人体肠道菌群结构与宿主代谢的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类与其体内共生的微生物共同组成一个“超级生物体”。人体的代谢是由宿主自身基因组调节的各种代谢途径以及微生物基因组调节的代谢过程共同组成,这种宿主与微生物之间的共代谢过程最终调节着宿主的整体代谢。肠道菌群是人体内最复杂和种群数量最高的共生微生物生态系统,无论是健康或者疾病状态下的人体生理代谢特性都不可避免地受到肠道菌群结构变化的影响。因此研究肠道菌群与宿主整体代谢及其慢性代谢性疾病的相关性,寻找影响宿主代谢变化的重要功能成员,能够更好的理解肠道菌群对人体健康和疾病的重要作用。
     本研究首先对一个健康、四代的中国家庭7位成员的肠道菌群结构及宿主整体代谢特征进行了详尽的研究,通过对肠道菌群与宿主代谢表型的变化进行关联分析,建立了分析、评价肠道菌群成员对宿主代谢影响的方法。通过构建粪便菌群的细菌通用16S rRNA基因克隆文库分析了该家庭7位成员肠道菌群的多样性和组成结构。在种的水平,中国家庭成员的肠道菌群整体结构与之前已报道的美国人有显著差异。利用拟杆菌属(Bacteroides spp.)类群特异性克隆文库对家庭成员肠道内拟杆菌属的多样性进行分析,结果显示类群特异性文库反映的拟杆菌属的多样性较通用克隆文库高,并发现了很多未知的、新的拟杆菌种类。对肠道内优势细菌、拟杆菌属及柔嫩梭菌亚群的变性梯度凝胶电泳(DGGE)分析结果显示,该家庭成员的肠道菌群结构存在一定的性别差异,并鉴定出与性别相关的种类,例如Bacteroides thetaiotaomicron在男性成员中较女性多。利用核磁共振技术(NMR)对尿液代谢物组成的分析发现,该家庭成员的整体代谢特性也存在一定的性别差异,并鉴定出与性别相关的代谢物,例如3-aminoisobutyrate在男性尿液中较女性多。最后结合多变量统计学方法OPLS将反映肠道菌群结构变化的DGGE数据与反映宿主代谢变化的尿液NMR数据加以联系,寻找肠道菌群结构与宿主代谢的共变化(covariation)特征,并且鉴定出10种与宿主代谢密切相关的重要肠道细菌类型。其中一类重要的细菌Faecalibacterium prausnitzii的种群变化与8种尿液代谢物浓度变化相关,提示了这种细菌可能是肠道菌群中一个影响着宿主多个代谢通路的重要的功能成员。本研究为理解肠道菌群与宿主在代谢水平上的互作关系,理解菌群在各种代谢性疾病发展过程中的作用,奠定了新的方法学基础。
     为了深入了解中国人群的肠道菌群结构特征,并进一步研究人体在不同健康状态下,例如患有2型糖尿病、肥胖的人群肠道菌群结构的变化规律,寻找肠道菌群结构变化与慢性代谢性疾病可能的相关性,本研究利用bar coded 454测序技术对来自140例新发2型糖尿病病例及142例与其性别、年龄、居住地1:1匹配的对照人群共316例粪便样品肠道菌群的结构特征进行了详尽的分析。共获得268,578条高质量的16S rRNA基因V3区序列。在门的水平上,中国人群肠道内一共含有属于11个门的细菌,其中以拟杆菌门和厚壁菌门最为优势,比例占肠道内总细菌的90%以上。在种的水平,所有序列根据97%的相似性水平划分为2,136个分类操作单位(operational taxonomic units, OTUs)。人群肠道菌群种水平上的多样性组成呈现显著的个体差异。316例人群样本肠道中没有共有的OTU,而40%的OTU为宿主特异性。对人群肠道菌群多样性组成的整体结构特征进行的主成份分析(PCA)结果显示,该中国人群肠道菌群呈现特殊的“分枝状分布(branch-like structure)”,每个分支上的个体均共有一个或几个优势的细菌种类(OTU)。但是这种特殊的分布与性别、年龄、区域以及疾病状态无显著相关性,提示某些其他未知的因素显著影响肠道菌群的结构。与对照人群相比,糖尿病人群和肥胖人群肠道菌群的整体多样性较低。一些优势类群的比例在两组人群中也存在显著差异,例如拟杆菌门以及其中的拟杆菌科(Bacteroidaceae)、紫单胞菌科(Porphyromonadaceae)及拟杆菌属(Bacteroides)的丰度均在糖尿病人群中较低,而厚壁菌门中最优势的毛螺菌科(Lachnospiraceae)以及其中的罗氏菌属(Roseburia)的丰度较高。而应用基于序列进化距离的比较群落结构差异的UniFrac方法显示,两种人群肠道菌群在种的水平无显著性差异。本研究所揭示的中国人肠道菌群多样性组成为人类元基因组计划提供了重要的参考数据。而肠道菌群特殊的人群分布为理解菌群与各种影响因素,例如饮食、疾病等之间的相互关系提供了启示。
    
     因此,本论文建立了对肠道菌群与宿主代谢关系进行整体分析的方法,表明肠道菌群重要功能成员能够影响宿主的特定的代谢过程;分析了代谢性疾病人群与对照人群肠道菌群的整体结构特征,为理解肠道菌群与人体健康的重要关系提供了基础数据。
Human beings can be considered as“superorganisms”as a result of their close symbiotic associations with the gut microbiota. Human metabolism involves integration of multiple indigenous metabolic processes which were encoded by the host genome with those of the microbiome. This results in extensive transgenomic co-metabolism of many substrates including those involved in host metabolic regulation. In health or disease, gut microbial variations would significantly modulate host physiology and pathology. Therefore, understanding the correlation between gut microbiome with host global metabolism relevant to chronic metabolic diseases, and identification of key functional members which modulate the host metabolism would provide new insights into potential contributions of gut microbiota to human health and disease.
