应用微生物分子生态学方法研究对虾肠道细菌组成及其变化规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对虾肠道中存在大量的微生物群落,它们对宿主的营养、生理、免疫和疾病防御起着重要的作用。近来微生态制剂开始用于对虾养殖中以促进其生长、提高免疫力和减少病害发生。水产微生态制剂作为抗生素的替代品,代表水产养殖病害防治当前和未来的发展方向,但是其被水产动物口服后的作用机理并不是十分清楚。了解对虾肠道微生物区系中微生物的组成、结构及其生理功能如何,在此基础上可以进一步研究外源有益微生物制剂对其影响,将有助于微生态制剂在水产养殖中的有效应用与推广。
     本论文克服传统培养法的缺陷,应用PCR-DGGE法和16S rDNA文库法研究分析中国明对虾和日本囊对虾肠道微生物组成,鉴定其优势种群;比较分析芽孢杆菌和柠檬酸等对日本囊对虾肠道微生物的影响;比较分析水产常用抗生素氟苯尼考对日本囊对虾肠道微生物的影响,为养殖对虾肠道微生物区系的调控技术提供理论依据。主要研究结果如下:
     1.健康成年中国明对虾肠道微生物样品经DGGE分离得到22个不同位置的条带,鉴定后分别属于变形菌门(Proteobacteria)和厚壁菌门(Firmicutes)两大类群,分别为冷杆菌属,不动杆菌属,假单胞菌属,希万氏菌属,海洋螺菌属,弧菌属,Thalassobius属,肠球菌属:构建16S rRNA克隆文库,克隆子经测序比对后分别属于变形菌门(Proteobacteria)和拟
     杆菌门(Bacteroidetes)两大类群,分别为肠杆菌属,弧菌属,希万氏菌属,亮发菌属,红细菌属,弓形杆菌属,Loktanella属,玫瑰杆菌属,黄杆菌属,不可培养细菌。这2种方法都能有效的反映肠道微生物多样性状况,且克隆文库法比DGGE法更完整和全面。结合使用这2种方法,初步反映了中国明对虾肠道微生物多样性信息。结果表明,中国明对虾肠道微生物属于变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)三大类群,其中变形细菌为优势菌群。
     2.日本囊对虾肠道正态微生物区系组成种类主要有红细菌属,肠杆菌属,黄杆菌属,鞘脂单胞菌属,噬纤维素菌属,海神单胞菌属,十八杆菌属,青枯菌属,硫还原菌属,脱硫弧菌属,玫瑰杆菌属,弧菌属和不可培养细菌13个属,分别属于α-proteobacteria,β-proteobacteria,γ-proteobacteria,δ-proteobacteria, Bacteroidetes和不可培养细菌六大类群。
     3.日本囊对虾在使用添加芽孢杆菌的饲料喂养后,肠道微生物种类主要有肠杆菌属,鞘脂单胞菌属,黄色单胞菌属,黄杆菌属,弧菌属,新月形单胞菌属,红细菌属,冷弯菌属,玫瑰杆菌属,芽孢杆菌属,丙酸杆菌属,噬纤维素菌属,海神单胞菌属和不可培养细
     菌,属于α-proteobacteria,γ-proteobacteria, Flavobacteria, Clostridia, Actinobacteria和Bacilli,其中肠杆菌数量明显增多;
     添加芽孢杆菌的饲料喂养后改为普通饲料,肠道微生物种类主要有弧菌属,红细菌属,节杆菌属,Olleya, Lacinutrix, Oceanistipes,普雷沃氏菌属,泛菌属,梨形菌属和不可培养细菌,分别属于α-proteobacteria,γ-proteobacteria, Flavobacteria, Bacteroidetes, Actinobacteria, Planctomycetacia;
     添加芽孢杆菌的饲料喂养后改为饥饿喂养,肠道微生物种类主要有Lacinutrix, Oceanistipes, Aquimarina, Olleya, Thalassobius,玫瑰杆菌属,节杆菌属,弧菌属和不可培养细菌,分别属于α-proteobacteria,γ-proteobacteria, Flavobacteria, Actinobacteria。
     4.日本囊对虾在使用添加柠檬酸的饲料喂养后肠道微生物种类主要有肠杆菌属,黄杆菌属,红杆菌属,不动杆菌属,脱硫叶菌属,海神单胞菌属,芽孢杆菌属,玫瑰杆菌属,螺旋体属,弧菌属和不可培养细菌,属于α-proteobacteria,γ-proteobacteria,δ-proteobacteria, Flavobacteria, Bacillii和Spirochaetes。肠道微生物多样性增加。
     5.日本囊对虾在使用添加氟苯尼考的饲料喂养后肠道微生物主要包括Aranicola, Granulosicoccus, Kocuria,弧菌属,节杆菌属,产黄杆菌属,微杆菌属和不可培养细菌,属于α-proteobacteria,γ-proteobacteria, Actinobacteria。肠道微生物种类减少。
     综上所述,本研究从微生物分子生态学角度,分析中国明对虾和日本囊对虾肠道微生物组成,并探讨抗生素、益生菌和酸化剂等对日本囊对虾肠道微生物区系的影响,研究结果为微生态制剂在水产养殖中的应用和推广提供了理论依据。
The intestinal microflora of shrimp consists of numerous bacterial species that play an important role in the nutrition, physiology, immunity and disease resistance of the host. Recently, many probiotics have been introduced into shrimp culture as bio-friendly agents to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms and increase the production yield. Aquatic probiotics, considered as the substitute of antibiotics, represent the orientation of the preventing and curing of aquacultural animal diseases. However, to understand the relationship between the intestinal microbiota and health, and the metabolic potential of the microbes, and to evaluate the effect of different diets, treatments or medical conditions on the microbiota, fundamental knowledge of the intestinal microbial populations is needed. It will be helpful to the development, popularization and application of aquatic probiotics.
