Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr, 2003. 89(5): p. 597-606.
    16. Hambly, R.J., et al., Influence of diets containing high and low risk factors for colon cancer on early stages of carcinogenesis in human flora-associated (HFA) rats. Carcinogenesis, 1997. 18(8): p. 1535-9.
    17. Horie, H., et al., Probiotic mixture decreases DNA adduct formation in colonic epithelium induced by the food mutagen 2-amino-9H-pyrido[2,3-b]indole in a human-flora associated mouse model. Eur J Cancer Prev, 2003. 12(2): p. 101-7.
    18. Kibe, R., et al., Movement and fixation of intestinal microbiota after administration of human feces to germfree mice. Appl Environ Microbiol, 2005. 71(6): p. 3171-8.
    19. Hirayama, K., Ex-germfree mice harboring intestinal microbiota derived from other animal species as an experimental model for ecology and metabolism of intestinal bacteria. Exp Anim, 1999. 48(4): p. 219-27.
    20. Raibaud, P., et al., Implantation of bacteria from the digestive tract of man and various animals into gnotobiotic mice. Am J Clin Nutr, 1980. 33(11 Suppl): p. 2440-7.
    21. Pang, X., et al., Inter-species transplantation of gut microbiota from human to pigs. Isme J, 2007. 1(2): p. 156-62.
    22. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 1995. 125(6): p. 1401-12.
    23. Collins, M.D. and G.R. Gibson, Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr, 1999. 69(5): p. 1052S-1057S.
    24. Palframan, R.J., G.R. Gibson, and R.A. Rastall, Effect of pH and dose on the growth of gut bacteria on prebiotic carbohydrates in vitro. Anaerobe, 2002. 8(5): p. 287-92.
    25. Rycroft, C.E., et al., A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol, 2001. 91(5): p. 878-87.
    26. Rycroft, C.E., et al., Fermentation properties of gentio-oligosaccharides. Lett Appl Microbiol, 2001. 32(3): p. 156-61.
    27. Duncan, S.H., et al., Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl Environ Microbiol, 2003. 69(2): p. 1136-42.
    28. Satokari, R.M., et al., Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol, 2001. 67(2): p. 504-13.
    29. Hayashi, H., M. Sakamoto, and Y. Benno, Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. MicrobiolImmunol, 2002. 46(8): p. 535-48.
    30. Wang, M., et al., Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol, 2005. 54(2): p. 219-31.
    31. Edmiston, C.E., Jr., G.R. Avant, and F.A. Wilson, Anaerobic bacterial populations on normal and diseased human biopsy tissue obtained at colonoscopy. Appl Environ Microbiol, 1982. 43(5): p. 1173-81.
    32. Cummings, J.H., et al., Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 1987. 28(10): p. 1221-7.
    33. Fallingborg, J., Intraluminal pH of the human gastrointestinal tract. Dan Med Bull, 1999. 46(3): p. 183-96.
    34. Macfarlane, G.T., G.R. Gibson, and J.H. Cummings, Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol, 1992. 72(1): p. 57-64.
    35. Marteau, P., et al., Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol, 2001. 67(10): p. 4939-42.
    36. Robinson, I.M., et al., Characterization of predominant bacteria from the colons of normal and dysenteric pigs. Appl Environ Microbiol, 1984. 48(5): p. 964-9.
    37. Savage, D.C., Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol, 1977. 31: p. 107-33.
    38. Guarner, F. and J.R. Malagelada, Gut flora in health and disease. Lancet, 2003. 361(9356): p. 512-9.
    39. Roberfroid, M.B., et al., Colonic microflora: nutrition and health. Summary and conclusions of an International Life Sciences Institute (ILSI) [Europe] workshop held in Barcelona, Spain. Nutr Rev, 1995. 53(5): p. 127-30.
    40. Canny, G., A. Swidsinski, and B.A. McCormick, Interactions of intestinal epithelial cells with bacteria and immune cells: methods to characterize microflora and functional consequences. Methods Mol Biol, 2006. 341: p. 17-35.
