内源性凋亡途径在大黄鱼抗细菌感染中的作用及两个新的CC型趋化因子的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜水气单胞菌(Aeromonas hydrophila)是危害大黄鱼(Pseudosciana crocea)养殖的重要病原。本论文研究了大黄鱼内源性凋亡途径在细菌感染中的作用,为揭示内源性凋亡途径在抗细菌感染中的作用机制奠定了基础,也为进一步探索大黄鱼病害防治的新途径提供科学依据。
     通过简并引物、3'和5'RACE获得了大黄鱼内源性凋亡途径中的三个重要基因:cytochrome c(Lyccyt c)、caspase-9(Lyccasp9)和caspase-3(Lyccasp3)的全长cDNA
     Lyccyt c编码104aa,其基因组含有2个外显子,1个内含子。Lyccasp9编码437 aa,包括三个结构域:Prodomain,90aa,包含CARD结构域;大亚基,133aa,包含组氨酸活性位点和半胱氨酸活性位点;小亚基,88aa。其基因组含有10个外显子,9个内含子。Lyccasp3编码285aa,包括两个结构域:大亚基,123aa,包含组氨酸活性位点和半胱氨酸活性位点;小亚基,共95aa。
     研究表明,重组Lyccasp9和Lyccasp3具有蛋白酶活性,证明它们具备caspase的基本性质。本实验中,我们首次在大黄鱼中对两个活性位点Lyccasp9的H~(249)和C~(299)及Lyccasp3的H~(132)和C~(174)进行了定点突变研究,其中对caspase组氨酸活性位点的定点突变研究在鱼类中未见报道。突变后的蛋白酶活性显著下降,证实了这两个残基的重要作用。
     RT-PCR分析显示,Lyccasp9和Lyccasp3基因在所检测的八个组织中为组成型表达。在Poly(I:C)或三联菌苗诱导下,Lyccasp9和Lyccasp3基因表达显著上调、进一步对Lyccasp9和Lyccasp3在组织中生物活性的测定,表明了内源性凋亡途径参与了大黄鱼的免疫过程。
     为了探明内源性凋亡途径在大黄鱼抗细菌感染中的作用,我们利用RNAi技术抑制了Lyccyt c和Lyccasp9的表达。通过Real-time PCR、Western blot、生物活性、TUNEL分析发现,Lyccyt c和Lyccasp9 dsRNA对大黄鱼的内源性凋亡途径有明显的抑制效果。在对Lyccyt c或Lyccasp9基因沉默后、感染嗜水气单胞菌条件下,这两个试验组的大黄鱼均在细菌感染后的4天内全部死亡,而注射GFP dsRNA和嗜水气单胞菌试验组及注射嗜水气单胞菌试验组均在细菌感染后的6天内全部死亡,注射PBS组死亡率只有20%左右。以上结果表明,在大黄鱼抗嗜水气单胞菌感染中、内源性凋亡途径引起的凋亡对大黄鱼有一定的保护作用。我们推测当嗜水气单胞菌侵入机体后、被细胞包裹,引起细胞凋亡,然后巨噬细胞进行吞噬,从而起到对机体的保护。同时还发现在内源性凋亡途径被抑制后,Lyccasp3基因的表达也受到了一定的抑制,进而抑制了细胞凋亡。
     另外还鉴定了大黄鱼两个新的CC型趋化因子,LycCC1和LycCC2。两者的序列一致性仅有17.7%,研究表明重组的LycCC1和LycCC2具有趋化活性。RT-PCR显示,LycCC1和LycCC2在所检测的9个组织中均为组成型表达。在Poly(I:C)或三联菌苗诱导下,LycCC1和LycCC2转录均明显上调、12h达到最高。我们发现Poly(I:C)对LycCC1的诱导比三联菌苗更为有效。研究表明,重组的LycCC1能诱导LMP10,MHC class Iαchain和β_2m的高表达。由此可见,LycCC1不仅参与了Poly(I:C)或三联菌苗诱导的免疫反应,还参与了大黄鱼MHC class I抗原呈递途径的调节。我们还发现三联菌苗对LycCC2的诱导比Poly(I:C)更为有效,这与LycCC1有明显不同,这预示LycCC2更侧重于细菌诱导的免疫反应。
A. hydrophilais is one of the devastating pathogens in the farming of large yellow croaker. This study aimed at the mechanisms of intrinsic apoptotic pathway in large yellow croaker against the infection of A. hydrophilais. These works would be helpful for the enhancement of the ability against the diseases of large yellow croaker.
     In this investigation, we obtained three important genes, Cytochrome c(Lyccyt c), caspase-9(Lyccasp9) and caspase-3(Lyccasp3) genes from large yellow croaker by degenerated primers, 3' RACE and 5' RACE.
     Lyccyt c gene encondes 104 aa. Genomic analysis reveals that it consists of ten exons and nine introns. Lyccasp9 gene encondes 437 aa, containing of three domains: Prodomain, 90 aa, which includes a CARD domain; P20, 133 aa, which includes His and Cys motif; P10, 88 aa. Lyccasp3 gene encondes 285 aa, consisting of two domains: P20,123 aa, which includes His and Cys motif; P10,95 aa.
