转基因烟草对土壤磷吸收利用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于强吸附作用、低溶解性以及难移动性等因素的影响,磷在土壤中有效性很低,因此磷成为限制植物生长的重要因子之一。在全球范围内,70%以上的可耕地面积为酸性和碱性土壤,磷在这类土壤中的存在形式,大部分为植物所不能吸收和利用的难溶性磷酸盐。为了确保植物的产量,提高磷素的利用率,全世界每年要施用的磷肥约达3千万吨,然而,在这些施用的磷肥中,由于吸附、沉降、以及转化成有机物等形式,80%的磷肥在土壤中固定下来,难以被植物吸收利用。所以,提高植物对土壤中难溶性磷的吸收能力,对于农业生态环境的改善以及农作物的增产具有十分重要的作用。现有的研究已经表明改变有机酸在植物体内的代谢水平,增加有机酸的分泌量是增强植物利用难溶磷酸盐的一种潜在分子机制。
     本研究从高效解磷真菌草酸青霉菌(Penicillium oxalicum)中克隆了两个有机酸代谢途径关键酶基因,柠檬酸合酶(Cit)和苹果酸脱氢酶(MDH)基因,并对其序列进行了分析。在此基础上,将Po-mCit和Po-mMDH基因分别表达在大肠杆菌和烟草中,对转化体在磷胁迫条件下的生长状况进行了研究。具体研究内容及结果如下:
     1.根据已知真菌的苹果酸脱氢酶(MDH)、柠檬酸合酶(Cit)基因序列的同源性设计引物,以高效解磷真菌草酸青霉菌总RNA为模板,利用RT-PCR法,获得了草酸青霉菌线粒体苹果酸脱氢酶(Po-mMDH)和柠檬酸合酶(Po-mMDH) cDNA全序列,并由此推测相应的氨基酸序列。Po-mMDH基因cDNA (GenBank accession no. FJ550602)全长1284 bp,其中5’非编码区45 bp,3’非编码区216 bp,编码区1023 bp,编码一个由340个氨基酸构成的多肽,与土曲霉(Aspergillus terreus)和烟曲霉(Aspergillus fumigatus)mMDH具有85%以上的同源性,并具有高度保守的活性中心(VTTLDVVRASRFI),N端具有23个氨基酸的线粒体导向序列。Po-mCit基因cDNA (GenBank accession no.GQ981487)全长1716bp,包括5’端非编码区96bp,3’端非编码区205bp,开放阅读框1416bp,编码一个由471个氨基酸构成的多肽,与构巢曲霉(Aspergillus nidulans)和黑曲霉(Aspergillus niger) mCit具有85%以上的同源性,并具有高度保守的活性中心(GYGHAVLRKTDPR), N端都具有31个氨基酸的线粒体导向序列。
     2.分别将Po-mMDH和Po-mCit基因克隆到原核表达载体pET32a中,在大肠杆菌BL21(DE3)中分别获得可溶性融合表达产物。Po-mMDH工程菌中检测到较高的MDH活性(48.7μmol/mg protein),是对照的5倍,在以磷酸钙为唯一磷源的培养液中生长,Po-mMDH工程菌发酵液中苹果酸、乳酸、乙酸、柠檬酸和草酸的含量较对照明显增加,分别是对照的2.7、3.7、1.9、2.3和9.1倍,可溶性磷含量(134.8 mg/L)也明显高于对照(39.3 mg/L)。Po-mCit工程菌的Cit的活性为24.6μmol/mg protein,是对照的11倍。在以磷酸钙为唯一磷源的培养液中生长,Po-mCit工程菌发酵液中柠檬酸、苹果酸、乳酸、乙酸、和草酸的含量较对照明显增加,分别是对照的2.3、1.6、2.9、3.5和7.6倍,可溶性磷含量(156.6 mg/L)也明显高于对照。表明Po-mMDH或Po-mCit基因的表达能够促进有机酸的合成,增强大肠杆菌对磷的溶解能力。
     3.利用农杆菌转化技术获得了转Po-mMDH基因烟草,经过PCR、Southern-blot和RT-PCR验证,表明外源Po-mMDH基因已整合到烟草基因组中,并在转录水平上表达。转Po-mMDH基因烟草根系中MDH活性较野生型明显提高,低可利用磷条件下M1株系的酶活最高,达到38.6μmol/mg protein,相对于野生型增长2.2倍。低可利用磷胁迫诱导根系分泌的苹果酸含量是野生型的1.3-2.9倍。在以Al-phosphate (Al-P), Fe-phosphate (Fe-P)或Ca-phosphate (Ca-P)为唯一磷源的培养条件下,转基因烟草的生长状况明显好于野生型,干物重分别是野生型的2.5、2.3和2.3倍,总磷含量分别增长3.9、3.4和3.2倍。
     4.利用农杆菌转化技术获得了转Po-mCit基因烟草,并经过PCR和Southern-blot和RT-PCR验证,表明外源Po-mCit基因已整合到烟草基因组中,并在转录水平上表达。转Po-mCit基因烟草根系Cit活性较野生型明显提高,在难溶磷(Al-P)条件下,转基因株系的Cit酶活性最高,其中C2株系的Cit酶活性(28.4μmol/mg protein)是野生型(8.8μmol/mg protein)的3.2倍。根系分泌的柠檬酸含量分别增长1.6、2.7、2.5和2.3倍。在难溶磷(Al-P)培养条件下,转基因株系的地上部干重和根干重明显高于野生型,总磷含量也明显提高,较野生型分别增加1.6、2.4、1.9和1.8倍。
Phosphorus deficiency is considered to be one of the major limiting factors to the improvement of field crops, due to the strong adsorption, low solubility, difficult mobility of phosphorus, as well as some other reasons. Worldwide, acidic and alkaline soils make up about 70% of the arable soil. Most of the phosphorus in these soils exists as insoluble phosphate, which is largely unavailable to plant. In order to enhance the efficiency of phosphorus usage and ensure plant productivity, nearly 30 million tons of phosphorus fertilizer are applied worldwide every year, of which, up to 80% can't be utilized by plants because of adsorption, precipitation or conversion to organic forms. So, enhancing the ability of the plant to use soil phosphorus will play an import role in improving crop production and agro-ecological environment. There has been research showing that altering the metabolism of organic acid in plants could increase the secretion of organic acid, a potential mechanism that could enhance the utilization of insoluble phosphate by these plants.