     In the study reported here, PCR-DGGE and 16S rDNA clone library analysis approaches were applied to characterize the diversity of the microbial community in the gut samples of healthy adult Chinese shrimp and kuruma shrimp. The primary goal of the present study was to use molecular methods to characterize the intestinal microbial community in shrimp and evaluate the effect of probiotics, antibiotics and acidulant on the gut microbiota of kuruma shrimp. The present study will be helpful to further understand the significance of probiotics in auqaculture. The results are as follows:
     1. The use of PCR-DGGE and clone library analyses has been shown as appropriate methods for describing the intestinal microbiota of Chinese shrimp (Fenneropenaeus chinensis). And the two different molecular biological methods gave similar results. According to two methods, the gut microbiota of was composed of Firmicutes, Proteobacteria and Bacteroidetes. The results of our study indicated that the predominant bacterial population in the intestine of Chinese shrimp was Proteobacteria and Vibrio sp. was the most abundant bacteria.
     2. The normal gut microbiota of kuruma shrimp consisted of the genera Rhodobacter, Aranicola, Flavobacterium, Sphingomonas, Cellulophaga, Neptunomonas, Octadecabacter, Ralstonia, Desulfurella, Desulfovibrio, Roseobacter, Vibrio and uncultured bacterium, which belonged toα-proteobacteria,β-proteobacteria,γ-proteobacteria,δ-proteobacteria, Bacteroidetes and uncultured bacterium groups.
     3. The addition of Bacillus spp. to the feed of kuruma shrimp led to increased intersubject
     variation and total diversity. The gut microbiota was composed of the genera Aranicola, Sphingomonas, Xanthomonas, Flavobacterium, Vibrio, Selenomonas, Rhodobacter, Psychroflexus, Roseobacter, Bacillus, Propionibacterium, Cellulophaga, Neptunomonas and uncultured bacterium, which belonged toα-proteobacteria,γ-proteobacteria, Flavobacteria, Clostridia, Actinobacteria and Bacilli groups.
     After feeding without Bacillus spp., the gut flora consisted of the genera Vibrio, Rhodobacter, Arthrobacter, Olleya, Lacinutrix, Oceanistipes, Prevotella, Pantoea, Pirellula and uncultured bacterium, which belonged toα-proteobacteria,γ-proteobacteria, Flavobacteria, Bacteroidetes, Actinobacteria and Planctomycetacia groups.
     Or after starvation, the gut flora was coposed of Lacinutrix, Oceanistipes, Aquimarina, Olleya, Thalassobius, Roseobacter, Arthrobacter, Vibrio and uncultured bacterium, which belonged toα-proteobacteria,γ-proteobacteria, Flavobacteria and Actinobacteria groups.
     4. The addition of citric acid to the feed of kuruma shrimp led to increased gut microbial diversity. The gut microbiota was composed of the genera Aranicola, Flavobacterium, Rhodobacter, Acinetobacter, Desulfobulbus, Neptunomonas, Bacillus, Roseobacter, Spirochaeta, Vibrio and uncultured bacterium, which belonged toα-proteobacteria,γ-proteobacteria,δ-proteobacteria, Flavobacteria, Bacilli and Spirochaetes groups.
     5. The addition of florfenicol to the feed of kuruma shrimp led to decreased gut microbial diversity. The gut microbiota was composed of the genera Aranicola, Granulosicoccus, Kocuria, Vibrio, Arthrobacter, Rhodanobacter, and uncultured bacterium, which belonged toα-proteobacteria,γ-proteobacteria and Actinobacteria groups.
     Overall, the present study characterized the diversity of the microbial community in the gut samples of healthy adult Chinese shrimp and kuruma shrimp and evaluated evaluate the effect of probiotics, antibiotics and acidulant on the gut microbiota of kuruma shrimp. The results will be helpful to the development, popularization and application of aquatic probiotics.
引文
[1]SAARELA M, MOGENSEN Q FONDEN R, et al. Probiotic bacteria: safety, functional and technological properties [J]. Journal of Biotechnology,2000,84(3):197-215.
    [2]王彦波,查龙应,许梓荣.微生态制剂改善对虾养殖池塘底质的效果[J].应用生态学报,2006,17(009):1765-7.
    [3]LILLY D, STILLWELL R. Probiotics: Growth promoting substances produced by microorganisms [J]. Science,1965,147(6):747-8.
    [4]隋大鹏.微生态制剂对南美白对虾生长和非特异性免疫因子影响的研究[D];中国海洋大学,2003.
    [5]丁贤,李卓佳,陈永青,et a1.芽孢杆菌对凡纳对虾生长和消化酶活性的影响[J].中国水产科学,2004,11(006):580-4.
    [6]张新明,付宁.微生态制剂对凡纳滨对虾的促生长作用[J].齐鲁渔业,2006,23(004):41-2.
    [7]ALAVANDI S, VIJAYAN K, SANTIAGO T, et al. Evaluation of Pseudomonas sp. PM 11 and Vibrio fluvialis PM 17 on immune indices of tiger shrimp, Penaeus monodon [J]. Fish & Shellfish Immunology,2004,17(2):115-20.
    [8]GULLIAN M, THOMPSON F, RODRIGUEZ J. Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei [J]. Aquaculture,2004,233(1-4):1-14.