     Experiment results indicated that rLyccasp9 and rLyccasp3 presented the enzyme activity of caspase. The recombinants Lyccasp9 with mutations of H~(249) to D or C~(299) to G, and Lyccasp3 with mutations of H~(132)to D or C~(174) to G displayed decreased proteolytic activity, which confirmed their functional importance.
     It was showed by RT-PCR that Lyccasp9 and Lyccasp3 were constitutively expressed in all eight tissues examined. Time-course analysis using a real time PCR revealed that Lyccasp9 and Lyccasp3 transcripts in spleen and kidney were quickly increased in induction of Poly(I:C) or bacterial vaccine. This indicated that Lyccasp9 and Lyccasp3 participated in the immune of large yellow croaker. The bioactivity of Lyccasp9 and Lyccasp3 examined further confirmed the results.
     By analysis of Real-time PCR, Western blot, bioactivity and TUNEL, it was found that Lyccyt c dsRNA and Lyccasp9 dsRNA could markedly silence intrinsic apoptotic pathway. After inhibition of Lyccyt c and Lyccasp9 and injection of A. hydrophilais, the fish of the two group died in 4 d after infection, while the fish of the two group of injecting GFP and A. hydrophilais died in 6 d after infection, however the mortality of injecting PBS was about 20%. It was revealed that the apoptosis caused by intrinsic apoptotic pathway in large yellow croaker played positively role in the infection of A. hydrophilais. It was suggested that after infection upon large yellow croaker, A. hydrophilais is internalized by cells, then results in their apoptosis, which forms apoptotic body and induces marophages to lick up apoptotic body. Thus it contributes to the host defense against A. hydrophilais. It was also found that Lyccasp3 expression was inhibited to a certain extent after silencing of intrinsic apoptotic pathway in large yellow croaker, and apoptosis was also inhibited.
     Two novel CC chemokine genes were isolated from large yellow croaker, LycCC1 and LycCC2. LycCC1 and LycCC2 only have 17.7% aa sequence identities. Recombinant LycCC1 and LycCC2 protein produced in Pichia pastoris exhibited marked chemotaxis to the peripheral blood leucocytes (PBLs) from large yellow croaker. Tissue expression profile analysis showed that the two genes were constitutively expressed in all nine tissues examined. Upon stimulation with poly(I:C) or bacterial vaccine, LycCC1 gene expression was obviously up-regulated and reached their peak levels at 12 h post-induction. LycCC1 gene expression was more strongly up-regulated by poly(I:C) than by bacterial vaccine. An in vivo administration of rLycCC1 could significantly up-regulate the expression levels of LMP10, MHC class Iαchain andβ_2m. These results suggest that LycCC1 may not only have a pro-inflammatory function in immune response, but also be involved in adaptive immune response by modulating MHC class I antigen processing. However, LycCC2 expression was more strongly up-regulated by bacterial vaccine than by poly(I:C). These results suggested that LycCC2 represent a novel member of fish CC chemokine family, involving in a pro-inflammatory function in immune response triggered by more bacterial vaccine than poly(I:C) in large yellow croaker.