    41. Acheson, D.W. and S. Luccioli, Microbial-gut interactions in health and disease. Mucosal immune responses. Best Pract Res Clin Gastroenterol, 2004. 18(2): p. 387-404.
    42. Bourlioux, P., et al., The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium "The Intelligent Intestine," held in Paris, June 14, 2002. Am J Clin Nutr, 2003. 78(4): p. 675-83.
    43. Kelly, D. and A.G. Coutts, Early nutrition and the development of immune function in the neonate. Proc Nutr Soc, 2000. 59(2): p. 177-85.
    44. Blum, S., et al., Intestinal microflora and the interaction with immunocompetent cells. Antonie Van Leeuwenhoek, 1999. 76(1-4): p. 199-205.
    45. Zhang, M., et al., Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J Clin Microbiol, 2007. 45(2): p. 496-500.
    46. Macfarlane, S., et al., Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin Infect Dis, 2004. 38(12): p. 1690-9.
    47. Cummings, J.H., G.T. Macfarlane, and S. Macfarlane, Intestinal bacteria and ulcerative colitis. Curr Issues Intest Microbiol, 2003. 4(1): p. 9-20.
    48. Zinkevich, V.V. and I.B. Beech, Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiol Ecol, 2000. 34(2): p. 147-155.
    49. Suvarna, K., et al., Menaquinone (vitamin K2) biosynthesis: localization and characterization of the menA gene from Escherichia coli. J Bacteriol, 1998. 180(10): p. 2782-7.
    50. Bhattacharyya, D.K., O. Kwon, and R. Meganathan, Vitamin K2 (menaquinone) biosynthesis in Escherichia coli: evidence for the presence of an essential histidine residue in o-succinylbenzoyl coenzyme A synthetase. J Bacteriol, 1997. 179(19): p. 6061-5.
    51. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    52. Sghir, A., et al., Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol, 2000. 66(5): p. 2263-6.
    53. Pryde, S.E., et al., Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig. Appl Environ Microbiol, 1999. 65(12): p. 5372-7.
    54. Weng, M., W.A. Walker, and I.R. Sanderson, Butyrate regulates the expression of pathogen-triggered IL-8 in intestinal epithelia. Pediatr Res, 2007. 62(5): p. 542-6.
    55. Inatomi, O., et al., Butyrate blocks interferon-gamma-inducible protein-10 release in human intestinal subepithelial myofibroblasts. J Gastroenterol, 2005. 40(5): p. 483-9.
    56. Kim, Y.S. and J.A. Milner, Dietary modulation of colon cancer risk. J Nutr, 2007. 137(11 Suppl): p. 2576S-2579S.
    57. Klieve, A.V., et al., Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet. J Appl Microbiol, 2007. 103(6): p. 2065-73.
    58. McBain, A.J. and G.T. Macfarlane, Investigations of bifidobacterial ecology and oligosaccharide metabolism in a three-stage compound continuous culture system. Scand J Gastroenterol Suppl, 1997. 222: p. 32-40.
    59. Le Blay, G.M., et al., Raw potato starch and short-chain fructo-oligosaccharides affect the composition and metabolic activity of rat intestinal microbiota differently depending on the caecocolonic segment involved. J Appl Microbiol, 2003. 94(2): p. 312-20.
    60. Roessler, A., et al., The immune system in healthy adults and patients with atopic dermatitis seems to be affected differently by a probiotic intervention. Clin Exp Allergy, 2008. 38(1): p. 93-102.
    61. Macfarlane, G.T. and J.H. Cummings, Probiotics, infection and immunity. Curr Opin Infect Dis, 2002. 15(5): p. 501-6.
    62. Sanz, Y., I. Nadal, and E. Sanchez, Probiotics as drugs against human gastrointestinal infections. Recent Patents Anti-Infect Drug Disc, 2007. 2(2): p. 148-56.