    [9]RENGPIPAT S, RUKPRATANPORN S, PIYATIRATITIVORAKUL S, et al. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11) [J]. Aquaculture,2000,191(4):271-88.
    [10]吴垠,王斌,祝国芹,康白,孔庆友.微生态制剂对提高中国明对虾抗病力的研究[J].中国微生态学杂志,1996,8(1):28-32.
    [11]PARKER R. Probiotics, the other half of the antibiotic story [J]. Animal Nutrition and Health,1974,29(1):4-8.
    [12]FULLER R. Probiotics in man and animals [J]. The Journal of applied bacteriology,1989, 66(5):365.
    [13]TANNOCK G Modification of the normal microbiota by diet, stress, antimicrobial agents and probiotics [J]. Gastrointestinal microbiology,1997,2(5):434-65.
    [14]MORIARTY D. Control of luminous Vibrio species in penaeid aquaculture ponds [J]. Aquaculture,1998,164(1-4):351-8.
    [15]SALMINEN S, OUWEHAND A, BENNO Y, et al. Probiotics: how should they be defined? [J]. Trends in food science & technology,1999,10(3):107-10.
    [16]GRAM L, MELCHIORSEN J, SPANGGAARD B, et al. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish [J]. Applied and Environmental Microbiology,1999,65(3):969.
    [17]GATESOUPE F. The use of probiotics in aquaculture [J]. Aquaculture,1999,180(1): 147-66.
    [18]VERSCHUERE L, ROMBAUT G, SORGELOOS P, et al. Probiotic bacteria as biological control agents in aquaculture [J]. Microbiology and Molecular Biology Reviews,2000,64(4): 655.
    [19]COLLINS M, GIBSON G. Probiotics, prebiotics, and synbiotics:approaches for modulating the microbial ecology of the gut [J]. American Journal of Clinical Nutrition,1999,69(5): 1052S-7S.
    [20]李光友,于义德.光合细菌作为对虾育苗期饵料添加剂试验[J].海洋科学,1993,001:52-4.
    [21]CORRE V. Sustainable shrimp culture techniques: use of probiotics and reservoirs with" green water" [M]. Philippine Council for Aquatic and Marine Research and Development,1999.
    [22]AMANN R, LUDWIG W, SCHLEIFER K. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiology and Molecular Biology Reviews,1995,59(1):143.
    [23]GIOVANNONI S, RAPP M. Evolution, diversity, and molecular ecology of marine prokaryotes [J].2000.
    [24]WOESE C, FOX G. Phylogenetic structure of the prokaryotic domain: The primary kingdoms [J]. Proceedings of the National Academy of Sciences USA,1977,74(11):5088-90.
    [25]PACE N, STAHL D, LANE D, et al. The analysis of natural microbial populations by ribosomal RNA sequences [J]. Advances in microbial ecology,1986,9:1-55.
    [26]NICKEL J, DOWNEY J, JOHNSTON B, et al. Predictors of patient response to antibiotic therapy for the chronic prostatitis/chronic pelvic pain syndrome: a prospective multicenter clinical trial [J]. The Journal of urology,2001,165(5):1539-44.
    [27]NODA H, NAKASHIMA N, KOIZUMI M. Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18S rDNA Sequences [J]. Insect biochemistry and molecular biology,1995,25(5):639-46.
    [28]DUNBAR J, WHITE S, FORNEY L. Genetic diversity through the looking glass:effect of enrichment bias [J]. Applied and Environmental Microbiology,1997,63(4):1326.
    [29]FISCHER S, LERMAN L. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis [J]. Cell,1979,16(1):191-200.
    [30]MYERS R, FISCHER S, LERMAN L, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research,1985,13(9):3131.
    [31]MUYZER G, DE WAAL E, UITTERLINDEN A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993,59(3):695.
    [32]RIESNER D, HENCO K, STEGER G Temperature-gradient gel electrophoresis: a method for the analysis of conformational transitions and mutations in nucleic acids and proteins [J]. Adv Electrophor,1991,4:169-250.
    [33]HAYASHI K, ORITA M, SUZUKI Y, et al. Use of labeled primers in polymerase chain reaction (LP-PCR) for a rapid detection of the product [J]. Nucleic Acids Research,1989,17(9): 3605.
    [34]YAP E, MCGEE J. Nonisotopic discontinuous phase single strand conformation polymorphism (DP-SSCP): genetic profiling of D-loop of human mitochondrial (mt) DNA [J]. Nucleic Acids Research,1993,21:4155-4156.
    [35]DELBES C, MOLETTA R, GODON J. Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem [J]. FEMS microbiology ecology,2006,35(1):19-26.
    [36]MARSH T, SAXMAN P, COLE J, et al. Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis [J]. Applied and Environmental Microbiology,2000,66(8):3616.
    [37]KAPLAN C, KITTS C. Variation between observed and true terminal restriction fragment length is dependent on true TRF length and purine content [J]. Journal of microbiological methods,2003,54(1):121-5.
    [38]WILLIAMS J, KUBELIK A, LIVAK K, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Research,1990,18(22):6531.
    [39]HULTON C, HIGGINS C, SHARP P. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli [J]. Salmonella typhimurium and other enterobacteria,1991.
    [40]GALL J, PARDUE M. Formation and detection of RNA-DNA hybrid molecules in cytological preparations [J]. Proceedings of the National Academy of Sciences of the United States of America,1969,63(2):378.
    [41]AMANN R, KRUMHOLZ L, STAHL D. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology [J]. Journal of Bacteriology,1990,172(2):762.