引文
[1]林克冰,周宸,刘家富等.海水网箱养殖大黄鱼病原菌研究[J].海洋科学,1999,4:58-62.
    [2]林星,肖懿哲.大黄鱼弧菌病的诊治[J].水产养殖,1998,4:29-32.
    [3]Secombes C.J.,Wang T.,Hong S.,et al.Cytokines and innate immunity of fish[J].Dev Comp Immunol,2001,25:713-723.
    [4]张永安.鱼类免疫组织和细胞的研究概况[J].水生生物学报,2000,24(6):648-652.
    [5]Chilmoncyk S.The thymus in fish:development and possible function in the immune response[J].Ann.Rev.Fish Dis,1992,2:181-200
    [6]卢全章.草鱼胸腺组织学的研究[J].水生生物学报,1991,15(4):327-331
    [7]唐玫,马广智,徐军.鱼类免疫学研究进展.免疫学杂志,2002,18:112-116
    [8]Manning M J.Fishes In:Turner R J ed.Immunology:A Comparative Approach[M].Britain:John Wiley & Sons Ltd,1994:69-99
    [9]钟明超,黄浙.鲇鱼淋巴样器官的发育[J].水产学报,1995,19(3):258-262
    [10]Fournier BV,Quentel C,Lamour F,et al,lmmunocytochemical detection of Ig-positive cells in blood,lymphoid organs and the gut associated lymphoid tissue of the bucbot(scophthalmus)[J].Fish Shelfish Immunol,2000,10(2):187-202
    [11]Romano N,Maanen JC,et al.Leucocyte subpopulations in developing carp(Cyprinus carpio L.):immunocytochemical studies[J].Fish Shellfish Immunol,1997,7:439-453
    [12]张永安,聂品.鱼类体液免疫因子研究进展.水产学报,2000,24:376-381.
    [13]Alexander J B,Ingram G A.Noncellular nonspecific defense mechanisms of fish[J].Ann Rev Fish Dis,1992,2:249-279.
    [14]Dalmo R A,Ingebrigtsen K,Bogwald J.Nonspecific defence mechanisms in fish,with particular reference to the reticuloendothelial system(RES)[J].J Fish Dis,1997,20:241-273.
    [15]Zou J,Carrington A,Collet B,et al.Identification and bioactivities of IFN-gamma in rainbow trout Oncorhynchus mykiss:the first Th1-type cytokine characterized functionally in fish[J].J Immunol.2005,175(4):2484-94.
    [16]Altmann SM,Mellon M T,Distel DL,et al.Molecular and functional analysis of an interferon gene from the zebrafish,Danio rerio[J].J Virol,2003,77:1992-2002.
    [17]Gal P,Ambrus G.Structure and function of complement activating enzyme complexes:C1 and MBL-MASPs[J].Curr Protein Peptide Sci,2001,2:43.
    [18] Sakai D K. Repertoire of complement in immunological defense mechanisms of fish[J]. Ann Rev Fish Dis,1992,2:223-247.
    [19] Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death.Cell Death and Differentiation, 1999,6:1028 -1042
    [20] Howard Y, Chang, Xiaolu Yang. Proteases for Cell Suicide: Functions and Regulation of Caspases.Microbiology and Molecular Biology Reviews, Dec. 2000, p. 821-846.
    [21] Patel T., et al., The role of proteases during apoptosis.1996, FASEB,10:587-597
    [22] Nicholson D.W., Thornberry N.A.1997.Caspases: killer proteases. Source Trends Biochem. Sci.22,299-306
    
