cMPDs患者JAK2 V617F点突变和ETS2 mRNA表达及其相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:真性红细胞增多症(PV)、原发性血小板增多症(ET)和特发性骨髓纤维化(IMF)组成了经典的BCR/ABL阴性的慢性骨髓增殖性疾病(cMPDS)。与BCR/ABL阳性的CML不同,在PV、ET和IMF患者没有发现可重复性染色体易位,也无特效治疗药物。近期的一些研究发现BCR/ABL阴性的cMPDS患者中广泛存在一种特异性基因突变: JAK2基因的第1849位点发生G→T突变,导致JAK2蛋白第617位的缬氨酸苯丙氨酸代替(简称为JAK2 V617F)。约90%的PV患者存在该突变,并且在其他BCR/ABL阴性的cMPDS患者如ET和IMF中也有相当的比例,而在其他血液病中罕见此突变。ETS2(人红血细胞增多症病毒致癌基因同源体2)是ETS转录因子家族的一员,ETS2基因定位于21号染色体21q22.3,编码分子量为56-kDa的蛋白质,它在肿瘤发生、骨骼发育和免疫应答中扮演重要角色。近期有研究表明在BCR/ABL阴性的cMPDs中, JAK2 V617F点突变阳性患者的ETS2 mRNA表达水平高于阴性者。本研究旨在探讨BCR/ABL阴性的cMPDs中JAK2 V617F点突变的发生率、ETS2 mRNA表达情况及其与cMPDs分类、疗效、并发症发生率及预后之间的关系。通过JAK2 V617F突变率与ETS2 mRNA表达情况的相关性研究,了解JAK2 V617F点突变与ETS2 mRNA表达水平的异常在cMPDs发生发展中的作用机制,期望为寻找针对性治疗方法奠定基础。
     方法:
     1本实验研究对象包括62例BCR/ABL阴性的cMPDs患者[26例PV、26例ET、9例IMF、1例慢性中性粒细胞性白血病(CNL)];20例慢性粒细胞性白血病(CML)患者、10例急性白血病(AL)患者,15名健康志愿者。62例cMPDS患者为研究组、其他患者和正常人为对照组。所有病例符合WHO诊断标准。
     2从各组患者及健康志愿者的骨髓或血液中提取单个核细胞,再从其中提取总RNA及DNA。
     3用半定量逆转录-聚合酶链反应(RT-PCR)技术检测各组ETS2 mRNA的表达水平。
     4用等位基因特异性聚合酶链反应(AS-PCR)筛选各组JAK2V617F点突变,根据检查结果将62例cMPDs患者分为突变阳性组及阴性组。全部阳性标本和随机抽取的部分阴性对照标本,经PCR、产物纯化后,进行基因测序以验证突变结果。
     5分别观察和比较各组病例的临床特征,包括:性别、发病年龄、临床症状及体征、血象、骨髓像、并发症、疗效和预后等。
     6统计学处理:采用单因素方差分析比较ETS2 mRNA在MPD组、急性白血病组、慢性粒细胞白血病组与正常对照组中的表达水平有无差异;卡方检验分析JAK2 V617F点突变率在各组的差异。ETS2 mRNA表达水平在cMPDs JAK2 V617F点突变阳性组与阴性组比用t检验。所有数据用SPSS11.0统计软件分析处理。
     结果:
     1 62例BCR/ABL阴性的cMPDs患者中,共有44例患者检测到JAK2 V617F点突变,包括23/26(88.46%)例PV,15/26(57.69%)例ET,5/9(55.56%)例IMF。1/1(100.00%)例CNL。在CML、AL及健康志愿者中未检测到JAK2 V617F点突变。
     2 ETS2 mRNA表达水平在cMPDs组(平均值0.2876,阳性率81.96%)、CML组(平均值0.4133,阳性率85.0%)和AL(平均值0.5320,阳性率80.0%)组均显著高于健康志愿者(平均值0.106,阳性率46.7%)。cMPDs组、CML组、AL组之间比较,ETS2 mRNA表达水平均值无明显差别。
     3在cMPDs组JAK2 V617F点突变阳性的病例中ETS2 mRNA表达水平(平均值0.323,阳性率86.0%)明显高于突变阴性病例(平均值0.203,阳性率72.2%),差别有显著意义,P=0.022。
     4临床特征对比:PV患者中JAK2 V617F点突变阳性组的外周血白细胞计数显著高于阴性组(平均值18.2×109/L vs 7.6×109/L,P=0.035),血小板计数显著高于阴性组(平均值479×109/L vs 277×109/L,P=0.025)。ET患者中JAK2 V617F点突变阳性组的血红蛋白显著高于阴性组(平均值146g/L vs 122g/L, P=0.001),白细胞计数显著高于阴性组(平均值14.6×109/L vs 10.9×109/L, P=0.044)。在IMF患者中JAK2 V617F点突变阳性组与阴性组之间的临床特征无显著性差异,P>0.05。
     结论:
     1大部分cMPDs患者存在JAK2 V617F点突变(PV 88.46%、ET 57.69%、IMF 55.56%),提示JAK2 V617F点突变所产生的激活作用是PV、ET、IMF的重要发病机制。
     2在JAK2 V617F点突变阳性的cMPDs患者中,ETS2 mRNA的表达水平高于JAK2 V617F点突变阴性的cMPDS患者。
Objectives: The classical BCR/ABL negative chronic myeloproliferative diseases (cMPDs) consist of polycythemia vera (PV),essential thrombocythemia (ET) and idiopathic myelofibrosis (IMF). Differing from BCR/ABL positive chronic myelogenous leukemia (CML), neither a repeatable chromosome translocation was discovered in PV, ET and IMF patients nor was an effective medicine developed. Recently several studies discovered a highly pathogenic characteristic gene mutation, a G to T change in the 1849th codon of JAK2 gene, and the amino-isovaleric acid is accordingly replaced byβ-phenyl-α-aminopropionic acid in the 617th of JAK2 tyrosine kinase. This mutation is defined as JAK2 V617F(or JAK2 val617phe)point mutation and has been detected in up to 90% of PV patients and in a sizeable proportion of patients with other cMPDs such as ET and IMF, but rarely be found in other hematological disease. This finding