    [42]SCHENA M, SHALON D, DAVIS R, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science,1995,270(5235):467.
    [43]LOY A, LEHNER A, LEE N, et al. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment [J]. Applied and Environmental Microbiology,2002,68(10):5064.
    [44]WILSON K, WILSON W, RADOSEVICH J, et al. High-density microarray of small-subunit ribosomal DNA probes [J]. Applied and Environmental Microbiology,2002,68(5): 2535.
    [45]EL FANTROUSSI S, URAKAWA H, BERNHARD A, et al. Direct profiling of environmental microbial populations by thermal dissociation analysis of native rRNAs hybridized to oligonucleotide microarrays [J]. Applied and Environmental Microbiology,2003, 69(4):2377.
    [46]LESER T, AMENUVOR J, JENSEN T, et al. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited [J]. Applied and Environmental Microbiology, 2002,68(2):673.
    [47]HEID C, STEVENS J, LIVAK K, et al. Real time quantitative PCR [J]. Genome research, 1996,6(10):986.
    [48]GIBSON U, HEID C, WILLIAMS P. A novel method for real time quantitative RT-PCR [J]. Genome research,1996,6(10):995.
    [49]KLEIN D. Quantification using real-time PCR technology: applications and limitations [J]. Trends in molecular medicine,2002,8(6):257-60.
    [50]SOLBRIG O. From genes to ecosystems: a research agenda for biodiversity [J]. Cambridge, MA,1991.
    [51]HANDELSMAN J, RONDON M, BRADY S, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products [J]. Chemistry & biology,1998,5(10):R245-R9.
    [52]RONDON M, AUGUST P, BETTERMANN A, et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms [J]. Applied and Environmental Microbiology,2000,66(6):2541.
    [53]FERRER M, GOLYSHINA O, CHERNIKOVA T, et al. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora [J]. Environmental Microbiology,2005, 7(12):1996-2010.
    [54]TRINGE S, VON MERING C, KOBAYASHI A, et al. Comparative metagenomics of microbial communities [J]. Science,2005,308(5721):554.
    [55]TYSON G, CHAPMAN J, HUGENHOLTZ P, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment [J]. Nature,2004,428(6978): 37-43.
    [56]VENTER J, REMINGTON K, HEIDELBERG J, et al. Environmental genome shotgun sequencing of the Sargasso Sea [J]. Science,2004,304(5667):66.
    [57]WINTZINGERODE F, GOBEL U B, STACKEBRANDT E. Determination of microbial diversity in environmental samples:pitfalls of PCR-based rRNA analysis [J]. Fems Microbiology Reviews,1997,21(3):213-29.
    [58]GONG J, SI W, FORSTER R, et al.16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca [J]. FEMS microbiology ecology,2006,59(1):147-57.
    [59]WANG Z, SHI S, XU M, et al.16S rRNA-based analysis of bacterial diversity in the microbial flora of the goose intestinal tract [J]. Journal of Animal and Feed Sciences,2009,18: 531-40.
    [60]PIEPER R, JANCZYK P, ZEYNER A, et al. Ecophysiology of the developing total bacterial and Lactobacillus communities in the terminal small intestine of weaning piglets [J]. Microbial ecology,2008,56(3):474-83.
    [61]TAJIMA K, AMINOV R, NAGAMINE T, et al. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries [J]. FEMS microbiology ecology,2006,29(2): 159-69.
    [62]SUCHODOLSKI J, CAMACHO J, STEINER J. Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis [J]. FEMS microbiology ecology,2008,66(3):567-78.
    [63]DEPLANCKE B, HRISTOVA K, OAKLEY H, et al. Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract [J]. Applied and Environmental Microbiology,2000,66(5):2166.
    [64]BIBILONI R, SIMON M, ALBRIGHT C, et al. Analysis of the large bowel microbiota of colitic mice using PCR/DGGE [J]. Letters in applied microbiology,2005,41(1):45-51.
    [65]FREY J, ROTHMAN J, PELL A, et al. Fecal bacterial diversity in a wild gorilla [J]. Applied and Environmental Microbiology,2006,72(5):3788.
    [66]WEI G, LU H, ZHOU Z, et al. The microbial community in the feces of the giant panda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clone library analysis [J]. Microbial ecology,2007,54(1):194-202.
    [67]BAUER S, THOLEN A, OVERMANN J, et al. Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood-and soil-feeding termites by molecular and culture-dependent techniques [J]. Archives of microbiology,2000,173(2):126-37.
    [68]MR ZEK J, TROSOV L, FLIEGEROV K, et al. Diversity of insect intestinal microflora [J]. Folia Microbiologica,2008,53(3):229-33.
    [69]BRODERICK N, RAFFA K, GOODMAN R, et al. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods [J]. Applied and Environmental Microbiology,2004,70(1):293.
    [70]WANG M, AHRN S, JEPPSSON B, et al. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes [J]. FEMS microbiology ecology,2005,54(2):219-31.
    [71]CHASSARD C, SCOTT K, MARQUET P, et al. Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches [J]. FEMS microbiology ecology,2008,66(3):496-504.
    [72]LEDERBERG J, MCCRAY A.'Ome sweet'omics-a genealogical treasury of words [J]. Sciences Philadelphia,2001,15(7):7-8.
    [73]HARRIS J. The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis [J]. Microbial ecology,1993,25(3):195-231.
    [74]SUGITA H, ENOMOTO A, DEGUCHI Y. Intestinal Microflora in the Fry of Tilapia mossambica [J]. Bulletin of the Japanese Society of Scientific Fisheries,1982,48(6):875.