    [23] Chang, H.Y., Yang, X., 2000. Proteases for cell suicide: functions and regulation of caspases.Microbiol. Mol. Biol. Rev. 64, 821-846.
    
    [24] Cerretti DP.,etal., Molecular cloning of the interleukin-1 converting enzyme. 1992,science,256:97-100.
    [25] Fink, S.L., Cookson, B.T., 2005. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907-1916.
    [26] Yigong Shi. Mechanisms of Caspase Activation and Inhibition during Apoptosis. Molecular Cell,2002,9,459-470.
    [27] Fernandes-Alnemrei, et al, In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domain. PNAS, 1996, 93:7464-7469.
    [28] Boldin M, et al, Involvement of MACH, a novel MORTI/FADD interacting protease, in Fas/APOI and TNFR induced cell death.Cell,1996,85:803-815.
    [29] Hu S,et al,dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J Biol Chem, 2000, 275: 30761-30764.
    [30] Hofman K, et al, The CARD domain: a new apoptotic signaling motif.Trends Biochem Sci,1997,22:155-156.
    [31] Thomas M et al, The short prodomain influences caspase3 activation in HeLa cells. 2000, 349:135-140.
    [32] Sophie Roy et al, Maintenance of caspase3 proenzyme dormancy by anintrinsic "safety catch"regulatory tripeptide. PNAS, 2001,98:6134-6137.
    [33] Qin H, et al, Structural basis of procaspasse-9 recruitment by the apoptotic protease-activating factorl. Nature, 1999, 399:549-557.
    [34] Eberstadt M, et al, NMR structure and mutagenesis of the FADD death-effector domain. Nature, 1998,392:941-945.
    [35] Yigong Shi. Caspase Activation: Revisiting the Induced Proximity Model. Cell, Vol. 117, 855-858,June 25,2004,
    [36] Nicholson DW, et al, Identification and inhibition of the ICE/CED3 protease necessary for mammalian apoptosis. Nature, 1995, 376:37-43.
    [37] Thornberry NA, et al, A novel heterodimeric cysteine protease is required for interleukinl beta processing in monocyte. Nature, 1992,356:768-774.
    [38] Blanchard H, et al, The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis.Struct Fold Des, 1999, 7:1125-1166.
    [39] Walker NP,et al Crystal structure of the cysteine protease IL-1 beta-converting enzyme : a (p20/p12) homodimer. Cell, 78:343-352.
    [40] Howard AD, et al, IL-1 concerting enzyme requires asparticzcid residues for processing of the IL-1 beta precursor at two distinct sites and does not cleave 31KD IL-1 alpha. J. immunol, 1991, 147:2964- 2969.
    [41] Sleath PR, et al, Substrate specificity of the protease that processes human IL-1 beta. J Biol Chem,1990,265: 14526-14528.
    [42] Martin SJ,et al, The cytotoxic T cell protease granzyme B initiates apoptosis in a cell free system by proteolytic processing and zceivation of the ICE3 family protease ,CPP32,through a novel two step mechanism. EMBO J, 1996, 15:2407-2416.
    [43] Seinivasula S,et al, Generation of constitutively active recombinant caspase-3 and -6 by rearrangement caspase-3 and -6 by rearrangement of their subunits. J Biol Chem, 1998, 273:10107-10111.
    [44] Song Z,et al, DCP1, a Drosohila cell death protease essential for development .Science, 1997,75:563- 540.
    [45] Mao P, Activation of caspase-1 in the nucleus requires nuclear translocation of procaspase by its prodomain. J Biol Chem, 1998, 273:23621-23624.
    