     In this study, the genes of two key enzymes, citrate synthase (Cit) and malate dehydrogenase (MDH), that are involved in the oganic aicd metabolic pathway were isolated from Penicillium oxalicum, and the homology and secondary structures of putative proteins were analyzed. The two genes were also overexpressed in E.coli and tobacco, and the growth response of transformants to phosphorus deficiency was studied. The research contents and the results obtained are stated in details as follows:
     (1) The full-length genes encoding malate dehydrogenase (Po-mMDH) and citrate synthase (Po-mCit) of P. oxalicum were cloned by RT-PCR and RACE techniques. The full-length of Po-mMDH cDNA (GenBank accession no. FJ550602) was 1284-bp long and it contained an ORF of 1023 bp, which encodes a polypeptide of 340 aa. The nucleotide sequence had an untranslated regions of 45 bp at the 5'-end, and 216 bp at the 3'-end. The deduced transcript of Po-mMDH had 85% identity with the mMDHs of Aspergillus terreus and Aspergillus fumigatus. Po-mMDH also contained a 23-aa mitochondrial-targeting signal peptide at the N-terminus. The full-length of Po-mCit cDNA (GenBank accession no. GQ981487) was 1716-bp long, containing an ORF of 1416 bp, which encodes a polypeptide of 471 aa. The nucleotide sequence had an untranslated regions of 96 bp and 205 bp at the 5'-and 3'-ends, respectively. The deduced transcript of Po-mCit had 85% identity with the mCit of Aspergillus nidulans and Aspergillus niger. Po-mCit also had a 31-aa mitochondrial-targeting signal peptide at the N-terminus.
     (2) The mature genes of Po-mMDH and Po-mCit were cloned into the vector pET32a, and then transformed into E. coli strain BL21(DE3) to study their expressions in prokaryotic cell. Expressions of soluble proteins were obtained in both cases. BL21(DE3) transformed with Po-mMDH showed high MDH activity (48.7μmol/mg protein), about 5-fold higher than control. When grown in media with tricalcium phosphate as the only source of phosphorus, the transformant secreted more malate, lactate, acetate, citrate, oxalate, at about 2.7-、3.7-、1.9-, 2.3- and 9.1- folds, respectively, higher than control. Soluble phosphorus content of the transformant (134.8 mg/L) also increased significantly over control. BL21(DE3) transformed with Po-mCit showed about 11-fold increase in Cit activity. When grown in medium with tricalcium phosphate as the unique source of phosphorus, the transformant secreted about 2.3-,1.6-,2.9-,3.5- and 7.6- folds more citrate, malate, lactate, acetate and oxalate, respectively, than control. The soluble phosphorus content of the transformant was significantly increased. These results show that expressions of P. oxalicum mMDH and mCit genes in E. coli could enhance organic aicds secretion and improve the phosphate solubilizing ability of the host cells.