     In the first part of this study, we analyzed the gut microbial composition and host global metabolic profiles of a healthy, four-generation, seven-membered Chinese family. A co-variation analysis method which linked the changes of gut microbiome and host metabolic phenotypes was developed to analyze the effects of key members of gut microbiota on host metabolism. Global gut microbiomic structure of the Chinese family was investigated by using bacterial universal 16S rRNA gene clone libraries. At the species level, there are clearly structural differences between the Chinese family gut microbiomes and those reported for American volunteers. In addition,the molecular diversity of Bacteroides spp., a prominent bacterial group in human intestinal microbiota, in the seven family members was also analyzed by using Bacteroides spp. group-specific 16S rRNA gene clone libraries. The diversity of Bacteroides spp. detected by the group-specific libraries was much higher than that of universal libraries,and most of Bacteroides species were uncharacterized. The analysis of the microbial DGGE fingerprints of the 16S rRNA gene V3 region for predominant bacteria and of regions for two specific groups, Bacteroides spp. and Clostridium leptum subgroup, showed a sex-related difference of gut microbial composition in this family cohort. And sex-related bacteria were indentified, e.g. Bacteroides thetaiotaomicron was higher in males of family members. The urinary NMR-based metabolic profiling of this family also showed significant sex-related differences, and 3-aminoisobutyrate was identified as a gender-related metabolite which was higher in the urine samples of male members. We applied a multivariate statistical analysis——OPLS to model the covariation between gut microbiomic structural patterns as reflected by community DGGE fingerprints and host metabotypes as defined by NMR spectroscopic urinary profiling, and pinpointed 10 key functional members of the microbiome that most significantly modulate host metabolism. For example, Faecalibacterium prausnitzii population variation is associated with eight urinary metabolites, indicating that this species is a highly functionally active member of the microbiome, influencing numerous host pathways. This study provides a methodological foundation for understanding the symbiotic metabolic relationship between gut microbiome and human host, and potential significance of gut microbiota in the development of metabolic diseases.
     To characterize the human gut microbial structure under various health conditions such as type 2 diabetes and obesity, and understand the potential correlation of gut microbial variation and chronic metabolic diseases, we used bar coded 454 pyrosequencing method to characterize the gut microbiomes of 316 human fecal samples from 140 newly diagnosed type 2 diabetic patients and 142 controls whom are 1:1 match in sex, age and geographical origin with diabetic patients. Totally 268,578 high-quality 16S rRNA gene V3 region sequences were obtained from all the samples. At the division level, there are 11 bacterial phyla in the Chinese human guts, dominated by Bacteroidetes and Firmicutes which account for more than 90% of total gut bacteria. At the species level, all the sequences were assigned into 2,136 operational taxonomic units (OTUs) with 97% identity cutoff. The diversity composition of gut microbiome of the Chinese human cohort at the species level exhibited remarkable inter-individual differences. No common OTU existed in 316 human fecal microbial samples, and 40% of total OTUs are host specific. The principle component analysis (PCA) of global gut microbial structure of Chinese human cohort exhibited a specific“branch-like structure”. The individuals in each branch shared one or several predominant OTUs. However, the specific global structure of human gut microbiome seems not to be related with sex, age, geographical origin and health status, indicating that there would be some unknown factors which strongly influence human gut microbiome. Compared with control people, the global diversity of gut microbiota of diabetic and obese people was lower. And the proportions of several predominant bacterial groups were significantly different in two groups. For instance, the abundances of Bacteroidetes phylum, Bacteroidaceae family, Porphyromonadaceae family and Bacteroides genus were lower in diabetic people, whereas the proportions of Lachnospiraceae family which is the most predominant group in Firmicutes and Roseburia genus in this family were higher than those of control people. However, the UniFrac analysis, a phylogenetic method for comparing microbial communities based on the measurement of phylogenetic distance between sequences, showed no significant differences of gut microbiome in two groups of human cohort at species level. The gut microbial diversity composition of the Chinese human cohort revealed in this study provides reference data for“Human Metagenomic Project”; and the specific distribution of Chinese human gut microbiome provides insights into understanding the relationship of gut microbiota and impact factors, e.g. diet and disease.
     In summary, in this study, we developed a global analysis to correlate the gut microbial variation with human host global metabolism, showing that the key functional members of gut microbiome can modulate the host specific metabolic pathways; and we also analyzed the overall structure of gut microbiota of the Chinese human cohort with metabolic diseases and healthy controls. This study provides new insights for understanding the contributions of gut microbiota in human health and disease.
引文
1. O'Hara, A.M. and F. Shanahan, The gut flora as a forgotten organ. Embo Reports, 2006. 7(7): p. 688-693.
    2. Lederberg, J., Infectious history. Science, 2000. 288(5464): p. 287-93.
    3. Bengmark, S., Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut, 1998. 42(1): p. 2-7.
    4. Guarner, F. and J.R. Malagelada, Gut flora in health and disease. Lancet, 2003. 361(9356): p. 512-9.
    5. Hooper, L.V. and J.I. Gordon, Commensal host-bacterial relationships in the gut. Science, 2001. 292(5519): p. 1115-8.
    6. Simon, G.L. and S.L. Gorbach, Intestinal flora in health and disease. Gastroenterology, 1984. 86(1): p. 174-93.
    7. Backhed, F., et al., The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(44): p. 15718-15723.
    8. Kelly, D., S. Conway, and R. Aminov, Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol, 2005. 26(6): p. 326-33.
    9. Pryde, S.E., et al., The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett, 2002. 217(2): p. 133-9.
    10. Xu, J., et al., A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science, 2003. 299(5615): p. 2074-6.
    11. Moore, W.E. and L.H. Moore, Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol, 1995. 61(9): p. 3202-7.
    12. Seksik, P., et al., Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut, 2003. 52(2): p. 237-42.
    13. Zhang, M., et al., Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J Clin Microbiol, 2007. 45(2): p. 496-500.
    14. Ley, R.E., et al., Microbial ecology: human gut microbes associated with obesity. Nature, 2006. 444(7122): p. 1022-3.
    15. Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444(7122): p. 1027-31.
    16. Dumas, M.E., et al., Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A, 2006. 103(33): p. 12511-6.
    17. Wen, L., et al., Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 2008. 455(7216): p. 1109-13.
    18. Moore, W.E. and L.V. Holdeman, Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol, 1974. 27(5): p. 961-79.
    19. Amann, R.I., W. Ludwig, and K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995. 59(1): p. 143-69.
    20. Nicholson, J.K., E. Holmes, and I.D. Wilson, Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol, 2005. 3(5): p. 431-8.
    21. Nicholson, J.K., Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol, 2006. 2: p. 52.
    22. Nicholson, J.K., J.C. Lindon, and E. Holmes, 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999. 29(11): p. 1181-9.
    23. Sears, C.L., A dynamic partnership: celebrating our gut flora. Anaerobe, 2005. 11(5): p. 247-51.
    24. Penders, J., et al., Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics, 2006. 118(2): p. 511-21.
    25. Mackie, R.I., A. Sghir, and H.R. Gaskins, Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr, 1999. 69(5): p. 1035S-1045S.