    [46] Christopher D. Buckley, Darrell Pilling et al. RGD peptides induce apoptosis by direct caspase-3 activation. Nature, 1999,397:11.
    
    [46] Michael O. Hengartner. The biochemistry of apoptosis. Nature, 2000,12:407
    [47] Julia M, et al, Different cellular distribution of caspase-3 and 7 following Fas induced apoptosis in mouse liver. J Biol Chem, 1998, 273:10815-10818.
    [48] Marie Mancini et al , Caspase2 is localized at the Golgi complex and cleaves Golgi-10 during apoptosis. J Cell Biol, 2000, 149: 603-612.
    [49] Lavina Faleiro et al, Caspase-9 disrupt the nuclear cytoplasmic barrier. J Cell Biol, 2000, 151:951-959.
    [50] Christopher D Buckley,et al ,RGD peptides induce apoptosis by direct caspase-3 activation. Nature,1999, 397: 534-539.
    [51] Gary M,et al, Livin, a novel inhibitor of apoptosis protein family members. J Biol Chem, 2001, 276:3238-3246.
    [52] Han-kuei Huang et al, The inhibitor of apoptosis, cIAP2, functions as a Ubiquitin-protein Iigase and promotes in vitro monoubiquination of caspase-3 and 7. J Biol Chem, 2000, 275:26661-26664.
    [53] M Izawa et al, Identification of an alternative form of caspase-9 in human gastric cancer cell lines:a role of a caspase-9 variant in apoptosis. Apoptosis, 1999,4: 321-325.
    [54] Michael HC, et al, Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998,282:1318-1321.
    
    [55] John B Mammick et al, Fas induced caspase denitrosylation. Science, 1999, 284:651-654.
    [56] Richard MS. Caspases at the crossroads of immune-cell life and death. Nature.2006,6:308-317.
    [57] Lenardo, M., et al. Mature T lymphocyte apoptosis-Immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 1999,17: 221-253
    [58]. Straus, S.E., et al. An inherited disorder of lymphocyte apoptosis: The autoimmune lymphoproliferative syndrome. Ann. Intern. Med. 1999,130: 591-601.
    
    [59].Rawson VM, et al. Cross-presentation of caspase-cleaved apoptotic self antigens in HIV infection..Nature medicine.2007, 13:1431-439
    [60]. Salmena L, et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity.GENE and Development, 200317:883-895;
    [61] Miwa K, et al. Caspase 1-independent IL-1 β release and inflammation induced by the apoptosis inducer Fas ligand. Nature Medicine 1998,4:1287-1292.
    [62] Sansonetti P J, et al. Caspase-1 Activation of IL-1β and IL-18 Are Essential for Shigella flexneri- Induced Inflammation.Cell.2000,12:581-590.
    
    [63] Restifo N P. Building better vaccines: how apoptotic cell death can induce
    [64] Faouzi S, et al. Anti-Fas Induces Hepatic Chemokines and Promotes Inflammation by an NF-kB-independent, Caspase-3-dependent Pathway. J. Biol. Chem. 2001,275: .49077-49082,
    [65] Furuya T, et al. Caspase-11 Mediates Inflammatory Dopaminergic Cell Death in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse Model of Parkinson's Disease. The Journal of Neuroscience. 2004,8:1865-1872
    [66] Prikhodko E A, et al. The NS3 protein of hepatitis C virus induces caspase-8-mediated apoptosis independent of its protease or helicase activities. Virology. 2004,329: 53-67
    [67] Bitzer M., et al. Caspase-8 and Apaf-1-independent Caspase-9 Activation in Sendai Virus-infected Cells. J. Biol. Chem. 2002, 277:29817-29824
    [68] Langelier Y, et al. The R1 Subunit of Herpes Simplex Virus Ribonucleotide Reductase Is a Good Substrate for Host Cell Protein Kinases but Is Not Itself a Protein Kinase. 1998,273:435-1443.
    [69] Pichlmair A and Reis e Sousa C, Innate Recognition of Viruses.J.immuni.2007.370-383.
    [70] Vocero M ,et al. Killing HIV-infected cells transdulation with an HIV protease-activated caspase-3 protein. Nature Medicine, 1999:29-33.
    [71] Grassme H, Jandrossek V, Gulbins. Molecular mechanisms of bacteria induced apoptosis. Apoptosis,2001,6:441-445
    [72] Reis, et al. First molecular cloning and characterisation of caspase-9 gene in fish and its involvement in a gram negative septicaemia. Molecular Immunology , 2007, 44:1754-1764
    [73] Reis, et al. Molecular cloning and characterisation of sea bass caspase-3 gene. Molecular Immunology, 2007, 44:774-783.
    [74] Takeshi, et al. Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo. J. Biochem,2001,360:39-47.
    [75] Laing, K.J., Secombes, C.J. Chemokines. Dev. Comp. Immunol. 2004,28: 443-460.
    [76] Gerard C, Rollins BJ. Chemokines and disease. Nature 2001;2:108-15.
    [77] Bokoch, G.M. Chemoattractant signaling and leukocyte activation. Blood 1995, 86:1649-1660.
    