    [75]SAKATA T, SUGITA H, MITSUOKA T, et al. Characteristics of Obligate Anaerobic Bacteria in the Intestines of Freshwater Fish [J]. Bulletin of the Japanese Society of Scientific Fisheries,1981,47(3):421-7.
    [76]HARUE S, MARGOLIS L. Camparison of microflora between intestinal contents and fecal pellets of freshwater fishes [J]. Nippon Suisan Gakkaishi,1987,51(8):1325-9.
    [77]王红宁,胡廷秀,何明清,et al.微生物添加剂饲喂鲤鱼肠道菌群的变化研究[J].四川农业大学学报,1994,12:654-7.
    [78]TRUST T, BULL L, CURRIE B, et al. Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp (Ctenopharyngodon idella), goldfish (Carassius auratus), and rainbow trout (Salmo gairdneri) [J]. Journal of the Fisheries Research Board of Canada (Canada), 1979.
    [79]SUGITA H, OSHIMA K, TAMURA M, et al. Bacterial flora in the gastrointestine of freshwater fishes in the river [J]. Bull Jap Soc Sci Fish,1983,49:1387-95.
    [80]MACFARLANE R, MCLAUGHLIN J, BULLOCK G. Quantitative and qualitative studies of gut flora in striped bass from estuarine and coastal marine environments [J]. Journal of Wildlife Diseases,1986,22(3):344.
    [81]SUGITA H, TOKUYAMA K, DEGUCHI Y. The intestinal microflora of carp Cyprinus carpio, grass carp Ctenopharyngodon idella and tilapia Sarotherodon niloticus [J]. Bull Japan Soc Sci Fish,1985,51:1325-9.
    [82]GATESOUPE F. The continuous feeding of turbot larvae, Scophthalmus maximus, and control of the bacterial environment of rotifers [J]. Aquaculture,1990,89(2):139-48.
    [83]MARGOLIS L. The effect of fasting on the bacterial flora of the intestine of fish [J]. J Fish Res Board Can,1953,10(2):62-3.
    [84]LISTON J. The occurrence and distribution of bacterial types on flatfish [J]. Microbiology, 1957,16(1):205.
    [85]SAMPLES F. Isolation and Distribution of Obligate Anaerobic Bacteria from the Intestines of Freshwater Fish [J]. Bulletin of the Japanese Society of Scientific Fisheries,1980,46(10): 1249-55.
    [86]MATHEIS T. Okologie der bakterien im van siiwassernutzfischen [J]. Z Fisheries,1964,12: 507-600.
    [87]SUGITA H, FUSHINO T, OSHIMA K, et al. Microflora in the water and sediment of freshwater culture ponds [J]. Bulletin of the Japanese Society of Scientific Fisheries,1985,51(1): 91-7.
    [88]杨雨辉,佟恒敏,卢彤岩,et al.乳酸环丙沙星对鲤鱼肠道菌群的影响[J].中国兽医杂志,2003,39(10):38-40.
    [89]周文豪,陈孝煊.摄食不同饵料对草鱼肠道菌群影响的研究[J].华中农业大学学报,1998,17(003):252-6.
    [90]冯晓燕,郑家声,王梅林.许氏平鲉消化道的组织化学研究[J].青岛海洋大学学报:自然科学版,2003,33(003):399-404.
    [91]曾勇,袁明雄.健康草鱼肠道气单胞菌季节变化及胞外酶调查[J].中国水产科学,1999,6(002):79-81.
    [92]AL-HARBI A, UDDIN N. Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus×Oreochromis aureus) cultured in earthen ponds in Saudi Arabia [J]. Aquaculture,2004,229(1-4):37-44.
    [93]HAGI T, TANAKA D, IWAMURA Y, et al. Diversity and seasonal changes in lactic acid bacteria in the intestinal tract of cultured freshwater fish [J]. Aquaculture,2004,234(1-4): 335-46.
    [94]LEAMASTER B, WALSH W, BROCK J, et al. Cold stress-induced changes in the aerobic heterotrophic gastrointestinal tract bacterial flora of red hybrid tilapia [J]. Journal of Fish Biology,1997,50(4):770-80.
    [95]AUSTIN B, AUSTIN D. Bacterial fish pathogens: disease of farmed and wild fish [M]. Springer Verlag,2007.
    [96]尹军霞,张建龙,沈文英,et al.鱼食性与肠道菌群关系的初步研究[J].水产科学,2004,23(003):4-6.
    [97]曹志华,易万军.尿素对鲤鱼消化道菌群的影响[J].湖北农学院学报,2001,21(003):226-8.
    [98]HAMID A, SAKATA T, KAKIMOTO D. Microflora in the Alimentary Tract of Gray Mullet-A Icomparison of the Mullet intestinal microtlora in tresh and sea water [J]. Bulletin of the Japanese Society of Scientific Fisheries,1978,44(1):53-7.
    [99]蒋长苗,鲍传和.草鱼肠道正常菌群与肠炎病原菌关系的初步研究[J].吉林农业大学学报,1992,14(001):55-8.
    [100]DEMPSEY A, KITTING C, ROSSON R. Bacterial variability among individual penaeid shrimp digestive tracts [J]. Crustaceana,1989,267-78.
    [101]YASUDA K, KITAO T. Bacterial flora in the digestive tract of prawns, Penaeus japonicus Bate [J]. Aquaculture,1980,19(3):229-34.