     (3) The ORF of Po-mMDH was cloned into the plasmid pBI121, and transferred into tobacco via Agrobacterium-madiated method. Positive transformants were verified by PCR, Sourthern blot and RT-PCR analysis. Three T2 progenies of homozygous plants (M1, M2 and M3) each harboring a single copy of the transgenic gene were selected for further analysis to the level of MDH expression, root malate exudate, and the ability of the plant to utilize insoluble form of phosphorus. All transgenic lines showed significantly higher level of MDH activity compared to that of wild type. Malate content in the root exudation of the transgenic lines induced in response to phosphorus deficiency was 1.3- to 2.9-fold higher than that of wild type. Among these transgenic lines, one line (M1) showed the highest level of MDH activity and malate exudate. M1 also showed a significant increase in growth over wild type, with 2.5-,2.3- and 2.3-fold increases in biomasses when grown in Al-phosphate, Fe-phosphate and Ca-phosphate containing media, respectively. M1 also had better phosphorus uptake compared to wild type, with 3.9-,3.4- and 3.2-fold increases in total phosphorus content when grown in Al-phosphate, Fe-phosphate and Ca-phosphate media, respectively.
     (4) The ORF of Po-mCit was cloned into the plasmid pCAMBIA1301 and transferred into tobacco via Agrobacterium-madiated method. The transformed tobacco plants were verified by PCR, Sourthern blot and RT-PCR analysis. Four T2 progenies of homozygous plants (C1, C2, C3 and C4) each harboring a single copy of the transgenic gene were selected and the level of Cit expression, the ability of the plant to utilize different forms of phosphorus and growth were investigated. The levels of Cit activity in the transgenic lines were significantly increased compared to that of wild type. Cit activity of these transgenic plants determined under different phosphorus conditions (N-P, Al-P, K-P) all produced the highest level of Cit activity when grown under insoluble phosphorus condition (Al-P). The concentration of citrate exuded by the transgenic lines was also significantly increased, with C1, C2, C3 and C4 reaching about 1.6-,2.7-,2.5-and 2.3-fold, respectively, higher than wild type. Under insoluble phosphorus condition (A1-P), significant improvements in plant growth and phosphorus utilization were observed for the transgenics lines. The transgenic tobaccos accumulated more shoot biomass and root biomass. The total phosphorus concentration of transgenic lines C1-C4 was also significantly increased, reaching about 1.6-,2.4-,1.9-and 1.8-fold higher over that of wild type.
     The results presented in this thesis indicated that by altering the organic acid metabolism of a plant, e.g., through over expressions of malate dehydrogenase and citrate synthase, the ability of the transgenic plant to utilize insoluble form of phosphorus could be enhanced, which may enable the plant to grow in soil where phosphorus may not be so readily available.
引文
[1]刘建中,李振声,李继云.利用植物自身潜力提高土壤中磷的生物有效性.农业生态研究,1994(2):16-23.
    [2]李继云,孙建华,刘全友,等.不同小麦品种的根系生理特性、磷的吸收及利用效率对产量影响的研究.西北植物学报,2000,20(4):503-510.
    [3]沈善敏.中国土壤肥力.北京:中国农业出版社,1998.
    [4]孙海国,张福锁,杨军芳.不同供磷水平小麦苗期根系特征与其相对产量的关系.华北农学报,2001,16(3):98-104.
    [5]杨文治,余存祖.黄土高原区域治理与评价.北京:科学出版社,1992.
    [6]索东让,王平.土壤磷素对作物产量及供磷能力的影响.土壤通报,2002,33(4):316-317.
    [7]李生秀.植物营养与肥料学科的现状与展望.植物营养与肥料学报,1995,5(3):193-205.
    [8]赵其国.现代土壤学与农业持续发展.土壤报,1996,1(35):1-11.
    [9]鲁如坤.土壤-植物营养学原理和施肥,北京:化学工业出版社,1998.
    [10]黄昌勇.土壤学.北京:中国农业出版社,2000.
    [11]陆文龙.低分子量有机酸活化土壤磷的机理(博士学位论文).北京,中国农业大学,1998.
    [12]Mendozna R E, Canduci A, Aprile C. Phosphorus release from fertilized soils and its effect on the changes of phosphate concentration in soil solution. Fertilizer Research, 1990,23:165-172.
    [13]蒋柏蕃,沈仁芳.石灰性土壤无机磷形态分布及其有效性.土壤学报,1992,29(1):80-85.
    [14]顾益初,蒋柏蕃,鲁如坤.风化对土壤粒级中磷素形态转化及其有效性的影响.土壤学报,1984,21(2):134-143.
    [15]沈仁芳.潮土无机磷形态用其分布特点.河南农业科学,1992,12:24-25.
    [16]Verma L P, Singh A P, Srivastva M K. Relationship between Olsen P and inorganic P fractions in soils. Indian Soc soil Sci,1991,39:361-362.
    [17]Bakheit Said M, Dakermanji A. Phosphate adsorption an desorption by calcareous soils of Syria. Commun Soil Sci Plant Anal,1992,24:197-210.
    [18]Helal H M, Dressler A. Mobilization and turnover of soil phosphorus in the rhizosphere. Z. Pflanzenernhr. Bodenk,1989,152:175-180.