    26. Palmer, C., et al., Development of the Human Infant Intestinal Microbiota. PLoS Biol, 2007. 5(7): p. e177.
    27. Suau, A., et al., Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol, 1999. 65(11): p. 4799-807.
    28. Eckburg, P.B., et al., Diversity of the human intestinal microbial flora. Science, 2005. 308(5728): p. 1635-8.
    29. Backhed, F., et al., Host-bacterial mutualism in the human intestine. Science, 2005. 307(5717): p. 1915-20.
    30. Dunbar, J., et al., Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol, 2002. 68(6): p. 3035-45.
    31. Acinas, S.G., et al., Fine-scale phylogenetic architecture of a complex bacterial community. Nature, 2004. 430(6999): p. 551-4.
    32. Ley, R.E., D.A. Peterson, and J.I. Gordon, Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006. 124(4): p. 837-48.
    33. Hayashi, H., M. Sakamoto, and Y. Benno, Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol, 2002. 46(8): p. 535-48.
    34. Collins, M.D., et al., The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol, 1994. 44(4): p. 812-26.
    35. Hayashi, H., et al., Diversity of the Clostridium coccoides group in human fecal microbiota as determined by 16S rRNA gene library. Fems Microbiology Letters, 2006. 257(2): p. 202-207.
    36. Shen, J., et al., Molecular profiling of the Clostridium leptum subgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol, 2006. 72(8): p. 5232-8.
    37. Wang, X., et al., Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol, 2003. 95(3): p. 508-20.
    38. Wall, R., et al., Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract. FEMS Microbiol Ecol, 2007. 59(1): p. 127-37.
    39. Bernet, M.F., et al., Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut, 1994. 35(4): p. 483-9.
    40. Ljungh, A. and T. Wadstrom, Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol, 2006. 7(2): p. 73-89.
    41. Sanz, Y., I. Nadal, and E. Sanchez, Probiotics as drugs against human gastrointestinal infections. Recent Pat Antiinfect Drug Discov, 2007. 2(2): p. 148-56.
    42. Paster, B.J., et al., Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J Bacteriol, 1994. 176(3): p. 725-32.
    43. Salyers, A.A., Bacteroides of the human lower intestinal tract. Ann.Rev.Microbiol, 1984. 38: p. 293-313.
    44. Hong, P.Y., J.H. Wu, and W.T. Liu, Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Appl Environ Microbiol, 2008. 74(9): p. 2882-93.
    45. Brook, I., Pathogenicity of the Bacteroides fragilis group. Ann Clin Lab Sci, 1989. 19(5): p. 360-76.
    46. Sghir, A., et al., Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol, 2000. 66(5): p. 2263-6.
    47. Franks, A.H., et al., Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol, 1998. 64(9): p. 3336-45.
    48. Harmsen, H.J., et al., Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol, 2002. 68(6): p. 2982-90.
    49. Hold, G.L., et al., Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. Fems Microbiology Ecology, 2002. 39(1): p. 33-39.
    50. Lupp, C., et al., Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe, 2007. 2(3): p. 204.
    51. Loubinoux, J., et al., Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. Fems Microbiology Ecology, 2002. 40(2): p. 107-112.
    52. Pitcher, M.C. and J.H. Cummings, Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut, 1996. 39(1): p. 1-4.
    53. Roediger, W.E., J. Moore, and W. Babidge, Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci, 1997. 42(8): p. 1571-9.
    54. Pitcher, M.C., E.R. Beatty, and J.H. Cummings, The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut, 2000. 46(1): p. 64-72.
    55. Bik, E.M., et al., Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A, 2006. 103(3): p. 732-7.
    56. Shkoporov, A.N., et al., Application of several molecular techniques to study numerically predominant Bifidobacterium spp. and Bacteroidales order strains in the feces of healthy children. Biosci Biotechnol Biochem, 2008. 72(3): p. 742-8.
    57. Matsuki, T., et al., Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol, 1999. 65(10): p. 4506-12.
    58. Salminen, S., et al., Functional food science and gastrointestinal physiology and function. Br J Nutr, 1998. 80 Suppl 1: p. S147-71.
    59. Pompei, A., et al., Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol, 2007. 73(1): p. 179-85.
    60. Cani, P.D., et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007. 50(11): p. 2374-83.
    61. Ley, R.E., et al., Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology, 2008. 6(10): p. 776-788.
    62. Hosokawa, T., et al., Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol, 2006. 4(10): p. e337.
    63. Ley, R.E., et al., Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A, 2005. 102(31): p. 11070-5.
    64. Ley, R.E., et al., Evolution of mammals and their gut microbes. Science, 2008. 320(5883): p. 1647-51.
    65. Zoetendal, E.G., The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis, 2001. 13: p. 129-134.
    66. Pang, X., et al., Molecular profiling of Bacteroides spp. in human feces by PCR-temperature gradient gel electrophoresis. J Microbiol Methods, 2005. 61(3): p. 413-7.
    67. Satokari, R.M., et al., Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol, 2001. 67(2): p. 504-13.
    68. Wang, M., et al., Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol, 2005. 54(2): p. 219-31.
    69.魏华,不同外源扰动因素对肠道菌群组成结构影响的研究(博士论文). 2008.
    70. Hopkins, M.J., R. Sharp, and G.T. Macfarlane, Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut, 2001. 48(2): p. 198-205.
    71. Mueller, S., et al., Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol, 2006. 72(2): p. 1027-33.
    72. Stanley, E.G., et al., Sexual dimorphism in urinary metabolite profiles of Han Wistar rats revealed by nuclear-magnetic-resonance-based metabonomics. Anal Biochem, 2005. 343(2): p. 195-202.
    73. McFall-Ngai, M., Adaptive immunity: care for the community. Nature, 2007. 445(7124): p. 153.
    74. Peterson, D.A., et al., IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe, 2007. 2(5): p. 328-39.
    75. Suzuki, K., et al., Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A, 2004. 101(7): p. 1981-6.
    76. Hooper, L.V., et al., Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001. 291(5505): p. 881-4.
    77. Shroff, K.E., K. Meslin, and J.J. Cebra, Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun, 1995. 63(10): p. 3904-13.
    78. Finegold, S.M., H.R. Attebery, and V.L. Sutter, Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr, 1974. 27(12): p. 1456-69.