is a landmark for understanding the molecular pathogenesis of BCR/ABL negative cMPDs.On the orther hand, erythroblastosis virus oncogene homolog 2 (ETS2) is a pro-oncogene, located in human chromosomal region 21q22.3, expresses in various tissues,including blood,breast and prostate. This gene encodes a 56 kD protein that is phosphorylated by a Ca2+-dependent mitogenic signal process. ETS2 protein is a member of the ETS family of transcription factors, involved in the regulation of cellular proliferation and differentiation and may play a critical role in T-cell activation and cytokines production. It had been reported that ETS2 gene was associated with the growth and invasion of breast carcinoma cells and was required to maintain the transformed state for human prostate cancer cells. It is also reported that ETS2 mRNA was over-expressed in cMPDs. However, it is not clear whether there is a relationship between the mutation of JAK2 V617F and ETS2 mRNA overexpression and whether they both influence the progression of BCR/ABL negative cMPDs. The present study is thus designed to examine the somatic JAK2 V617F mutation rate and measure the expression level of ETS2 mRNA in cMPDs,acute leukemia and normal control, to make a further study on the molecular biological pathogenesis of BCR/ABL negative cMPDs, and to try to provide theoretical basis for developing possible targeted medicines for the treatment of JAK2 V617F mutation positive cMPDs.
     Methods:
     1 Heparinized peripheral blood or bone marrow was obtained after informed consent from 62 BCR/ABL negative cMPDs patients (26 PV cases, 26 ET cases,9 IMF cases and 1 CNL case), 20 CML cases, 10 acute leukemia (AL) cases and 15 healthy volunteers. The 62 of BCR/ABL negative cMPDs patients were designed as research group and the others were control group. All these patients’diagnosis fit the WHO criteria made in 2000.
     2 Total RNA and DNA was extracted from samples of the peripheral blood mononuclear cells (PBMNCs) or bone marrow mononuclear cells (BMMNCs) taken from patients in each group or healthy volunteers.
     3 The expression level of ETS2 mRNA was measured by RT-PCR method, which was established and widely used in our lab.
     4 JAK2 V617F mutation was detected by AS-PCR method and confirmed by direct DNA sequencing. Then the BCR/ABL negative cMPDs patients were divided into two subgroups: JAK2 V617F mutation positive group and mutation negative group.
     5 Patients’clinical characteristics including age, gender, clinical symptoms and signs, hemograms, bone marrow pictures, bone marrow pathological features and the reaction to conventional therapy and prognosis of each patient in different subgroup were observed and compared.
     6 Statistical analyses: Most statistic analysis was performed using the SPSS 11.0 version for windows. The statistically significant meaning of the difference in JAK2 V617F mutation rate was analyzed by Chi-square analysis. The statistically significant meaning of the difference in ETS2 mRNA expression level between JAK2 V617F mutation positive group and mutation negative group was analyzed by t-test. The results were shown as mean±SD(X—±S).