    [78] Bacon, K., et al. Chemokine/chemokine receptor nomenclature. Cytokine, 2003,21:48-49.
    [79] Rollins, B.J. Chemokines. Blood, 1997,90:909-928.
    
    [80] Fernandez, E.J., Lolis, E. Structure, function, and inhibition of chemokines. Ann. Rev. Pharmacol.Toxicol. 2002,42:469-499.
    
    [81] Mukaida, N., Harada, A., Matsushima, K. Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine Growth Factor Rev. 1998, 9:9-15.
    [82] Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines CXC and CC chemokines. Ad Immunol 1994;55:97-179.
    
    [83] Najakshin AM, Mechetina LV, Alabyev BY, Taranin AV.Identification of an IL-8 homolog in lamprey (Lampetra fluviatilis): early evolutionary divergence of chemokines. Eur J Immunol 1999;29:375-82.
    [84] Lee E-Y, Park H-H, Kim Y-T, Chung J-K, Choi T-J. Cloning and sequence analysis of the interleukin-8 gene from flounder (Paralichthys olivaceous). Gene 2001;274:237-43.
    [85] Laing KJ, Zou JJ, Wang T, Bols N, Hirono I, Aoki T, Secombes CJ. Identification and analysis of an interleukin 8-like molecule in rainbow trout Oncorhynchus mykiss. Dev Comp Immunol 2002;26:433 -44.
    
    [86] Fujiki K, Shin DH, Nakao M, Yano T. Molecular cloning of carp (Cyprinus carpio) CC chemokine,CXC chemokine receptors, allograft inflammatory factor-1, and natural killer cell enhancing factor by use of suppression subtractive hybridization. Immunogenetics 1999;49:909-14.
    [87] Dixon B, Shum B, Adams EJ, Magor KE, Hedrick RP, Muir DG, et al. CK-1, a putative chemokine of rainbow trout (oncorhynchus mykiss). Immunol Rev 1998;66:341-8.
    
    [88] Liu L, Fujiki K, Dixon B, Sundick RS. Cloning of a novel rainbow trout (Oncorhynchus mykiss) CC chemokine with afractalkine-like stalk and a TNF decoy receptor using cDNA fragments containing Au-rich elements. Cytokine 2002; 17:71-81.
    
    [89] Kuroda N, Uinuk-Ool TS, Sato A, Samonte IE, Figueroa F, Mayer WE, et al. Identification of chemokines and a chemokine receptor in cichlid fish, shark, and lamprey. Immunogenetics 2003;54:884-95.
    
    [90] Khattiya R, Kondo H, Hirono I, Aoki T. Cloning, expression and functional analysis of a novel-chemokine gene of Japanese flounder, Paralichthys olivaceus, containing two additional cysteines and an extra fourth exon. Fish Shellfish Immunol 2007;22:651-62.
    [91] Murphy PM. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev Immunol 1994;12:593-633.
    [92] Wu, D., LaRosa, G.J. Simon, M.I.,. G protein-coupled signal transduction pathways for interleukin-8.Science. 1993,261:101-103.
    [93] Kuang, Y., Wu, Y., Jiang, H., Wu, D. Selective G protein coupling by C-C chemokine receptors. J.Biol. Chem. 1996, 271:3975-3978.
    