    79. Cani, P.D., et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007. 56(7): p. 1761-72.
    80. Matsumoto, M., et al., Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem, 2008. 72(2): p. 572-6.
    81. Bartosch, S., et al., Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol, 2004. 70(6): p. 3575-81.
    82. Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 2006. 312(5778): p. 1355-9.
    83. McNeil, N.I., The contribution of the large intestine to energy supplies in man. Am J Clin Nutr, 1984. 39(2): p. 338-42.
    84. Martin, F.P., et al., A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol, 2007. 3: p. 112.
    85. Staggers, J.E., S.C. Frost, and M.A. Wells, Studies on fat digestion, absorption, and transport in the suckling rat. III. Composition of bile and evidence for enterohepatic circulation of bile salts. J Lipid Res, 1982. 23(8): p. 1143-51.
    86. Ogata, Y., et al., Role of bile in intestinal barrier function and its inhibitory effect on bacterial translocation in obstructive jaundice in rats. J Surg Res, 2003. 115(1): p. 18-23.
    87. Chace, D.H., Mass spectrometry in the clinical laboratory. Chem Rev, 2001. 101: p. 445-477.
    88. Ijare, O.B., et al., Quantification of glycine and taurine conjugated bile acids in human bile using 1H NMR spectroscopy. Magn Reson Med, 2005. 53(6): p. 1441-6.
    89. Houten, S.M., M. Watanabe, and J. Auwerx, Endocrine functions of bile acids. Embo J, 2006. 25(7): p. 1419-25.
    90. Watanabe, M., et al., Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006. 439(7075): p. 484-9.
    91. Backhed, F., et al., Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A, 2007. 104(3): p. 979-84.
    92. Nicholson, J.K. and I.D. Wilson, Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov, 2003. 2(8): p. 668-76.
    93. Hill, M.J., Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev, 1997. 6 Suppl 1: p. S43-5.
    94. Guatafsson, B.E., T. Midtvedt, and K. Strandberg, Effects of microbial contamination on the cecum enlargement of germ-free rats. Scand. J.Gastroenterology, 1970. 5: p. 309-314.
    95. Falk, P.G., et al., Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev, 1998. 62(4): p. 1157-70.
    96. Carlstedt-Duke, B., et al., Isolation and characterization of a mucin-degrading strain of Peptostreptococcus from rat intestinal tract. Acta Pathol Microbiol Immunol Scand [B], 1986. 94(5): p. 293-300.
    97. Stappenbeck, T.S., L.V. Hooper, and J.I. Gordon, Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A, 2002. 99(24): p. 15451-5.
    98. Frankel, W.L., et al., Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon. Gastroenterology, 1994. 106(2): p. 375-80.
    99. Alam, M., T. Midtvedt, and A. Uribe, Differential cell kinetics in the ileum and colon of germfree rats. Scand J Gastroenterol, 1994. 29(5): p. 445-51.
    100. Hooper, L.V., et al., Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol, 2003. 4(3): p. 269-73.
    101. Tannock, G.W., Molecular assessment of intestinal microflora. Am J Clin Nutr, 2001. 73(2 Suppl): p. 410S-414S.
    102. Umesaki, Y., et al., Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology, 1993. 79(1): p. 32-7.
    103. Cebra, J.J., et al., Development and maintenance of the gut-associated lymphoid tissue (GALT): the roles of enteric bacteria and viruses. Dev Immunol, 1998. 6(1-2): p. 13-8.
    104. Lievin, V., et al., Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut, 2000. 47(5): p. 646-52.
    105. Farhadi, A., et al., Intestinal barrier: An interface between health and disease. Journal of Gastroenterology and Hepatology, 2003. 18(5): p. 479-497.
    106. Garcia-Lafuente, A., et al., Modulation of colonic barrier function by the composition of the commensal flora in the rat. Gut, 2001. 48(4): p. 503-7.
    107. Heyman, M., et al., Evolution of the caecal epithelial barrier during Clostridium difficile infection in the mouse. Gut, 1989. 30(8): p. 1087-93.
    108. Brun, P., et al., Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol, 2007. 292(2): p. G518-25.
    109. Bingham, S.A., High-meat diets and cancer risk. Proc Nutr Soc, 1999. 58(2): p. 243-8.
    110. Bolognani, F., et al., Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. Eur J Nutr, 2001. 40(6): p. 293-300.
    111. Bull, T.J., et al., Detection and verification of Mycobacterium avium subsp. paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individuals with and without Crohn's disease. J Clin Microbiol, 2003. 41(7): p. 2915-23.
    112. Bohr, U.R., et al., Identification of enterohepatic Helicobacter species in patients suffering from inflammatory bowel disease. J Clin Microbiol, 2004. 42(6): p. 2766-8.
    113. Ott, S.J., et al., Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut, 2004. 53(5): p. 685-93.
    114. Manichanh, C., et al., Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut, 2006. 55(2): p. 205-11.
    115. Holmes, E., et al., Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 2008. 453(7193): p. 396-400.
    116. Forchielli, M.L. and W.A. Walker, The role of gut-associated lymphoid tissues and mucosal defence. Br J Nutr, 2005. 93 Suppl 1: p. S41-8.
    117. Worldwide variations in the prevalence of asthma symptoms: the International Study of Asthma and Allergies in Childhood (ISAAC). Eur Respir J, 1998. 12(2): p. 315-35.
    118. Wills-Karp, M., J. Santeliz, and C.L. Karp, The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol, 2001. 1(1): p. 69-75.
    119. Umetsu, D.T., et al., Asthma: an epidemic of dysregulated immunity. Nat Immunol, 2002. 3(8): p. 715-20.
    120. Noverr, M.C. and G.B. Huffnagle, The 'microflora hypothesis' of allergic diseases. Clinical and Experimental Allergy, 2005. 35(12): p. 1511-1520.
    121. Noverr, M.C., et al., Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun, 2004. 72(9): p. 4996-5003.
    122. Noverr, M.C., et al., Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect Immun, 2005. 73(1): p. 30-8.
    123. Bjorksten, B., et al., The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy, 1999. 29(3): p. 342-6.
    124. Bottcher, M.F., et al., Microflora-associated characteristics in faeces from allergic and nonallergic infants. Clin Exp Allergy, 2000. 30(11): p. 1590-6.
    125. Kirjavainen, P.V., et al., Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning? Gut, 2002. 51(1): p. 51-5.
    126. Sepp, E., et al., Intestinal microflora of Estonian and Swedish infants. Acta Paediatr, 1997. 86(9): p. 956-61.
    127. Kalliomaki, M., et al., Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol, 2001. 107(1): p. 129-34.
    128. Benn, C.S., et al., Maternal vaginal microflora during pregnancy and the risk of asthma hospitalization and use of antiasthma medication in early childhood. Journal of Allergy and Clinical Immunology, 2002. 110(1): p. 72-77.