     Results:
     1 The JAK2 V617F point mutation was detected in 44 BCR/ABL negative MPD patients, including 23/26 (88.46%)PV patients,15/26(57.69%)ET patients, 5/9(55.56%)IMF patients and 1/1 (100% )CNL patient. While the somatic JAK2 V617F mutation was not detected either in the 20 CML patients, 10 AL patients or the 15 health volunteers.
     2 The relative expression level of ETS2 mRNA in BCR/ABL negative cMPDs group (mean value 0.2876, positive rate 81.96%), or in CML group (mean value 0.4133, positive rate 85.0%), or in AL group (mean value 0.5320, positive rate 80.0%) is statistically significant higher than that in health volunteer group (mean value 0.106 , positive rate 46.7%). P<0.05.
     3 The relative expression level of ETS2 mRNA in JAK2 V617F mutation positive group (mean value 0.323 , positive rate 86.0%) is statistically significant higher than that in negative group (mean value 0.203 , positive rate 72.2%). P=0.022.
     4 The comparison of clinical characteristics: The peripheral white blood cell counts (mean 18.2×109/L) and platelets counts (mean 479×109/L) in JAK2 V617F mutation positive PV patients were statistically significant higher than that (7.6×109/L and 277×109/L, respectively) in JAK2 V617F negative PV patients (P=0.035 and P=0.025,respectively) at diagnosis. Compared with the mutation negative ET patients, the mutation positive ET patients had statistically significant higher hemoglobin (122g/L vs 146g/L, P=0.001) and peripheral white blood cell counts (10.9×109/L vs 14.6×109/L, P=0.044) as well as a higher complication rate (P=0.034). But no statistically significant difference in the clinical data was found between JAK2 V617F positive and negative IMF patients (P>0.05).
     Conclusions:
     1 A somatic JAK2 V617F point mutation was detected in a sizeable proportion of BCR/ABL fusion gene negative cMPDs patients: the mutation rate was 88.46% in PV, 57.69% in ET and 55.56% in IMF patients. This mutation was not detected in AL patients, CML patients or healthy volunteers.
     2 The expression level of ETS2 mRNA in JAK2 V617F mutation positive group is statistically significant higher than that in negative group.
引文
1 Vardiman JW, Harris NL. The World Heath Organization (WHO) classipication of the myeloidneoplasms. Blood, 2002, 100: 2292~2302
    2 Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med, 2003, 348: 1201~1214
    3 Tefferi A, Pardanani A. Clinical, genetic, and therapeutic insights into systemic mast cell disease. Curr Opin Hematol, 2004, 11:58~64
    4 Demiroglu A, Steer EJ, et al. The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood, 2001, 98:3778~3783
    5 Saharinen P,Vihinen M,Silvennnoinen O.Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain.Mol Cell Biol, 2003, 14:1448~1459
    6 Saharinen P, Takaluoma K, Silvennoinen O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol, 2000, 20: 3387~95
    7 Yamaoka K .The Janus Kinases(Jaks). Genome Biol, 2004,5: 253.1~253.6
    8 Saharinen P, Slvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinase and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002, 77: 47954~63
    9 Silva M, Richard C, Benito A, Sanz C, et al. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med, 1998, 338:564~571
    10 Kralovics R, Guan Y, Prchal JT. Acquired uniparentaldisomy of chromosome 9p is a frequent stem cell defect in Polycythemia vera. Exp Hematol, 2002, 30:229~36
    11 Bock O, Busche G, Koop C, et al. Detection of the single hotspot mutation in the JH2 pseudokinase domain of Janus kinase 2 in bone marrow trephine biopsies derived from chronic myeloproliferative disorders. J MOL Diagn, 2006, 8(2): 170~177
    12 Tefferi A, Lasho TL. The JAK2V617F tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Blood, 2005, 104(10): 3022~3026
    13 Lasho T L., Mesa R , Gilliland DG , et al. Mutation studies in CD3+, CD19+ and CD34+ cell fractions in myeloproliferative disorders with homozygous JAK2V617F in granulocytes. Br J Haematol, 2005, 130:797~799
    14 Wolanskyj AP, Lasho TL, Schwager sm, et al.JAK2 mutation in essential thrombcythaemia: clinical associations and long-term prognostic relevance. Br j Haematol, 2005, 131:208~213
    15 Levine RL, Loriaux M, Huntly B, et al. The JAK2 V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia,but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood, 2005, 106:3377~3379