    [94] Guo S , Kemphues KJ . par21 , a gene required for establishing polarity in C. elegans embryos ,encodes a putative Ser/ Thrkinase that is asymmetrically distributed [ J ]. Cell, 1995 ,81 (4): 611-620.
    
    [95] Bass BL. RNA interference. The short answer [J]. Nature ,2001 ,411 (6 836): 428 - 429.
    [96] Van der Krol AR, Mur LA , de Lange P , et al. Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect [J] .Plant Mol Biol ,1990,14 (4): 457-466.
    [97] Kira S Makarova, Nick V Grishin,et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology 2006 1:7.
    [98] Gunter Meister & Thomas Tuschl. Mechanisms of gene silencing by double-stranded RNA.Nature,2004,431.
    
    [99] PascalMeier, Andrew Finch, Gerard Evan. Apoptosis in development. Nature, 2000, 407: 796-801
    [100] John Savill, Valerie Fadok. Caspase clearance defines the meaning of cell death. Nature, 2000, 407:784-788
    [101] Qinghua Liu, Tim A R, Savitha K, et al. a Bridge Between the Initiation and Effector Steps of the Drosophila RNAi Pathway[J]. Science, 2003,301(26): 1921-1925.
    [102] Heinonen JE, mith CIE,and NORE BF.Silencing of Bruton's yrosinekinase(Btk) using short I terfering RNA duplexes(siRNA).FEBS etters,2002,527:274
    [103] Gonczy P, Echeverri C, Hyman A A,et al. Functional genomic analysis of cell division in C.elegans using RNAi of genes on chromosome. Nature,2000,408:331-336
    [104] Piano F, Schetter A J, KEmphues KJ. et al RNAi analysis of genes expressed in the ovary of caenorhabditis elegans.Currboil,2000,10(24): 1619-1622.
    
    [105] Novinac D ,Murray MF ,DykXhoom D ,et al. siRNA - directed inhibition of HIV -1 infection[J ] . Nat Med ,2002 ,8(7):681.
    [106] Clemens JC,Worby CA, Simonson-Leff N, et al. Use of double-stranded RNA interference in Drosophila cell kines to dissect signal transduction pathways,Proc Natl Acad Sci USA,2000,97:6499
    [107] Mo rris J C, et al. Glycolysis modulates trypanosomeglycoprotein expression as revealed by an RNAi library. EMBO J, 2002,21: 4429-4438.
    [108] Vira Bitko, Alia Musiyenko, Olena Shulyayeva & Sailen Barik. Inhibition of respiratory viruses by nasally administered siRNA.Nature medicine. 2004,11:50-55.
    [109] Liu GZ, Zhang JZ., Chen XH. molecular and functional characterization of a CD59 analogue from large yellow croaker Pseudosciana crocea. Mol Immunol 2007,44:3661-71.
    [110] Lei Wang, et al. Requirement for shrimp caspase in apoptosis against virus infection. Deve Comp Immunol. 2008,32: 706-715
    [111] Sambrook J, Fritsch EF, Maniantis T. MOLECULAR CLONING-A Laboratory manual(2nd), Cold Spring Harbor Laboratory Press, 1989.
    
    [112] Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001, 15:2922-2933
    [113] Kagi, D., Khoo, W.,. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell,1998, 94:339-352.
    [114] Gramme. H, Jendrossek. V, Gulbins. E. Molecular mechanism of bacteria induced apsptosis.Apoptosis, 2001,6:441-445.
    [115] Esen M. Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells.Apoptosis, 2001,6:1360-8185
    [116] Hans Hacker, Christine F(?)rmann, Hermann Wagner and Georg Hacker. Caspase-9/-3 Activation and Apoptosis Are Induced in Mouse Macrophages upon Ingestion and Digestion of Escherichia coli Bacteria. Journal of Immunology, 2002, 169: 3172-3179.
    [117] Saleh, A., et al. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for proLyccasp9 activation. J. Biol. Chem. 1999,274: 17941-17945.
    [118] Liu, X., Kim, C.N.,Yang, J., Jemmerson, R.,Wang, X.,. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996,86:147-157.
    [119] Li, P., et al.. Cytochrome c and dATP-dependent formation of Apaf-1/Lyccasp9 complex initiates an apoptotic protease cascade. Cell, 1997,91: 479-489.
    [120] Pan,G.O.,Rourke, K., Dixit,V.M.. Caspase9, Bcl-XL,and Apaf-1 form a ternary complex. J Biol Chem ,1998. 273, 5841-5845.
    