    129. Hatheway, C.L., Toxigenic clostridia. Clin Microbiol Rev, 1990. 3(1): p. 66-98.
    130. Bolte, E.R., Autism and Clostridium tetani. Med Hypotheses, 1998. 51(2): p. 133-44.
    131. Finegold, S.M., et al., Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis, 2002. 35(Suppl 1): p. S6-S16.
    132. Parracho, H.M.R.T., et al., Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. Journal of Medical Microbiology, 2005. 54(10): p. 987-991.
    133. Knivsberg, A.M., et al., A randomised, controlled study of dietary intervention in autistic syndromes. Nutr Neurosci, 2002. 5(4): p. 251-61.
    134. Langendijk, P.S., et al., Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol, 1995. 61(8): p. 3069-75.
    135. Fischer, S.G. and L.S. Lerman, DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A, 1983. 80(6): p. 1579-83.
    136. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    137. Zoetendal, E.G., A.D. Akkermans, and W.M. De Vos, Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol, 1998. 64(10): p. 3854-9.
    138. Wei, G.F., et al., The microbial community in the feces of the giant panda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clone library analysis. Microbial Ecology, 2007. 54(1): p. 194-202.
    139. Zhao, Y., et al., Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers. European Journal of Soil Biology, 2005. 41(1-2): p. 21-29.
    140. Liu, B.B., et al., Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison. Fems Microbiology Ecology, 2006. 55(2): p. 274-286.
    141. Mao, Y., et al., Development of group-specific PCR-DGGE fingerprinting for monitoring structural changes of Thauera spp. in an industrial wastewater treatment plant responding to operational perturbations. J Microbiol Methods, 2008. 75(2): p. 231-6.
    142. Zhang, X., et al., Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system. J Microbiol Methods, 2005. 60(1): p. 1-11.
    143. Liu, W.T., et al., Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol, 1997. 63(11): p. 4516-22.
    144. Gong, J., et al., Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol Lett, 2002. 208(1): p. 1-7.
    145. Horz, H.P., et al., Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl Environ Microbiol, 2005. 71(5): p. 2642-52.
    146. Bernhard, A.E., et al., Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ Microbiol, 2005. 7(9): p. 1289-97.
    147. Hulton, C.S., C.F. Higgins, and P.M. Sharp, ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol, 1991. 5(4): p. 825-34.
    148. Versalovic, J., T. Koeuth, and J.R. Lupski, Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res, 1991. 19(24): p. 6823-31.
    149. Gillings, M. and M. Holley, Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Lett Appl Microbiol, 1997. 25(1): p. 17-21.
    150. Wei, G.F., et al., ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. Journal of Microbiological Methods, 2004. 59(1): p. 91-108.
    151. Yan, X., et al., Cloning of environmental genomic fragments as physical markers for monitoring microbial populations in coking wastewater treatment system. Microbial Ecology, 2007. 53(1): p. 163-172.
    152. Margulies, M., et al., Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005. 437(7057): p. 376-80.
    153. Sogin, M.L., et al., Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci U S A, 2006. 103(32): p. 12115-20.
    154. Binladen, J., et al., The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE, 2007. 2(2): p. e197.
    155. McKenna, P., et al., The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog, 2008. 4(2): p. e20.
    156. Andersson, A.F., et al., Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE, 2008. 3(7): p. e2836.
    157. Liu, Z., et al., Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res, 2008. 36(18): p. e120.
    158. Liu, Z., et al., Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res, 2007. 35(18): p. e120.
    159. Wu, D., et al., An automated phylogenetic tree-based small subunit rRNA taxonomy and alignment pipeline (STAP). PLoS ONE, 2008. 3(7): p. e2566.
    160. Handelsman, J., Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev, 2004. 68(4): p. 669-85.
    161. Beja, O., et al., Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol, 2000. 2(5): p. 516-29.
    162. Quaiser, A., et al., First insight into the genome of an uncultivated crenarchaeote from soil. Environmental Microbiology, 2002. 4(10): p. 603-611.
    163. Schloss, P.D. and J. Handelsman, Biotechnological prospects from metagenomics. Curr Opin Biotechnol, 2003. 14(3): p. 303-10.
    164. Abraham, W.R., et al., Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol, 2002. 5(3): p. 246-53.
    165. McFall-Ngai, M., Are biologists in 'future shock'? Symbiosis integrates biology across domains. Nat Rev Microbiol, 2008. 6(10): p. 789-92.
    166. Nicholson, J.K. and I.D. Wilson, Understanding 'global' systems biology: Metabonomics and the continuum of metabolism. Nature Reviews Drug Discovery, 2003. 2(8): p. 668-676.
    167.唐惠儒,王玉兰,代谢组研究.生命科学, 2007. 19(3): p. 272-280.
    168. Chen, M., et al., Metabonomic study of aristolochic acid-induced nephrotoxicity in rats. J Proteome Res, 2006. 5(4): p. 995-1002.
    169. Chen, M., L. Zhao, and W. Jia, Metabonomic study on the biochemical profiles of a hydrocortisone-induced animal model. J Proteome Res, 2005. 4(6): p. 2391-6.
    170. Robosky, L.C., et al., Metabonomic identification of two distinct phenotypes in Sprague-Dawley (Crl:CD(SD)) rats. Toxicol Sci, 2005. 87(1): p. 277-84.
    171. Rezzi, S., et al., Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals. J Proteome Res, 2007. 6(11): p. 4469-77.
    172. Wang, Y., et al., A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agric Food Chem, 2005. 53(2): p. 191-6.
    173. Stella, C., et al., Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res, 2006. 5(10): p. 2780-8.
    174. Clayton, T.A., et al., Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature, 2006. 440(7087): p. 1073-7.
    175. Jia, W., et al., Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov, 2008. 7(2): p. 123-9.
    176. Wang, Y., et al., Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc Natl Acad Sci U S A, 2004. 101(34): p. 12676-81.
    177. Martin, F.P., et al., Transgenomic metabolic interactions in a mouse disease model: interactions of Trichinella spiralis infection with dietary Lactobacillus paracasei supplementation. J Proteome Res, 2006. 5(9): p. 2185-93.