    [19]Mclaughlin M J, Alston A M, Martin J K. Phosphorus cycling in wheat-Pasture rotation. III. Organic phosphorus turnover and phosphorus cycling. Aust J Soil Res,1988,26: 343-353.
    [20]鲁如坤.土壤磷素化学研究进展.土壤学进展,1990,18(16):1-5.
    [21]蒋柏藩.土壤磷的化学行为与有效磷的测试.土壤,1992,22(4):181-189.
    [22]Ryan J, Hasan H M, Baasiri M. Availability and transformation of applied phosphorus in calcareous Lebanese soils. Soil Sci Soc Am J,1985,46:1215-1220.
    [23]刘建玲,李仁岗,张凤华.栗钙土磷肥转化与效应的研究.植物营养与肥料学报,1996,2(3):206-211.
    [24]Sharpley A N. Phosphorus cycling in unfertilized and fertilized agricultural soils. Soil Sci Soc Am J,1985,49:905-911.
    [25]Xiong L M, Li R K, Truong B. An evaluation of the agronomic potentially acidulated rock phosphates in calcareous soil. Fertilizer Research,1994,38:205-212.
    [26]Lindsay W L et al. Identification of reaction products from fertilizers in soils. Soil Soc Amer Proc.1994,26:446-452.
    [27]Batra M L, Chaudhry M L. Transformation of native and applied phosphorus in soil as affected by moisture regimes under black gram J Indian Soc Soil Sci,1988,36:714-718.
    [28]Rodriguez D, Goudriaan J, Qyarzabal M. Phosphorus nutrition and water stress tolerance in wheat plants. Journal of Plant Nutrition,1996,19(1):29-39.
    [29]赵美芝.几种土壤和粘土矿物上磷的解吸特性.土壤学报,1988,25(2):156-161.
    [30]曲东,尉庆丰,张英莉.酸性水对娄土无机磷形态的影响.现代土壤科学研究,中国农业出版社,1994.
    [31]陆文龙,曹一平,张福锁.低分子量有机酸对土壤无机磷形态转化的影响.华北农学报,1999,14(2):1-5.
    [32]曹一平,催建宇.石灰性土壤上油菜根际磷的化学动态及生物有效性.植物营养与肥料学报,1994,1(1):49-54.
    [33]顾益初,蒋柏蕃.石灰性土壤无机磷的分级的测定方法.土壤,1990,2:101-110.
    [34]王艳,孙杰,王荣萍,等.玉米自交系苗期生物学性状与磷效率的相关性.山西农业大学学报,2003,23(1):28-31.
    [35]张士功,刘国栋,窦玉清,等.低磷和干旱胁迫对小麦生长发育影响的研究初探.西北植物学报,2002,22(3):574-578.
    [36]王秀荣,严小龙,卢仁骏.磷素营养对菜豆叶片解剖结构的影响.华南农业大学学报,1999,20(1):57-62.
    [37]庞欣,张福锁,李春俭.部分根系供磷对黄瓜根系和幼苗生长及根系酸性磷酸酶活性影响.植物生理学报,2000,26(2):153-158.
    [38]Susan Stade Miller, Junqi Liu, et al. Molecular Control of Acid Phosphatase Secretion into the Rhizosphere of Proteoid Roots from Phosphorus-Stressed White Lupin. Plant Physiol,2001,127:595-606.
    [39]Ping Wu, Ligeng Ma, Xingliang Hou, et al. Phosphate Starvation Triggers Distinct Alterations of Genome Expression in Arabidopsis Roots and Leaves. Plant Physiol,2003, 132:1260-1271.
    [40]Wen Z Y, Zhong J J. Effects of initial phosphate concentration on physiological aspects of suspension cultures of rice cells:A kinetic study. Journal of Fermentation and Bioengineering,1997,83(4):381-385.
    [41]段海燕,徐芳森,王运华.甘蓝型油菜不同品种磷运转和再利用差异的研究.中国油料作物学报,2002,24(4):46-49.
    [42]张岁歧,山仑,赵丽英.土壤干旱下氮磷营养对玉米气体交换的影响.植物营养与肥料学报,2002,8(3):271-275.
    [43]陈屏昭,樊钦平,罗家刚,等.缺磷胁迫对脐橙光合色素和光合作用的影响.广东微量元素科学,2002,9(12):30-34.
    [44]郭延平,陈屏昭,张良诚,等.不同供磷水平对温州蜜柑叶片光合作用的影响.植物营养与肥料学报,2002,8(2):186-191.
    [45]周开勇,陈升枢,李明启.不同磷营养水平对烟草叶片光合作用和光呼吸的影响.植物生理学报,1993,19(1):5-8.
    [46]何生根,陈升枢,李明启.缺磷对甘薯离体叶细胞光合作用和光呼吸的影响.植物生理学通讯,1992,28(5):342-344.