    [102]WANG X, LI H, ZHANG X, et al. Microbial flora in the digestive tract of adult penaeid shrimp (Penaeus chinensis) [J]. J Ocean Univ Qingdao,2000,30:493-8.
    [103]宛立,王吉桥,高峰,et al.南美白对虾肠道细菌菌群分析[J].水产科学,2006,25(001):13-5.
    [104]MOSS S, LEAMASTER B, SWEENEY J. Relative abundance and species composition of gram-negative, aerobic bacteria associated with the gut of juvenile white shrimp Litopenaeus vannamei reared in oligotrophic well water and eutrophic pond water [J]. Journal of the World Aquaculture Society,2007,31(2):255-63.
    [105]TSAI Y, OLSON B. Rapid method for direct extraction of DNA from soil and sediments [J]. Applied and Environmental Microbiology,1991,57(4):1070.
    [106]VOLOSSIOUK T, ROBB E, NAZAR R. Direct DNA extraction for PCR-mediated assays of soil organisms [J]. Applied and Environmental Microbiology,1995,61(11):3972.
    [107]ROOSE-AMSALEG C, GARNIER-SILLAM E, HARRY M. Extraction and purification of microbial DNA from soil and sediment samples [J]. Applied Soil Ecology,2001,18(1):47-60.
    [108]CULLEN D, HIRSCH P. Simple and rapid method for direct extraction of microbial DNA from soil for PCR [J]. Soil Biology and Biochemistry,1998,30(8):983-93.
    [109]GRIFFITHS R, WHITELEY A, O'DONNELL A, et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA-and rRNA-based microbial community composition [J]. Applied and Environmental Microbiology,2000,66(12): 5488.
    [110]OGRAM A, SAYLER G, BARKAY T. The extraction and purification of microbial DNA from sediments [J]. Journal of microbiological methods,1987,7(2-3):57-66.
    [111]ZHOU J, BRUNS M, TIEDJE J. DNA recovery from soils of diverse composition [J]. Applied and Environmental Microbiology,1996,62(2):316.
    [112]STAHL D, FLESHER B, MANSFIELD H, et al. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology [J]. Applied and Environmental Microbiology,1988,54(5):1079.
    [113]PORTEOUS L, SEIDLER R, WATRUD L. An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications [J]. Molecular Ecology,1997,6(8):787-91.
    [114]MILLER D, BRYANT J, MADSEN E, et al. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples [J]. Applied and Environmental Microbiology,1999,65(11):4715.
    [115]HELMUT B, MANUEL P, FRANCO W, et al. A strategy for optimizing quality and quantity of DNA extracted from soil [J]. Journal of microbiological methods,2001,45(1):7-20.
    [116]MURRAY M, THOMPSON W. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Research,1980,8(19):4321.
    [117]MARCHESI J R, SATO T, WEIGHTMAN A J, et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA [M]. Am Soc Microbiol.1998:795.
    [118]LI M, GONG J, COTTRILL M, et al. Evaluation of QIAamp(?) DNA Stool Mini Kit for ecological studies of gut microbiota [J]. Journal of microbiological methods,2003,54(1):13-20.
    [119]WESTON D. Environmental considerations in the use of antibacterial drugs in aquaculture [J]. Aquaculture and Water Resource Management,1996,140-65.
    [120]GATESOUPE F J. The use of probiotics in aquaculture [J]. Aquaculture,1999,180(1-2): 147-65.
    [121]VERSCHUERE L, ROMBAUT G, SORGELOOS P, et al. Probiotic bacteria as biological control agents in aquaculture [J]. Microbiol Mol Biol Rev,2000,64(4):655-71.
    [122]DEVARAJA T N, YUSOFF F M, SHARIFF M. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products [J]. Aquaculture,2002, 206(3-4):245-56.
    [123]FISCHER S G, LERMAN L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory [J]. Proc Natl Acad Sci USA,1983,80(6):1579-83.
    [124]LERMAN L S, FISCHER S G, HURLEY I, et al. Sequence-determined DNA separations [J]. Annu Rev Biophys Bioeng,1984,13(399-423.
    [125]MYERS R M, FISCHER S G, LERMAN L S, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis [J]. Nucleic Acids Res,1985,13(9):3131-45.
    [126]MYERS R M, FISCHER S G, MANIATIS T, et al. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis [J]. Nucleic Acids Res,1985,13(9):3111-29.
    [127]MUYZER G, DE WAAL E C, UITTERLINDEN A G Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl Environ Microbiol,1993,59(3): 695-700.
    [128]GOMES N C, FAGBOLA O, COSTA R, et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics [J]. Appl Environ Microbiol,2003,69(7):3758-66.
    [129]SMALLA K, WIELAND G, BUCHNER A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed [J]. Appl Environ Microbiol,2001,67(10):4742-51.
    [130]EICHNER C A, ERB R W, TIMMIS K N, et al. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community [J]. Appl Environ Microbiol,1999,65(1):102-9.
    [131]SEKIGUCHI H, WATANABE M, NAKAHARA T, et al. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis [J]. Appl Environ Microbiol,2002,68(10):5142-50.
    [132]TESKE A, WAWER C, MUYZER G, et al. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments [J]. Appl Environ Microbiol,1996,62(4):1405-15.
    [133]WATANABE K, WATANABE K, KODAMA Y, et al. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities [J]. Appl Environ Microbiol,2000,66(11):4803-9.
    [134]FERRIS M J, MUYZER G, WARD D M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community [J]. Appl Environ Microbiol,1996,62(2):340-6.
    [135]SIMPSON J M, MCCRACKEN V J, WHITE B A, et al. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota [J]. J Microbiol Methods,1999,36(3):167-79.