    63. Ljungh, A. and T. Wadstrom, Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol, 2006. 7(2): p. 73-89.
    64. Servin, A.L. and M.H. Coconnier, Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol, 2003. 17(5): p. 741-54.
    65. Waligora-Dupriet, A.J., et al., Effect of oligofructose supplementation on gut microflora and well-being in young children attending a day care centre. Int J Food Microbiol, 2007. 113(1): p. 108-13.
    66. Mitsuoka, T., H. Hidaka, and T. Eida, Effect of fructo-oligosaccharides on intestinal microflora. Nahrung, 1987. 31(5-6): p. 427-36.
    67. Bouhnik, Y., et al., Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutr Cancer, 1996. 26(1): p. 21-9.
    68. Howard, M.D., et al., Effects of dietary supplementation with fructooligosaccharides on colonic microbiota populations and epithelial cell proliferation in neonatal pigs. J Pediatr Gastroenterol Nutr, 1995. 21(3): p. 297-303.
    69. Tannock, G.W., et al., Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol, 2004. 70(4): p. 2129-36.
    1. Roland, N., S. Rabot, and L. Nugon-Baudon, Modulation of the biological effects of glucosinolates by inulin and oat fibre in gnotobiotic rats inoculated with a human whole faecal flora. Food Chem Toxicol, 1996. 34(8): p. 671-7.
    2. Oozeer, R., et al., Lactobacillus casei is able to survive and initiate protein synthesis during its transit in the digestive tract of human flora-associated mice. Appl Environ Microbiol, 2002. 68(7): p. 3570-4.
    3. Kleessen, B., L. Hartmann, and M. Blaut, Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr, 2003. 89(5): p. 597-606.
    4. Bowey, E., H. Adlercreutz, and I. Rowland, Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem Toxicol, 2003. 41(5): p. 631-6.
    5. Perrin-Guyomard, A., et al., Evaluation of residual and therapeutic doses of tetracycline in the human-flora-associated (HFA) mice model. Regul Toxicol Pharmacol, 2001. 34(2): p. 125-36.
    6. Hambly, R.J., et al., Influence of diets containing high and low risk factors for colon cancer on early stages of carcinogenesis in human flora-associated (HFA) rats. Carcinogenesis, 1997.18(8): p. 1535-9.
    7. Horie, H., et al., Probiotic mixture decreases DNA adduct formation in colonic epithelium induced by the food mutagen 2-amino-9H-pyrido[2,3-b]indole in a human-flora associated mouse model. Eur J Cancer Prev, 2003. 12(2): p. 101-7.
    8. Raibaud, P., et al., Implantation of bacteria from the digestive tract of man and various animals into gnotobiotic mice. Am J Clin Nutr, 1980. 33(11 Suppl): p. 2440-7.
    9. Hirayama, K., Ex-germfree mice harboring intestinal microbiota derived from other animal species as an experimental model for ecology and metabolism of intestinal bacteria. Exp Anim, 1999. 48(4): p. 219-27.
    10. Rumney, C.J. and I.R. Rowland, In vivo and in vitro models of the human colonic flora. Crit Rev Food Sci Nutr, 1992. 31(4): p. 299-331.
    11. Rashid, S.T., et al., The use of animal models in developing the discipline of cardiovascular tissue engineering: a review. Biomaterials, 2004. 25(9): p. 1627-37.
    12. Pang, X., et al., Inter-species transplantation of gut microbiota from human to pigs. Isme J, 2007. 1(2): p. 156-62.
    13. Di Cello, F., et al., Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol, 1997. 63(11): p. 4485-93.
    14. Grifoni, A., et al., Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. FEMS Microbiol Lett, 1995. 127(1-2): p. 85-91.
    15. Gillings, M. and M. Holley, Amplification of anonymous DNA fragments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to genetic variation. Electrophoresis, 1997. 18(9): p. 1512-8.
    16. Franklin, R.B., D.R. Taylor, and A.L. Mills, Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD). J Microbiol Methods, 1999. 35(3): p. 225-35.
    17. Spierings, G., et al., Identification of Klebsiella pneumoniae by DNA hybridization and fatty acid analysis. Int J Syst Bacteriol, 1992. 42(2): p. 252-6.