    [47]曲文章,耿立清,高妙真.磷素水平对甜菜光合作用的影响.中国甜菜糖业,2001,3:8-11.
    [48]Daniel Rodriguez, W. G. Keltjens and J. Goudriaan. Plant leaf area expansion and assimilate production in wheat (Triticum aestivum L.) growing under low phosphorus conditions. Plant and Soil,1998,200:227-240.
    [49]Plenet A D, Mollier and S Pellerin. Growth analysis of maize field crops under phosphorus deficiency. Ⅱ. Radiation-use efficiency, biomass accumulation and yield components. Plant and Soil,2000,224:259-272.
    [50]吴明才,肖昌珍,郑普英.大豆磷素营养研究.中国农业学,1999,32(3):59-65.
    [51]李继云,孙建华,刘全友,等.不同小麦品种的根系生理特性、磷的吸收及利用效率对产量影响的研究.西北植物学报,2000,20(4):503-510.
    [52]Lara Ramaekersa, Roseline Remansb, Idupulapati M. Rao. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research,2010,117: 169-176.
    [53]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review. Plant and Soil,2001,237:173-195.
    [54]Newman E J, Andnew R E. Uptake of phosphorus in relation to root growth and density. Plant Soil,1973,38:49-69.
    [55]Borkert C M, barber S A. Effect of supplying P to a portion of the soybean on root growth and P uptake kinetics. J. Plant Nutr,1983,6:895-910.
    [56]Akthar M S, Oki Y, Adachi T. Genetic variation in phosphorus acquisition and utilization efficiency from sparingly soluble P-soluble by Brassica cultivars under P-access environment. J Agric Crop Sci,2008,194:380-392.
    [57]Gahoonia T S, Care D, Nielsen, N E. Root hairs and phosphorus acquisition of wheat and barley cultivars.1997, Plant Soil,191:181-188.
    [58]Itoh S, Barber S A,. Phosphorus uptake by six plant species as related to root hairs. Agron J,1983,75:457-461.
    [59]Raghothama K G. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:665-693.
    [60]严小龙,廖红,戈振扬,等.植物根构型特性与磷吸收效率.植物学通报,2000,17(6):511-519.
    [61]Liao H, Rubio G, Yan X, et al. Genotypic response of bean root systems to phosphorus deficiency. Phosphorus in Plant Biology; Regulatory Roles in Molecular, Cellular, Organismic and ecosystem Processes. Lynch J P, Deikman J eds. Maryland:American Society of Plant Physiologists,1999,329-331.
    [62]Bonser T R, Lynch J P. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgari. New Phytologist,1996,132:281-288.
    [63]廖红.菜豆磷效率的生理、形态构型和遗传特性(博士学位论文).广州:华南农业大学,1998.
    [64]Miller C R, Nielsen K L, Lynch J P Beck D. Adventitious root response in field-grown common bean:A possible adaptive strategy to low-phosphorus conditions. Current Topics in Plant Physiology:An American Society of Plant Physiologists,1998,18:394-396.
    [65]Xiurong Wang, JianboShen, HongLiao. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops. Plant Science,2010,179: 302-306.
    [66]Pearson C J, Steer B T. Daily changes in nitrate uptake and metabolism in Capsicum annum. Planta,1977,137:102-112
    [67]Luttge U, Higinbotham N. Transport in Plants. Springer-Verlag, New York,1979.
    [68]Raghothama K G. Phosphate acquisition. Annu Rew Plant Physiol Plant Mol Biol,1999,50, 665-693.
    [69]Arau jo A P, Teixeira M G, Almeida D L. Phosphorus efficiency of wild and cultivated genotypes of common bean (Phaseolus vulgaris L.) under biological nitrogen fixation. Soil Biol. Biochem,1997,29:951-957.
    [70]Foehse D, Classen N, Jungk A. Phosphorus efficiency of plants 1. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil,1988, 110:101-109.
    [71]Clark R B. Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth. Plant and Soil,1983,72:175-196.
    [72]Subbarao G V, Ae N, Otani T. Genetic variation in acquisition, and utilization of phosphorus from iron-bound phosphorus in Pigeonpea. Soil Sci plant Nutr,1997,43 (3):511-519.
    [73]Lynch J. Lauchli A. & Epstein E. Vegetative growth of the common bean in response to P nutrition. Crop Science,1991,31:380-387.
    [74]孙海国,张福锁.缺磷胁迫下的小麦根系形态特征研究.应用生态学报,2002,13(3): 295-299.
    [75]孙海国,张福锁.小麦根系生长对缺磷胁迫的反应.植物学报,2000,42(9):913-919.
    [76]阎秀兰,段海燕,王运华.甘蓝型油菜不同基因型幼苗磷营养差异的研究.中国油料作物学报,2002,24(2):47-49
    [77]李春俭.土壤与植物营养研究新动态(第四卷).北京:中国农业大学出版社.2001.