    178. Martin, F.P., et al., Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol, 2008. 4: p. 157.
    179. Martin, F.P., et al., Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model. Mol Syst Biol, 2008. 4: p. 205.
    180. Pearson, K., On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 1901. 2: p. 559-572.
    181. Licht, T.R., et al., Dietary carbohydrate source influences molecular fingerprints of the rat faecal microbiota. BMC Microbiol, 2006. 6: p. 98.
    182. Cani, P.D., et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 2008. 57(6): p. 1470-81.
    183. Wold, S., et al., The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverse. SIAM Journal of Scientific and Statistical Computations, 1984. 5: p. 735-743.
    184. Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995. 2 (12): p. 1137-1143.
    185.张美玲,两种肠道疾病中肠道菌群结构变化的分子生态学研究(博士论文). 2007.
    186. Wold, S., et al., Orthogonal signal correction of near-infrared spectra. Chemoetrics and Intelligent Laboratory Systems, 1998. 44: p. 175-185.
    187. Trygg, J. and S. Wold, Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 2002. 16(3): p. 119-128.
    188. Trygg, J. and S. Wold, O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter. Journal of Chemometrics, 2003. 17(1): p. 53-64.
    189. Rantalainen, M., et al., Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice. J Proteome Res, 2006. 5(10): p. 2642-55.
    190. Dumas, M.E., et al., Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat Genet, 2007. 39(5): p. 666-72.
    191. World Health Organization. Obesity: Prevention and managing the global epidemic. Report of a WHO consultation on obesity. Geneva, 1998.
    192. Deurenberg-Yap, M., Manifestation of cardiovascular risk factors at low levels of body mass index and waist-to-hip ratio in Singaporean Chinese. Asia Pacific J Clin Nutr, 1999. 8(3): p. 177-183.
    193. Deurenberg-Yap, M., et al., The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int J Obes Relat Metab Disord, 2000. 24(8): p. 1011-7.
    194. Wang, J., et al., Asians have lower body mass index (BMI) but higher percent body fat than do whites: comparisons of anthropometric measurements. Am J Clin Nutr, 1994. 60(1): p. 23-8.
    195. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet, 2004. 363(9403): p. 157-63.
    196. American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care, 2007. 30 Suppl 1: p. S42-7.
    197. World Health Organization: Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia:Report of a WHO Consultation. Geneva,World Health Org., 2006.
    198. DeSantis, T.Z., Jr., et al., NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res, 2006. 34(Web Server issue): p. W394-9.
    199. Flegal, K.M., et al., Prevalence and trends in obesity among US adults, 1999-2000. Jama, 2002. 288(14): p. 1723-7.
    200. Mokdad, A.H., et al., Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. Jama, 2003. 289(1): p. 76-9.
    201. Reynolds, K., et al., Prevalence and risk factors of overweight and obesity in China. Obesity (Silver Spring), 2007. 15(1): p. 10-8.
    202. King, H., R.E. Aubert, and W.H. Herman, Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care, 1998. 21(9): p. 1414-31.
    203. Zhang, Y., et al., Positional cloning of the mouse obese gene and its human homologue. Nature, 1994. 372(6505): p. 425-32.
    204. Farooqi, S., et al., ob gene mutations and human obesity. Proc Nutr Soc, 1998. 57(3): p. 471-5.
    205. Campfield, L.A., et al., Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science, 1995. 269(5223): p. 546-9.
    206. Halaas, J.L., et al., Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 1995. 269(5223): p. 543-6.
    207. Pelleymounter, M.A., et al., Effects of the obese gene product on body weight regulation in ob/ob mice. Science, 1995. 269(5223): p. 540-3.
    208. Maffei, M., et al., Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci U S A, 1995. 92(15): p. 6957-60.
    209. Considine, R.V., et al., Mutation screening and identification of a sequence variation in the human ob gene coding region. Biochem Biophys Res Commun, 1996. 220(3): p. 735-9.
    210. Niki, T., et al., Human obese gene: molecular screening in Japanese and Asian Indian NIDDM patients associated with obesity. Diabetes, 1996. 45(5): p. 675-8.
    211. Frayling, T.M., et al., A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 2007. 316(5826): p. 889-94.
    212. Cecil, J.E., et al., An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med, 2008. 359(24): p. 2558-66.
    213. Li, H., et al., Variants in the fat mass- and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population. Diabetes, 2008. 57(1): p. 264-8.
    214. Turnbaugh, P.J., et al., Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe, 2008. 3(4): p. 213-223.
    215. Hotamisligil, G.S., N.S. Shargill, and B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 1993. 259(5091): p. 87-91.
    216. Kern, P.A., et al., The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest, 1995. 95(5): p. 2111-9.
    217. Yudkin, J.S., et al., C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol, 1999. 19(4): p. 972-8.
    218. Visser, M., et al., Elevated C-reactive protein levels in overweight and obese adults. Jama, 1999. 282(22): p. 2131-5.
    219. Mohamed-Ali, V., et al., Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab, 1997. 82(12): p. 4196-200.
    220. Duncan, B.B., et al., Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes, 2003. 52(7): p. 1799-805.
    221. Visser, M., et al., Low-grade systemic inflammation in overweight children. Pediatrics, 2001. 107(1): p. E13.
    222. Duncan, S.H., et al., Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond), 2008. 32(11): p. 1720-4.
    223. Turnbaugh, P.J., et al., A core gut microbiome in obese and lean twins. Nature, 2008.
    1. Lederberg, J., Infectious history. Science, 2000. 288(5464): p. 287-93.
    2. Nicholson, J.K., E. Holmes, and I.D. Wilson, Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol, 2005. 3(5): p. 431-8.
    3. Nicholson, J.K., Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol, 2006. 2: p. 52.
    4. Eckburg, P.B., et al., Diversity of the human intestinal microbial flora. Science, 2005. 308(5728): p. 1635-8.
    5. Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 2006. 312(5778): p. 1355-9.
    6. Ley, R.E., et al., Microbial ecology: human gut microbes associated with obesity. Nature, 2006. 444(7122): p. 1022-3.
    7. Martin, F.P., et al., A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol, 2007. 3: p. 112.
    8. Li, H., et al., Pharmacometabonomic phenotyping reveals different responses to xenobiotic intervention in rats. J Proteome Res, 2007. 6(4): p. 1364-70.
    9. Wang, Y., et al., Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc Natl Acad Sci U S A, 2004. 101(34): p. 12676-81.
    10. Dumas, M.E., et al., Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A, 2006. 103(33): p. 12511-6.
    11. Zoetendal, E.G., The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis, 2001. 13: p. 129-134.
    12. DiCello, F., et al., Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Applied and Environmental Microbiology, 1997. 63(11): p. 4485-4493.