    18. Lind, H.E. and D. Allan, The diagnosis of Klebsiella pneumoniae (Friedlander's bacillus) from the gastrointestinal tract of normal healthy adults. J Bacteriol, 1949. 57(2): p. 159-62.
    19. Alcantar-Curiel, D., et al., Nosocomial bacteremia and urinary tract infections caused by extended-spectrum beta -lactamase-producing Klebsiella pneumoniae with plasmids carrying both SHV-5 and TLA-1 genes. Clin Infect Dis, 2004. 38(8): p. 1067-74.
    20. Ko, W.C., et al., Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis, 2002. 8(2): p. 160-6.
    21. Niyogi, S.K., et al., Enteroaggregative Klebsiella pneumoniae in association with childhood diarrhoea. Indian J Med Res, 2000. 112: p. 133-4.
    22. Chiu, C.H., et al., Liver abscess caused by Klebsiella pneumoniae in siblings. J Clin Microbiol, 2001. 39(6): p. 2351-3.
    23. Sader, H.S., R.N. Jones, and J.B. Silva, Skin and soft tissue infections in Latin American medicalcenters: four-year assessment of the pathogen frequency and antimicrobial susceptibility patterns. Diagn Microbiol Infect Dis, 2002. 44(3): p. 281-8.
    24. Bae, G.B., et al., Emphysematous prostatic abscess due to Klebsiella pneumoniae: report of a case and review of the literature. J Korean Med Sci, 2003. 18(5): p. 758-60.
    25. Ni, Y.H., et al., Community-acquired brain abscess in Taiwan: etiology and probable source of infection. J Microbiol Immunol Infect, 2004. 37(4): p. 231-5.
    26. Aslan, V., et al., Clinical efficacy of florfenicol in the treatment of calf respiratory tract infections. Vet Q, 2002. 24(1): p. 35-9.
    27. Wilcock, B.P., Experimental Klebsiella and Salmonella infection in neonatal swine. Can J Comp Med, 1979. 43(2): p. 200-6.
    28. de Bruijn, F.J., Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol, 1992. 58(7): p. 2180-7.
    29. Gonzalez, A., et al., Application of molecular methods for the differentiation of acetic acid bacteria in a red wine fermentation. J Appl Microbiol, 2004. 96(4): p. 853-60.
    30. Schnapper, A., G. Uhr, and W. Meyer, Growth kinetics of porcine lymphatic organs during early postnatal life. Anat Histol Embryol, 2003. 32(5): p. 297-304.
    31. Ford, H.R., et al., The microenvironment influences the pattern of bacterial translocation in formula-fed neonates. J Pediatr Surg, 1996. 31(4): p. 486-9.
    32. Steinwender, G., et al., Gut-derived bone infection in the neonatal rat. Pediatr Res, 2001. 50(6): p. 767-71.
    33. Sakata, H., K. Fujita, and H. Yoshioka, The effect of antimicrobial agents on fecal flora of children. Antimicrob Agents Chemother, 1986. 29(2): p. 225-9.
    34. Silvi, S., et al., Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. J Appl Microbiol, 1999. 86(3): p. 521-30.
    35. Ogawa, M., et al., Protective effect of Lactobacillus casei strain Shirota on Shiga toxin-producing Escherichia coli O157:H7 infection in infant rabbits. Infect Immun, 2001. 69(2): p. 1101-8.
    36. Van Bost, S., S. Roels, and J. Mainil, Necrotoxigenic Escherichia coli type-2 invade and cause diarrhoea during experimental infection in colostrum-restricted newborn calves. Vet Microbiol, 2001. 81(4): p. 315-29.
    37. Fernandez, M.I., et al., A newborn mouse model for the study of intestinal pathogenesis of shigellosis. Cell Microbiol, 2003. 5(7): p. 481-91.
    38. Burns-Guydish, S.M., et al., Monitoring age-related susceptibility of young mice to oral Salmonella enterica serovar Typhimurium infection using an in vivo murine model. Pediatr Res, 2005. 58(1): p. 153-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700