    [78]郭玉春,林文雄,石秋梅,等.低磷胁迫下不同磷效率水稻苗期根系的生理适应性研究,2003,14(1):61-65.
    [79]李法云,高子勤.白浆土-植物系统营养物质转化机制及其有效性研究Ⅳ.环境条件土壤磷素有效性的影响.应用生态学报,1999,lO(5):579-582.
    [80]Rengel Z. Genetic control of root exudation. Plant and Soil,2002,245:59-70.
    [81]Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology,2001, 52:527-560.
    [82]Riley D, Barber D A. Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Science Society of America Proceedings,1971,35:301-306.
    [83]Gahoonia T S, Nielsen N E, The effects of root-induced pH changes on the depletion of inorganic and organic phosphorus in the rhizosphere. Plant and Soil,1992,143: 185-191.
    [84]Hinsigner P. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advances in Agronomy,1998,64:225-265.
    [85]Bekele T, Cino B J, Ehlert P A I, et al. An evaluation of plant-borne factors promoting the solubilization of alkaline rock phosphates. Plant and Soil,1983,75:365-378.
    [86]Hinsinger P, Gikes R J. Root-induced dissolution of phosphate rock in the rhizosphere of lupins grown in alkaline soil. Australian Journal of Soil Research,1995,33: 477-486.
    [87]Zoysa A K N, Loganathan P, Hedley M J. Phosphate rock dissolution and transformation in the rhizosphere of tea (Camellia sinensis L.) compared with other species. European Journal of Soil Science,1998,9:477-486.
    [88]张焕朝,徐成凯,王改萍,等.杨树无性系的磷营养效率差异.南京林业大学学报,2001,25(2):15-18.
    [89]Zoysa A K L, Loganathan P, Hedley M J. Phosphorus utilization efficiency and depletion of phosphate fractions in the rhizosphere of three tea clone. Nutrient Cycling in Agroecosystems,1999,53:189-201.
    [90]马敬.磷胁迫下植物根系有机酸的分泌及其对土壤难溶性磷的活化(硕士学位论文).北京:北京农业大学,1994.
    [91]田中民.根系分泌物在植物磷营养中的作用.咸阳师范学院学报,2001,16(6):60-69.
    [92]陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,1999,10(3):379-382.
    [93]田中民,王晨.缺磷白羽扇豆排根与非排根区根尖分泌有机酸的比较.植物生理学报,2000,28(4):317-322.
    [94]涂书新,孙锦荷,郭智芬,等.植物根系分泌物与根际营养关系评述.土壤与环境,2000,9(1):64-67.
    [95]陈凯,马敬,曹一平,等.磷亏缺下不同植物根系有机酸的分泌.中国农业大学学报,1999,4(3):58-62.
    [96]谢钰容.马尾松对低磷胁迫的适应机制和磷效率研究(硕士学位论文).北京:中国林业科学研究院亚热带林业研究所,2003.
    [97]Strom L, T Olsson, G Tyler. Difference between calcifuge and acidifuge plants in root exudation of low molecular organic acids. Plant and Soil,1994,167:239-245.
    [98]Tyler G, Strom L. Differing acid exudation pattern explains calcifuge and aicdifuge behavior of plants. Annuals of Botany,1995,75:75-78.
    [99]Hewitt E J, P Tatham. Interaction of mineral deficiency and nitrogen source on phosphatase activity in leaf extracts. J Exp Bot,1960,11:367-376.
    [100]Lefebvre D D, Duff S M G, Fife C A, et al. Response to phosphate deprivation in Brassica nigra suspension cells, Plant Physiol,1990,93:504-511.
    [101]Tadano T, Sakai H. Secretion of acid phosphatase by the root of several crop species under phosphorus-deficient condition. Soil Sci and Plant Nutr,1991,37(1):129-140.
    [102]Mackey K. R. M, Paytan A. Phosphorus cycle. Encyclopedia of Microbiology,2009, 322-334.
    [103]Tafafdar J C, Classin N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphates produced by plant roots and microorganisms. Biol Fertile Soil,1988,5:308-312.
    [104]Sperber J I. Solution of mineral phosphates by soil bacteria. Nature,1957,180: 994-995.
    [105]杨茂秋,冯固,白灯莎,等.VA菌根对玉米吸收利用磷肥的影响.土镶肥料,1992,(4):36-40.
    [106]Hatting M J, Gray L E, Gerdemann J W. Uptake and translocation of 32P labeled phosphate to onion root by endomycorrhizal fungi. Soil Sciences,1967,116:383-387.
    [107]Adesemoye A.0., Kloepper J. W. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol,2009,85:1-12.
    [108]Dinkelaker B, Romheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ.1989,12:285-292.
    [109]Smith A J, Jooste J H. Phosphate absorption by excised ordinary and proteoid roots of Protea compacta R. Br. South African Journal of Botany,1986,52:549-551.