    [121] Valente E, Assis MC, Alvim IMP, et al. Pseudomonas aeruginosa induces apoptosis in human endothelial cells. Microbial Pathogenesis. 2000; 29: 345-356.
    [122] Grassm'e H, Kirschnek S, Riethmueller J, et al. Host defense to Pseudomonas aeruginosa requires CD95/CD95 ligand interaction on epithelial cells. Science 2000; 290: 527-530.
    [123] Aballay A, Ausubel FM. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci. 2001,98: 2735-2739.
    [124] David AB, Christine D, Gregory B. Identification of an Arg-GIy-Asp (RGD) Cell Adhesion Site in Human Immunodeficiency Virus Type I Transactivation Protein, tat. J Cell Biol 1990,111:1275-81
    [125] Mackenzie, S., Liarte, C, Iliev, D., Planas, J.V., Tort, L., Goetz, F.W. Characterization of a highly inducible novel CC chemokine from differentiated rainbow trout (Oncorhynchus mykiss) macrophages. Immunogenetics. 2004,56: 611-615.
    [126] Khattiya, R., Ohira, T., Hirono, I., Aoki, T. Identification of a novel Japanese flounder (Paralichthys olivaceus) CC chemokine gene and an analysis of its function. Immunogenetics. 2004,55: 763-769.
    [127] Chaves-Pozo, E., Mufioz, P., Lopez-Munoz, A., Pelegrin, P., Ayala, A.G, Mulero, V., Meseguer, J.Early innate immune response and redistribution of inflammatory cells in the bony fish gilthead seabream experimentally infected with Vibrio anguillarum. Cell Tissue Res. 2005,320:61-68.
    [128] Trede, N.S., Langenau, D.M., Traver, D., Thomas, L.A., Zon, L.I. The use of zebrafish to understand immunity. Immunity. 2004,20:367-379.
    [129] Baggiolini, M., Dewald, B., Moser, B. Interleukin-8 and related chemotactic cytokines CXC and CC chemokines. Ad. Immunol. 1994,55: 97-179.
    [130] Loetscher, P., Moser, B. Baggiolini, M. Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv. Immunol. 2000, 74:127-180.
    [131] Eo, S.K., Pack, C., Kumaraguru, U. Rouse B T. Optimisation of DNA vaccines for the prophylaxis and modulation of herpes simplex virus infections. Expert. Opin. Biol. Ther. 2001,1: 213-225.
    [132] Kim, J.J., Nottingham, L.K., Sin, J.I., Tsai, A., Morrison, L., Oh, J., Dang, K., Hu, Y., Kazahaya, K.,Bennett, M., Dentchev, T., Wilson, D.M.,. Chalian, A.A., Boyer, J.D., Agadjanyan, M.G, Weiner, D.B., 1998. CD8 positive T cells in uence antigen-specic immune responses through the expression of chemokines. J. Clin. Invest. 102, 1112-1124.
    
    [133] Kloetzel, P.M., 2001. Antigen processing by the proteasome. Nat. Rev. Mol. Cell Biol. 2, 179-187.
    [134] Cresswell, P., Bangia, N., Dick, T., Diedrich, G. The nature of the MHC class I peptide loading complex.Immunol.Rev.1999,172,21-28.
    [135]Antoniou,A.N.,Powis,S.J.,Elliott,T.Assembly and export of MHC class Ⅰ peptide ligands.Curr.Opin.Immunol.2003,15:75-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700