    13. Hayashi, H., M. Sakamoto, and Y. Benno, Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol, 2002. 46(8): p. 535-48.
    14. Gonzalez, J.M., J. Zimmermann, and C. Saiz-Jimenez, Evaluating putative chimeric sequences from PCR-amplified products. Bioinformatics, 2005. 21(3): p. 333-7.
    15. Ludwig, W., et al., ARB: a software environment for sequence data. Nucleic Acids Res, 2004. 32(4): p. 1363-71.
    16. Dyszynski, G., RDPquery: A Java program from the Sapelo Program Microbial Observatory for automatic classification of bacterial 16S rRNA sequences based on Ribosomal Database Project taxonomy and Smith-Waterman alignment. 2006.
    17. Kemp, P.F. and J.Y. Aller, Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. Fems Microbiology Ecology, 2004. 47(2): p. 161-177.
    18. Chao, A., Non-parametric estimation of the number of classes in a population. Scand. J. Stat., 1984. 11: p. 265-270.
    19. Chao, A., M.C. Ma, and M.C.K. Yang, Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika, 1993. 80: p. 193-201.
    20. Chao, A. and S.M. Lee, Estimating the number of classes via sample coverage. J Am Stat Assoc, 1992. 87: p. 210-217.
    21. Good, I.J., The population frequencies of species and the estimation of population parameters. Biometrika, 1953. 40: p. 237 - 264.
    22. Schloss, P.D., B.R. Larget, and J. Handelsman, Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol, 2004. 70(9): p. 5485-92.
    23. Singleton, D.R., et al., Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol, 2001. 67(9): p. 4374-6.
    24. Lozupone, C., M. Hamady, and R. Knight, UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics, 2006. 7: p. 371.
    25. Lozupone, C. and R. Knight, UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol, 2005. 71(12): p. 8228-35.
    26. Liu, C.X., et al., Rapid identification of the species of the Bacteroides fragilis group by multiplex PCR assays using group- and species-specific primers. Fems Microbiology Letters, 2003. 222(1): p. 9-16.
    27. Pang, X., et al., Molecular profiling of Bacteroides spp. in human feces by PCR-temperature gradient gel electrophoresis. J Microbiol Methods, 2005. 61(3): p. 413-7.
    28. DeSantis, T.Z., et al., Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol, 2006. 72(7): p. 5069-72.
    29. Pruesse, E., et al., SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res, 2007. 35(21): p. 7188-96.
    30. Yarza, P., et al., The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol, 2008. 31(4): p. 241-50.
    31. Kemp, P.F. and J.Y. Aller, Estimating prokaryotic diversity: When are 16S rDNA libraries large enough? Limnology and Oceanography-Methods, 2004. 2: p. 114-125.
    32. Hammer, O., D. Harper, and P. Ryan, PAST: palaeontological statistics software package for education and data analysis. Palaeontologica Electronica, 2001. 4(1): p. 1-9.
    33. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    34. Thompson, J.R., L.A. Marcelino, and M.F. Polz, Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by 'reconditioning PCR'. Nucleic Acids Res, 2002. 30(9): p. 2083-8.
    35. Zhang, X., et al., Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system. J Microbiol Methods, 2005. 60(1): p. 1-11.
    36. Shen, J., et al., Molecular profiling of the Clostridium leptum subgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol, 2006. 72(8): p. 5232-8.
    37. Pearson, K., On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 1901. 2: p. 559-572.
    38. Cloarec, O., et al., Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic H-1 NMR data sets. Analytical Chemistry, 2005. 77(5): p. 1282-1289.
    39. Trygg, J. and S. Wold, Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 2002. 16(3): p. 119-128.
    40. Dumas, M.E., et al., Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. Anal Chem, 2006. 78(7): p. 2199-208.
    41. Hayashi, H., et al., Diversity of the Clostridium coccoides group in human fecal microbiota as determined by 16S rRNA gene library. Fems Microbiology Letters, 2006. 257(2): p. 202-207.
    42. Ludwig, W., et al., Bacterial phylogeny based on comparative sequence analysis. Electrophoresis, 1998. 19(4): p. 554-68.
    43. Johnson, J.L., W.E. Moore, and L.v. Moore, Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides. stercoris sp. nov. isolated from human feces. Int J Syst Bacteriol., 1986. 36: p. 499-501.
    44. Garcia-Rodriguez, J.A., J.E. Garcia-Sanchez, and M.I. Heras de Pedro, Isolation of Newly Described Species of the Bacteroides fragilis Group from the Faeces of Newborns. Microb Ecol Health Dis, 1990. 3(1): p. 1-6.
    45. Mueller, S., et al., Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol, 2006. 72(2): p. 1027-33.
    46. Kelly, D., et al., Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol, 2004. 5(1): p. 104-12.
    47. Xu, J., et al., A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis. Science, 2003. 299(5615): p. 2074-2076.
    48. Pryde, S.E., et al., The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett, 2002. 217(2): p. 133-9.
    49. Oh, D.K., et al., Production of conjugated linoleic acid by isolated Bifidobacterium strains. World Journal of Microbiology & Biotechnology, 2003. 19(9): p. 907-912.
    50. Selmer, T. and P.I. Andrei, p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem, 2001. 268(5): p. 1363-72.
    51. Holmstrom, K., et al., Subdoligranulum variable gen. nov., sp nov from human feces. Anaerobe, 2004. 10(3): p. 197-203.
    52. Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444(7122): p. 1027-131.
    53. Acinas, S.G., et al., PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol, 2005. 71(12): p. 8966-9.
    54. Felske, A., et al., Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology, 1997. 143 (Pt 9): p. 2983-9.
    55. Muyzer, G., DGGE/TGGE a method for indentifying genes from natural ecosystems. Current opinion in Microbiology, 1999. 2: p. 317-322.
    56. Margulies, M., et al., Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005. 437(7057): p. 376-80.
    1. Bouchard, C., Inhibition of food intake by inhibitors of fatty acid synthase. N Engl J Med, 2000. 343(25): p. 1888-9.
    2. World Health Organization: Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia:Report of a WHO Consultation. Geneva,World Health Org., 2006.
    3. Reynolds, K., et al., Prevalence and risk factors of overweight and obesity in China. Obesity (Silver Spring), 2007. 15(1): p. 10-8.
    4. Gu, D., et al., Prevalence of diabetes and impaired fasting glucose in the Chinese adult population: International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). Diabetologia, 2003. 46(9): p. 1190-8.