    [110]Prikryl Z A. Root exudates of plants. Plant and Soil,1980,57:69-83.
    [111]Ryan P. R., Delhaize E., and Randall P. J. Characterization of Al-stimulated efflux of raalate from the apices of Al-tolerant wheat roots, Planta,1995,196:103-110.
    [112]Neuman B, Romheld V, Marschner H. Citric acid secretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L). Plant Cell Environ,1998, 12:285-292.
    [113]Hoffland E. Quantitatice ecaluation of the role organic acid exudation in the mobilization of rock phosphate by rape. Plant and Soil,1992,140:279-289.
    [114]Parfitt R L. Anion absorption by soils and soil materials. Adv Agron,1978,30:1-50.
    [115]Fox T R, Comford N B. Low-molecular-weight organic acids in selected forest soils of southeastern USA. Soil Science Society of America Journal,1990,54:1139-1144.
    [116]Nagarajah S, Posner A M, Quirk J P. Competitive adsorption of phosphate with polygalacturonate and others organic anions on kaolinite and oxides surfaces. Nature 1970,228:83-84.
    [117]Bolan NS, Naidu R, Mahimairaja S, et al. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol Fertil Soils 1994,18:311-319.
    [118]Gardner W K, Parbery D, Barber D A. The acquisition of phosphorus by Lupinus albus L:I. Some characteristics of the soil/root interface. Plant and Soil,1982a,68: 19-32.
    [119]Marschner H, Romheld V, Cakmak L. Root-induced changes of nutrient availability in the rhizosphere. J Plant Nutr,1987,10:1174-1184.
    [120]Knight W G, Allen M F, Jurinak J J, et al. Elevated carbondioxide and solution phosphorus in soil with vesicular-arbuscular mycorrhizal western wheatgrass. Soil Sci Soc Am J,1989,53:1075-1082.
    [121]Ando J. Future of phosphorus resources and suggested direction for Japan. J Soil Sei Plant Nutr,1983,54:164-169.
    [122]Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants:from soil to cell. Plant Physiol,1998,116:447-453.
    [123]Sharpley A N. Soil phosphorus dynamics:agronomie and environmental impacts. Ecol Eng, 1995, (5):261-279.
    [124]沈同,王镜岩,赵邦悌,等.生物化学(第二版)下册.北京:高等教育出版社,2000:91-100.
    [125]Holford I C R. Soil phosphorus:its measurements, and its uptake by plants. Aust J Soil Res,1997,35:227-239.
    [126]de la Fuente J M, Ramirez-Rodrigez V, Cabrera-Ponce J L, et al. Aluminum tolerance in transgenic plants by alteration in citrate synthesis. Science,1997,276: 1566-1568.
    [127]Kruse, A., Fieuw, S., Heineke, D., et al. Antisense inhibition of cytosolic NADP-dependent isocitrate dehydrogenase in transgenic potato plants. Planta,1998, 205:82-91.
    [128]Koyama H, Takita E, Kawamura A, et al. Over expression of mitochondrial citrate synthase gene improves the growth of Carrot cells in Al-phosphate medium. Plant Cell Physiol,1999,40 (5):482-488.
    [129]Koyama H, Kawamura A, Kiharal T, et al. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant And Cell Physiology,2000,41(9):1030-1037.
    [130]Lopez-Bucio J., Octavio de la Vega M., Guevara-Garcia A, et al. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotechnology.2000:18:450-453..
    [131]Delhaize E, Hebb DM, Ryan PR. Expression of a pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiology,2001,125:2059-2067.
    [132]Rosellini D, Barone P, Bouton J, et al. Aluminum tolerance in alfalfa with the citrate synthase gene. North American Alfalfa Improvement Conference (NAAIC),2002.
    [133]Anoop V M, Basu U, McCammon M T, et al. Modulation of citrate metabolism alters Aluminum tolerance in Yeast and transgenic Canola overexpressing a mitochondrial citrate synthase. Plant Physiology,2003,132:2205-2217.
    [134]Barone P., Rosellini D., LaFayette P., et al. Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Reports,2008,27: 893-901.
    [135]王忠,王三根,李合声,等.植物生理学(第一版)北京:中国农业出版社,2002,157-164.
    [136]胡建广,赵相山,刘军,等.玉米苹果酸脱氢酶基因的分离与结构分析.植物学报.1999,41(1):40-44.
    [137]崔小英,崔衍波,邓伟,等.超量表达苹果酸脱氢酶基因提高首稽对铝毒的抗受性.分子植物育种,2004,2(5):621-626.
    [138]Tesfaye, M., Temple,S.J., Allan,D. L., et al. Overexpression of malate dehydrogenase in transgenic Alfalfa enhances organic acid synthesis and confers tolerance to Aluminum. Plant Physiol,2001,127:1836-1844.