    [136]WANG G C, WANG Y. Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes [J]. Appl Environ Microbiol,1997,63(12):4645-50.
    [137]MUYZER G DGGE/TGGE a method for identifying genes from natural ecosystems [J]. Curr Opin Microbiol,1999,2(3):317-22.
    [138]MUYZER G, SMALLA K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Antonie Van Leeuwenhoek,1998,73(1):127-41.
    [139]TORSVIK V, GOKSOYR J, DAAE F L. High diversity in DNA of soil bacteria [J]. Appl Environ Microbiol,1990,56(3):782-7.
    [140]DEMPSEY A C, KITTING C L, ROSSON R A. Bacterial Variability Among Individual Penaeid Shrimp Digestive Tracts[J]. Crustaceana,1989,56:267-78.
    [141]王祥红,李会荣.中国对虾成虾肠道微生物区系[J].青岛海洋大学学报,2000,30(3):493-498.
    [142]李志勇,何丽明,吴杰,et al.基于PCR-DGGE基因指纹的对虾体内优势细菌组成分析[J].微生物学通报,2005,32(3):82-86.
    [143]罗鹏,胡超群,谢珍玉,et al.凡纳滨对虾咸淡水养殖系统内细菌群落组成的PCR-DGGE分析[J].热带海洋学报,2006,25(2):49-53.
    [144]李可,郑天凌,田蕴,et al.南美白对虾肠道微生物群落的分子分析[J].微生物学报,2007,47(4):649-653.
    [145]刘瑞玉,胡超群,曹登宫.我国对虾养殖的现状,研究进展与存在的若干问题[M].2004.
    [146]王雷,刘梅,王宝杰,et al.用于养殖环境调控的微生物制剂评价方法的研究[M].2009:6-10.
    [147]TANNOCK G W. Studies of the intestinal microflora: a prerequisite for the development of probiotics [M]. Elsevier.1998:527-33.
    [148]GOOD I. The population frequencies of species and the estimation of population parameters [J]. Biometrika,1953,40(3-4):237.
    [149]YASUDA K, KITAO T. Bacterial flora in the digestive tract of prawns, Penaeus japonicus Bate [M].1980.
    [150]DEMPSEY A C, KITTING C L, ROSSON R A. Bacterial variability among individual penaeid shrimp digestive tracts [M]. EJ Brill.1989:267-78.
    [151]王祥红,李会荣.中国对虾成虾肠道微生物区系[M].2000:493-8.
    [152]MOSS S M, LEAMASTER B R, SWEENEY J N. Relative abundance and species composition of gram-negative, aerobic bacteria associated with the gut of juvenile white shrimp Litopenaeus vannamei reared in oligotrophic well water and eutrophic pond water [M]. Journal of the World Aquaculture Society,2000:255-63.
    [153]OXLEY A P A, SHIPTON W, OWENS L, et al. Bacterial flora from the gut of the wild and cultured banana prawn, Penaeus merguiensis [M].2002:214-23.
    [154]ESIOBU N, YAMAZAKI K. Analysis of bacteria associated with the gut of healthy wild penaeid shrimps: a step towards effective probiotics in aquaculture [M]. Oxford & IBH Publishing Co. Pvt. Ltd.
    [155]李志勇,何丽明,吴杰,et al.基于PCR-DGGE基因指纹的对虾体内优势细菌组成分析[M].2005:82-6.
    [156]罗鹏,胡超群,谢珍玉,et al.凡纳滨对虾咸淡水养殖系统内细菌群落组成的PCR-DGGE分析[M].2006:49-53.
    [157]TSOI K, WANG Z, CHU K. Genetic divergence between two morphologically similar varieties of the kuruma shrimp Penaeus japonicus [J]. Marine Biology,2005,147(2):367-79.
    [158]林琼武,张黎黎,吴超,et al.切除眼柄对日本囊对虾亲虾摄食,性腺发育及能量转化的影响[J].厦门大学学报:自然科学版,2009,006:915-20.
    [159]TIMMERMANS L. Early development and differentiation in fish [J]. Sarsia,1987,72(3-4): 331-9.
    [160]VADSTEIN O. The use of immunostimulation in marine larviculture:possibilities and challenges [J]. Aquaculture,1997,155(1-4):401-17.
    [161]CLEMENTS K. Fermentation and gastrointestinal microorganisms of fishes [J]. Gastrointestinal microbiology: gastrointestinal ecosystems and fermentations,1997,1:156-98.
    [162]MORIARTY D. Interactions of microorganisms and aquatic animals, particularly the nutritional role of the gut flora [J]. Microbiology in poecilotherms,1990,217-222.
    [163]SAKATA T. Microflora in the digestive tract of fish and shellfish, F,1990 [C].
    [164]PRIEUR D, MEVEL G, NICOLAS J, et al. Interactions between bivalve molluscs and bacteria in the marine environment [J]. Oceanogr Mar Biol,1990,28:277-352.
    [165]SAKATA T, KOREEDA Y. A numerical taxonomic study of the dominant bacteria isolated from tilapia intestines [J]. Bulletin of the Japanese Society of Scientific Fisheries,1986,52(9): 1625-34.
    [166]ANDERSON D. Immunostimulants, adjuvants, and vaccine carriers in fish: applications to aquaculture [J]. Annual Review of Fish Diseases,1992,2:281-307.
    [167]田黎,李光友.海洋生境芽孢杆菌(Bacillus spp.)的培养条件及产生的胞外抗菌蛋白 [J].海洋学报,2001,23(004):87-92.