    16 Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G→T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome negative CML and megakaryocytic leukemia. Blood, 2005, 116:3370~3373
    17 Andrea Pellagatti, Mario Cazzola, Aristoteles A. N, et al. Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon--stimulated genes and correlation to FAB subtype and karyotype. Blood, 2006, 108:337~345
    18 Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood, 2005, 106:2162~2168
    19 Steensma DP, Dewald GW, Lasho TL, et al.The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical”myeloproliferative disorders and the myelodysplastic syndrome. Blood, 2005, 106:1207~1209
    20 James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutationeding to constitutive signaling causes polycythaemia vera. Nature, 2005, 434:1144~1148
    21 Jamieson CH, Gotlib J, Durocher JA, et al. The JAK2V617Fmu-tation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc NatiAcadSc USA, 2006, 103 (16): 6224~6229
    22 Fran?ois D, Sabrina D, Carole T, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood, 2007, 109:71~77
    23 Saharinen P, Slvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinase and for cytokine-inducible activation of signal transduction. J Biol Chem, 2002, 277:47954~47963
    24 Kralovics R, Teo SS, Buser AS, et al. Altered gene expression in myelopproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood, 2005, 106:3374~3376
    25 宋君红, 李建勇, 张苏江. 骨髓增殖性疾病 JAK2 基因V617 点突变研究. 中华血液学杂志, 2006, 27(9):632~633
    26 Alexandre T, Marjorie B, Richard G, et al. Myeloid blasts in transformed JAK2-V617F positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood , (ASH Annual Meeting Abstracts) 2006, 108: 375
    27 Amy VJ, Sebastion K, Katerina Z, et al.Widespread accronce of the JAK2V617F mutation in chronic myeloproliferativedisorders. Blood, 2005, 106:2162~2168
    28 M Lafage-Pochitaloff, M Courcoul. Expression of the ETS2 and transferrin receptor genes in Philadelphia-positive chronic myeloid leukemia patients with a reciprocal t(3;21). Genes Chromosomes Cancer, 1992, 5(1):1~13
    29 Yates P, Potter M N. Eosinophilic Laukaemia with anabnormality of 5q31,the site of the IL-gene. ClinLab Haemat, 1991, 13:2136
    30 Andrea P, David V, Cordelia F. Gene Expression Profiling in Polycythemia Vera Using cDNA Microarray Technology. Cancer Research, 2003, 63: 3940~3944
    31 Rossi D, Deambrogi C, Capello D, et al. JAK2 V617F Mutation in Leukaemic Transformation of Philadelphia Negative Chronic Myelopro- liferative Disorders. Blood (ASH Annual Meeting Abstracts), 2006, 108: 3605
    32 Il-Kwon L, Jeong-Hwa C. Association of cis-Acting rs530 of the ETS2 Transcriptional Factor Gene with High-Risk Acute Myelogenous Leukemia (AML) and Allelic Expression Imbalance Assessment. Blood (ASH Annual Meeting Abstracts) 2006, 108: 2230
    1 Vardiman J, Harris N. The World Heath Organization (WHO)classipication of the myeloidneoplasms. Blood, 2002, 100: 2292~2302
    2 Cools J, DeAngelo D, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a the rapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med, 2003, 348:1201~1214
    3 Tefferi A, Pardanani A. Clinical, genetic, and the rapeutic insights into systemic mast cell disease. Curr Opin Hematol, 2004, 11:58~64
    4 Demiroglu A, Steer E. The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood, 2001, 98:3778~3783
    5 Bock O, Busche G, Koop C, et al. Detection of the single hotspot mutation in the JH2 pseudokinase domain of Janus kinase 2 in bone marrow trephine biopsies derived from chronic myeloproliferative disorders. J MOL Diagn, 2006,8(2): 170~177
    6 Saharinen P, Vihinen M, Silvennnoinen O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Cell Biol, 2003, 14:1448~1459
    7 Saharinen P, Takaluoma K, Silvennoinen O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. MolCell Biol, 2000, 20:3387~3395
    8 Saharinen P, Slvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinase and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002, 77:47954~63
    9 Silva M, Richard C, Benito A, et al. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med, 1998, 338:564~571
    10 Kralovics R, Guan Y, Prchal JT. Acquired uniparentaldisomy of chromosome 9p is a frequent stem cell defect in Polycythemia vera. Exp Hematol, 2002, 30:229~236
    11 Yamaoka K . The Janus Kinases(Jaks). Genome Biol, 2004, 5: 253.1~253.6