    5. Frayling, T.M., et al., A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 2007. 316(5826): p. 889-94.
    6. Li, H., et al., Variants in the fat mass- and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population. Diabetes, 2008. 57(1): p. 264-8.
    7. Niki, T., et al., Human obese gene: molecular screening in Japanese and Asian Indian NIDDM patients associated with obesity. Diabetes, 1996. 45(5): p. 675-8.
    8. Guarner, F. and J.R. Malagelada, Gut flora in health and disease. Lancet, 2003. 361(9356): p. 512-9.
    9. Hooper, L.V. and J.I. Gordon, Commensal host-bacterial relationships in the gut. Science, 2001. 292(5519): p. 1115-8.
    10. Backhed, F., et al., The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(44): p. 15718-15723.
    11. Martin, F.P., et al., A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol, 2007. 3: p. 112.
    12. McKenna, P., et al., The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog, 2008. 4(2): p. e20.
    13. Ley, R.E., et al., Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A, 2005. 102(31): p. 11070-5.
    14. Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444(7122): p. 1027-31.
    15. Backhed, F., et al., Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A, 2007. 104(3): p. 979-84.
    16. Cani, P.D., et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007. 56(7): p. 1761-72.
    17. Cani, P.D., et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007. 50(11): p. 2374-83.
    18. Cani, P.D., et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 2008. 57(6): p. 1470-81.
    19. Turnbaugh, P.J., et al., A core gut microbiome in obese and lean twins. Nature, 2008.
    20. Monteiro, L., et al., Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol, 1997. 35(4): p. 995-8.
    21. Widjojoatmodjo, M.N., et al., The magnetic immuno polymerase chain reaction assay for direct detection of salmonellae in fecal samples. J Clin Microbiol, 1992. 30(12): p. 3195-9.
    22. Zoetendal, E.G., et al., Isolation of DNA from bacterial samples of the human gastrointestinal tract. Nat Protoc, 2006. 1(2): p. 870-3.
    23. Zhang, B.W., et al., A widely applicable protocol for DNA isolation from fecal samples. Biochem Genet, 2006. 44(11-12): p. 503-12.
    24. Yu, Z. and M. Morrison, Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques, 2004. 36(5): p. 808-12.
    25. Tang, J.N., et al., An effective method for isolation of DNA from pig faeces and comparison of five different methods. J Microbiol Methods, 2008. 75(3): p. 432-6.
    26. Boom, R., et al., Detection and quantitation of human cytomegalovirus DNA in faeces. J Virol Methods, 2000. 84(1): p. 1-14.
    27. Subrungruang, I., et al., Evaluation of DNA extraction and PCR methods for detection of Enterocytozoon bienuesi in stool specimens. J Clin Microbiol, 2004. 42(8): p. 3490-4.
    28. Schuurman, T., et al., Comparative evaluation of in-house manual, and commercial semi-automated and automated DNA extraction platforms in the sample preparation of human stool specimens for a Salmonella enterica 5'-nuclease assay. J Microbiol Methods, 2007. 71(3): p. 238-45.
    29. Rantakokko-Jalava, K. and J. Jalava, Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR. J Clin Microbiol, 2002. 40(11): p. 4211-7.
    30. McOrist, A.L., M. Jackson, and A.R. Bird, A comparison of five methods for extraction of bacterial DNA from human faecal samples. J Microbiol Methods, 2002. 50(2): p. 131-9.
    31. Li, M., et al., Evaluation of QIAamp DNA Stool Mini Kit for ecological studies of gut microbiota. J Microbiol Methods, 2003. 54(1): p. 13-20.
    32. Scupham, A.J., J.A. Jones, and I.V. Wesley, Comparison of DNA extraction methods for analysis of turkey cecal microbiota. J Appl Microbiol, 2007. 102(2): p. 401-9.
    33. Zoetendal, E.G., et al., DNA Isolation Protocols Affect the Detection Limit of PCRApproaches of Bacteria in Samples from the Human Gastrointestinal Tract. Systematic and Applied Microbiology, 2001. 24(3): p. 405-410.
    34. Margulies, M., et al., Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005. 437(7057): p. 376-80.
    35. Sogin, M.L., et al., Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci U S A, 2006. 103(32): p. 12115-20.
    36. Binladen, J., et al., The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE, 2007. 2(2): p. e197.
    37. Li, M., et al., Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A, 2008. 105(6): p. 2117-22.
    38. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    39. Thompson, J.R., L.A. Marcelino, and M.F. Polz, Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by 'reconditioning PCR'. Nucleic Acids Res, 2002. 30(9): p. 2083-8.
    40. DeSantis, T.Z., Jr., et al., NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res, 2006. 34(Web Server issue): p. W394-9.
    41. Li, W. and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006. 22(13): p. 1658-9.
    42. Ludwig, W., et al., ARB: a software environment for sequence data. Nucleic Acids Res, 2004. 32(4): p. 1363-71.
    43. Schloss, P.D. and J. Handelsman, Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol, 2005. 71(3): p. 1501-6.
    44. Dyszynski, G., RDPquery: A Java program from the Sapelo Program Microbial Observatory for automatic classification of bacterial 16S rRNA sequences based on Ribosomal Database Project taxonomy and Smith-Waterman alignment. 2006.
    45. Kemp, P.F. and J.Y. Aller, Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. Fems Microbiology Ecology, 2004. 47(2): p. 161-177.
    46. Good, I.J., The population frequencies of species and the estimation of population parameters. Biometrika, 1953. 40: p. 237 - 264.
    47. Pearson, K., On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 1901. 2: p. 559-572.
    48. Lozupone, C., M. Hamady, and R. Knight, UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics, 2006. 7: p. 371.
    49. Lozupone, C. and R. Knight, UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol, 2005. 71(12): p. 8228-35.
    50. Ley, R.E., et al., Microbial ecology: human gut microbes associated with obesity. Nature, 2006. 444(7122): p. 1022-3.
    51. Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 2006. 312(5778): p. 1355-9.
    52. Eckburg, P.B., et al., Diversity of the human intestinal microbial flora. Science, 2005. 308(5728): p. 1635-8.
    53. Duncan, S.H., et al., Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol, 2002. 52(Pt 5): p. 1615-20.
    54. Duncan, S.H., et al., Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol, 2006. 56(Pt 10): p. 2437-41.
    55. Aminov, R.I., et al., Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl Environ Microbiol, 2006. 72(9): p. 6371-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700