    [168]BERGOGNE-B R ZIN E. Microbial Ecology and Intestinal Infections [M]. Springer Verlag,1989.
    [169]HOLZAPFEL W, HABERER P, SNEL J, et al. Overview of gut flora and probiotics [J]. International Journal of Food Microbiology,1998,41(2):85-101.
    [170]L SEL R. Thermal effect on bacterial flora in the gut of rainbow trout and African catfish [J]. Microbiology in Poecilotherms Elsevier, Amsterdam,1990,33-8.
    [171]HAMID A, SAKATA T, KAKIMOTO D. Microflora in the Alimentary Tract of Gray Mullet: A comparison of the mullet intestinal microflora in fresh and sea water [J]. Bulletin of the Japanese Society of Scientific Fisheries,1978,44(1):53-7.
    [172]SAKATA T, OKABAYASHI J, KAKIMOTO D. Variations in the intestinal microflora of Tilapia reared in fresh and sea water [J]. Bulletin of the Japanese Society of Scientific Fisheries, 1980,46:313-7.
    [173]RING E, STR M E. Microflora of Arctic charr, Salvelinus alpinus (L.):gastrointestinal microflora of free-living fish and effect of diet and salinity on intestinal microflora [J]. Aquaculture Research,1994,25(6):623-9.
    [174]SUGITA H, TANAAMI H, KOBASHI T, et al. Bacterial flora of coastal bivalves [J]. Nippon Suisan Gakkaishi,1981,47:655-61.
    [175]PRIEUR D, MEVEL G, NICOLAS J, et al. Interactions between bivalve molluscs and bacteria in the marine environment [J]. Oceanogr Mar Biol,1990,28:277-352.
    [176]SAMPLES F. Intestinal microflora of rockfish Sebastes schlegeli, tiger puffer Takifugu rubripes and red grouper Epinephelus akaara at their larval and juvenile stages [J]. Nippon Suisan Gakkaishi,1989,55(8):1371-7.
    [177]RING E. Does dietary linoleic acid affect intestinal microflora in Arctic charr, Salvelinus alpinus(L.)? [J]. Aquacult Fish Manage,1993,24(1):133-5.
    [178]RING E, STR M E, TABACHEK J. Intestinal microflora of salmonids:a review [J]. Aquaculture Research,2008,26(10):773-89.
    [179]GOURNIER-CHATEAU N, LARPENT J, CASTELLANOS M, et al. Les probiotiques en alimentation animale et humaine [M]. Lavoisier Tec & Doc,1994.
    [180]RING E, GATESOUPE F. Lactic acid bacteria in fish: a review [J]. Aquaculture,1998, 160(3-4):177-203.
    [181]SCIPIONI R, ZAGHINI G, BIAVATI A. Researches on the use of acidified diets for early weaning of piglets [J]. Zootecnica e Nutrizione Animale,1978,4:201-18.
    [182]潘庆,谭永刚,毕英佐,et al.柠檬酸对罗非鱼生长,体成分和消化酶活性的影响[J]. 中国水产科学,2004,11(004):344-8.
    [183]周兴华,刘长忠.柠檬酸和益生素结合使用对彭泽鲫生长性能影响的研究[J].山东饲料,2003,003):24-6.
    [184]林道.添加柠檬酸饲喂对虾效果好[J].四川畜牧兽医,2000.
    [185]王雷,刘梅,王宝杰,.et al.用于养殖环境调控的微生物制剂评价方法的研究[J].海洋科学,2009,005:6-10.
    [186]SHANAHAN P, JESUDASON M, THOMSON C, et al. Molecular analysis of and identification of antibiotic resistance genes in clinical isolates of Salmonella typhi from India [J]. Journal of clinical microbiology,1998,36(6):1595.
    [187]HAMILTON-MILLER J, SHAH S, WINKLER J. Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms [J]. Public Health Nutrition,2007,2(02):223-9.
    [188]WEESE J. Evaluation of deficiencies in labeling of commercial probiotics [J]. The Canadian veterinary journal,2003,44(12):982.
    [189]THEUNISSEN J, BRITZ T, TORRIANI S, et al. Identification of probiotic microorganisms in South African products using PCR-based DGGE analysis [J]. International Journal of Food Microbiology,2005,98(1):11-21.
    [190]MASCO L, HUYS G, DE BRANDT E, et al. Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria [J]. International Journal of Food Microbiology,2005,102(2):221-30.
    [191]YEUNG P, SANDERS M, KITTS C, et al. Species-specific identification of commercial probiotic strains [J]. Journal of dairy science,2002,85(5):1039.
    [192]TEMMERMAN R, POT B, HUYS G, et al. Identification and antibiotic susceptibility of bacterial isolates from probiotic products [J]. International Journal of Food Microbiology,2003, 81(1):1-10.
    [193]SALMINEN S, OUWEHAND A, ISOLAURI E. Clinical applications of probiotic bacteria [J]. International dairy journal,1998,8(5-6):563-72.
    [194]SPANHAAK S, HAVENAAR R, SCHAAFSMA G The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans [J]. European journal of clinical nutrition,1998,52(12):899.
    [195]幺山山,袁佩娜.应用RAPD技术鉴别微生态菌种[J].中国微生态学杂志,2002,14(006):315-7.
    [196]LEE Y, YU W, HEO T. Identification and screening for antimicrobial activity against Clostridium difficile of Bifidobacterium and Lactobacillus species isolated from healthy infant faeces [J]. International journal of antimicrobial agents,2003,21(4):340-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700