    12 Tefferi A, Lasho TL, et al. The JAK2V617F tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Blood, 2005, 104:3022~3026
    13 Lasho L, Mesa R, Gilliland D, et al. Mutation studies in CD3+, CD19+ andCD34+cell fractions in myeloproliferative disorders with homozygous JAK2V617F in granulocytes. Br J Haematol, 2005, 130:797~799
    14 Wolansky A, Lasho T, Schwager S, et al. JAK2 mutation in essential thrombcythaemia: clinical associations and long-term prognostic relevance.Br j Haematol, 2005, 131:208~213
    15 Levine R, Loriaux M, Huntly P, et al. The JAK2 V617Factivating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia,but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood, 2005, 106:3377~3379
    16 Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G→T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome negative CML and megakaryocytic leukemia. Blood, 2005, 116:3370~3373
    17 Goerttler S, Steimle C, Marz E, et al. The Jak2 V617F mutation, PRV-1 overexpression and EEC fornation define a similar cohort of MPD patients. Blood, 2005, 106:2862~2864
    18 Jones A, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood, 2005, 106:2162~2168
    19 Steensma D, Dewald W, Lasho L, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both“atypical”myeloproliferative disorders and the myelodysplastic syndrome. Blood, 2005, 106:1207~1209
    20 James C, Ugo V, Couedic P, et al. A unique clonal JAK2 mutationeding to constitutive signaling causes polycythaemia vera. Nature, 2005, 434:1144~1148
    21 Jamieson H, GotlibJ, Durocher A, et al. The JAK2V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc NatiAcadSc USA, 2006, 103 (16): 6224~6229
    22 Fran?ois D, Sabrina D, Carole T, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood, 2007, 109:71~77
    23 Alexandre T, Marjorie B, Richard G, et al. Myeloid blasts in transformed JAK2-V617F positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood , (ASH Annual Meeting Abstracts) 2006, 108: 375
    24 Linda M, Mike S. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood, 2006, 108:2435~2437
    25 Temerinac S, Klippel S, Strunck E, et al. Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in Polycythemia rubra vera. Blood, 2000, 95: 2569~2576
    26 Wernig G, Mercher T, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood , 2006, 12:4824
    27 Amy J, Sebastion K, Katerina Z, et al. Widespread accronce of the JAK2V617F mutation in chronic myeloproliferative disorders. Blood ,2005, 106: 2162~2168
    28 Rossi D, Deambrogi C,Capello D, et al. JAK2 V617F Mutation in Leukaemic Transformation of Philadelphia Negative Chronic Myelopro- liferative Disorders. Blood (ASH Annual Meeting Abstracts), 2006, 108:3605
    29 Nicolaus K, Anita B, Ernst H, et al. Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis. Blood, 2007, 109: 1316~1321
    30 Walz C, Crowley B J, Hudon H, et al. Activated JAK2 withthV617F mutation promotes G1/S-phasetransition. J Biol Chem , 2006, 281(26):18177~18183
    31 Kralovics R, Teo S, Buser S, et al. Altered gene expression in myelopproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood, 2005, 106: 3374~3376
    32 Daldus C D, Sandya L, Krzysztof M , et al. Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: Amplification discloses overexpression of APP, ETS2, and ERG genes. PNAS , 2004, 101: 3915~3920
    33 Il-Kwon L, Jeong-Hwa C. Association of cis-Acting rs530 of the ETS2 Transcriptional Factor Gene with High-Risk Acute Myelogenous Leukemia (AML) and Allelic Expression Imbalance Assessment. Blood (ASH Annual Meeting Abstracts) 2006, 108: 2230
    34 Lafage-Pochitaloff M, Courcoul M. Expression of the ETS2 and transferrin receptor genes in Philadelphia-positive chronic myeloid leukemia patients with a reciprocal t(3;21). Genes Chromosomes Cancer, 1992, 5(1): 1~13
    35 Yates P, Potter N. Eosinophilic Laukaemia with an abnormality of 5q31,the site of the IL-gene. ClinLab Haemat, 1991,13: 2136
    36 Andrea P, David V, Cordelia F. Gene Expression Profiling in Polycythemia Vera Using cDNA Microarray Technology. Cancer Research, 2003, 63: 3940~3944
    37 Andrea P, Mario C, Aristoteles N,et al. Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon--stimulated genes and correlation to FAB subtype and karyotype. Blood, 2006, 108: 337~345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700