    [139]Qi-Feng Wang, Yue Zhao, Qiong Yi, et al. Overexpression of malate dehydrogenase in transgenic tobacco leaves:enhanced malate synthesis and augmented Al-resistance. Acta Physiol Plant,2010,32:1209-1220.
    [140]Fox T. R., Comerbord N. B., MeFee W. W. Phosphorus and aluminium release from spodic horizon mediated by organic acids. Soil Sci Soc Am J,1990,54:1763-1767.
    [141]Pao S. S., Paulsen I. T., Saier M. H. Major facilitator super family. Microbial Mol Biol Rev,1998,62:1-34.
    [142]王莉晶,高晓蓉,吕军,等.解磷真菌C2’的分离鉴定及其在土壤中实际解磷效果的研究.土壤通报,2009.40(4):771-775.
    [143]Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res,1987,15(20):8125-8148.
    [144]Gavel Y, Heijne Gv. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng,1990,4:33-37.
    [145]童晋,詹高淼,王新发,等.油菜柠檬酸合酶基因的克隆及在逆境下的表达.作物学报,2009,35(1) :33-40.
    [146]胡利华,吴慧敏,周泽民,等.利用农杆菌介导法将柠檬酸合成酶基因(CS)导入籼稻品种明恢86.分子植物育种,2006,4(2):160-166.
    [147]Studier F W, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high level expression of cloned genes. J Mol Biol,1986,189:113.
    [148]Lopez-Calcagno PE, Moreno J, Labrador L, et al. Cloning, expression and biochemical characterization of mitochondrial and cytosolic malate dehydrogenase from Phytophthora infestans. Mycol Res,2009,1-11.
    [149]Aranda A, Maugeri D, Uttaro AD, et al. The malate dehydrogenase isoforms from trypanosoma brucei:Subcellular localization and differential expression in bloodstream and procyclic forms. Inter J Parasitol,2006,36:295-307.
    [150]Eprintsev AT, Falaleeva MI, Parfyonova NV. Malate dehydrogenase from the thermophilic bacterium vulcanithermus medioatlanticus. Biochemistry,2005,70:1027-1030.
    [151]Karina EJ, Tripodi FEP. Purification and characterization of an nad-dependent malate dehydrogenase from leaves of the crassulacean acid metabolism plant aptenia cordifolia. Plant Physiol Bioch,2003,41:97-105.
    [152]Maloney AP, Callan SM, Murray PG, et al. Mitochondrial malate dehydrogenase from the thermophilic, filamentous fungus Talaromyces emersonii purification of the native enzyme, cloning and overexpression of the corresponding gene. Eur J Biochem,2004, 271:3115-3126.
    [153]Ma H, Kubicek CP, Rohr M. Malate dehydrogenase isoenzymes in Aspergillus niger. FEMS Microbiol Lett,1981,12:147-151.
    [154]Mahmoud YAG, Abuelsouod SM, Niehaus WG. Purification and characterization of malate dehydrogenase from cryptococcus neoformans. Arch Biochem Biophys,1995,167:1-8.
    [155]Chan M, Sim TS. Functional characterization of an alternative [lactate dehydrogenase-like] malate dehydrogenase in plasmodium falciparum Parasitol Res, 2004,92:43-47.
    [156]Kim CH, Han SH, Kim KY, et al. Cloning and expression of pyrroloquinoline quinone (pqq) genes from a phosphate-solubilizing bacterium enterobacter intermedium. Curr Microbiol,2003,47:457-461.
    [157]Aditi D. Buch, G. Archana, G. Naresh Kumar. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. Microbiology,2009,155,2620-2629.
    [158]曹孜义,刘国民主编.实用植物组织培养技术教程.兰州:甘肃科学技术出版社,1996.
    [159]谷力.测定天然和栽培撷草根金属元素的微波和干灰化消解—FAAs法.分析测试学报,2002,21(6):56-58.
    [160]Delhaize E., Taylor P., Hocking P. J., et al. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMTl) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnol J,2009, 7:391-400.
    [161]George T. S., Simpson R. J., Hadobas P. A., et al. Expression of a fungal phytase gene in Nicotiana tabacum impr oves phosphorus nutrition of plants grown in amended soils. Plant Biotechnol J,2005,3:129-140.
    [162]Ma X.-F., Wright E., Ge Y., et al. Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes. Plant Sci,2009,176:479-488.
    [163]Wang X., Wang Y., Tian J., et al. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol,2009,151:233-240.
    [164]Van der Merwe M. J., Osorio S., Moritz T., et al. Decreased mitochondrial activities of malate dehydrogenase and fumarase in tomato lead to altered root growth and architecture via diverse mechanisms. Plant Physiology,2009,149:653-669.
    [165]Fageria NK, Wright RJ, Baligar VC. Rice cultivar evaluation for phosphorus use efficiency. Plant and Soil,1988,111:105-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700