高有机硒保存率蔬菜富集和加工机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒是人体的必须营养元素,缺硒可能导致心脏病,甲状腺机能减退,以及免疫能力减弱等症状。近年来,含硒组分具有的抗癌能力受到国际保健科学领域的普遍关注,流行病学研究表明,成年人如果每天补充200μg硒可以使癌症的发病率和死亡率降低50%左右。我国成人的硒摄入量仅为26μg/日,距离中国预防医学中心卫生所推荐的安全进硒量50-240μg/人/日相差甚远。而不同来源和化学形式的含硒组分之间的安全性、生物功能性存在较大差异。植物中硒主要以硒代氨基酸形式存在,生物利用率高,且不易在体内造成蓄积,因此本论文利用蔬菜作为载体,对蔬菜中有机硒的富集、生物转化,以及加工过程对硒的影响进行探讨,对于具有生理功能的含有机微量元素蔬菜型功能食品产业化中的应用提供理论依据和实践指导。
     首先选择十字花科云薹属植物甘蓝、菜心、豆科大豆属的毛豆和百合科天门冬属的芦笋作为试验原料,研究蔬菜对于无机硒的吸收和转移规律以及硒的富集对于蔬菜营养成分的影响。研究结果显示:蔬菜中硒的积累量与亚硒酸钠的喷施量线性相关,其中十字花科的甘蓝和菜心属于硒积累植物,蓄积硒的能力较高,转化率高,而毛豆因蛋白含量较高,也可以硒蛋白的形式蓄积较高含量的有机硒。甘蓝和毛豆富硒能力较强,生长周期较长,无机硒残留少,是较适宜的富硒蔬菜品种。采用pH8的浓度为50mg/L的亚硒酸钠溶液,对蔬菜进行2-3次的叶面喷施,是比较简便而且切实可行的农艺富硒方法。适当浓度的硒处理对于蔬菜中蛋白质、叶绿素以及维生素C的合成起促进作用,而可溶性糖的含量呈降低趋势,富硒处理不改变蔬菜中氨基酸的种类和分布,但是分子量分布试验和电泳试验显示,毛豆蛋白中大分子量蛋白(>100kDa)含量降低,而中等分子量和小分子量蛋白含量升高。毛豆中油脂含量随施硒浓度的增加而降低,其中不饱和脂肪酸相对含量降低而饱和脂肪酸的相对含量升高。
     其次,进行了含硒组分的分离提取和分析检测。通过HCl缓冲液、蛋白酶和超声波辅助萃取的方法,研究富硒甘蓝和毛豆中硒的提取工艺,结果显示甘蓝中硒主要以游离态形式存在,而毛豆中的硒则以蛋白结合的形式存在。采用pH2.0,超声波处理120sec的方法可以将甘蓝中的绝大部分的硒提取出来,而毛豆中硒的提取则必须采用蛋白酶水解处理,采用超声波处理可以将毛豆蛋白中硒的酶解过程缩短到180s。甘蓝和毛豆中硒代氨基酸的种类和含量的测定采用氯甲酸乙酯衍生化,然后采用气相色谱质谱质谱法进行分析,甘蓝中有机硒主要以甲基硒半胱氨酸和硒代蛋氨酸的形式存在,另有痕量的硒半胱氨酸。毛豆中硒则主要以硒代蛋氨酸的形式存在。
     再次,研究了甘蓝和毛豆制汁和脱水过程中硒的损失和降解规律,在4℃贮藏过程中新鲜甘蓝中硒降解率可达30-45%,而毛豆中硒则比较稳定,降解率在10%左右。对蔬菜进行烫漂和调味处理能减少褐变,较好的保持产品的色泽。但烫漂过程会造成甘蓝中硒损失20-30%。脱水过程中毛豆中硒的稳定性高于甘蓝。比较不同脱水工艺对甘蓝和毛豆硒含量的影响,其中冷冻干燥对有机硒的保存率最高,硒蛋氨酸是热不稳定成分,在喷雾干燥过程中损失最大,而甲基硒半胱氨酸即使在冷冻干燥过程中也会有一定的损失。在热风烘干过程中,对于硒的降解的影响,温度和时间均为极显著的影响因素,而且时间的影响要大于温度的影响,拟合方程为Y=1.24321-0.00276X1-0.00075X2 (X1为温度,X2为时间)。硒的降解符合一级动力学模型,Boltzmann方程为:表观活化能Ea为44027 J/mol。
     最后,研究了甘蓝含硒组分的体外抗肿瘤细胞活性、体内降血糖能力以及长期摄入富硒产品对小鼠体内抗氧化酶活力以及生理生化指标等的影响。结果显示富硒甘蓝和毛豆提取液对于肿瘤细胞NCI-H446均具有一定的抑制作用。富硒甘蓝提取物对于正常小鼠的血糖没有显著影响,但可降低糖尿病小鼠血糖含量,耐糖量也有一定改善,对糖尿病小鼠的受损胰腺细胞具有一定的修复作用。饲喂富硒甘蓝提取物的小鼠体内过氧化物歧化酶、谷胱甘肽酶含量增加,丙二醛含量降低。灌喂富硒甘蓝汁的对照组和富硒组小鼠血液生理生化指标无显著差异,富硒饲喂组无致畸毒性和遗传毒性。富硒蔬菜产品可作安全可靠的功能补硒食品。
Selenium (Se) is an essential nutrient in the human diet and metabolism. Selenium deficiency may lead to heart disease, hypothyroidism and immune malfunction. In recent years, Se compounds have been internationally recognized to have the ability of anti-cancer. The average total human Se intake in China, as reported by the Chinese Nutrition Association, is only 26μg/d, and this is substantially lower than Chinese Preventive Medicine Center’s recommended intake of 50-240μg/d. Epidemiological studies indicate if adults are supplemented with 200μg/d selenium, the cancer morbidity and mortality may reduce about 50%. Different sources and the chemical form of selenium compounds have different safety and biological functionality levels. Se of plant origin is mainly in the form of selenium amino acids that have higher bioavailability and will not easily cause toxic accumulation in the human body. Therefore, the use of vegetable as a vector of organic selenium enrichment is a appropriate choice. This thesis studied the Selenium bioconversion in vegetables, the formation mechanism of organic selenium, and the processing effects of selenium enriched. The results can provide the basic knowledge for application and the guidance in the industrialization of functional food containing this trace elements.
     First, flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis (L.), cabbage (Brassica oleracea var. capitata L.) edamame(Glycine Max (L.) Merrill.) and asparagus (Asparagus officinalis L.) were selected as the selenium enrichment test materials for studying inorganic selenium uptake and transfer pattern in vegetables and effects of selenium treatment on nutritional ingredients for the vegetables. The results show that selenium was a transportable and recyclable element in vegetables. Within certain ranges of spraying concentration, selenium content enriched was linearly correlated with the concentration of NaSeO32-. Twice spraying with lower concentration of NaSeO32- and adequate adjustment of pH improved selenium absorption in vegetables. Spraying of selenium on cabbage at a later growth phase led to higher selenium accumulation in vegetables. Selenium treatment with appropriate concentrations increased protein, vitamin C and chlorophyll synthesis, whereas decreased soluble sugar content. Selenium enrichment did not change the amino acid type and distribution, However, the molecular weight distribution tests and electrophoresis showed that high molecular weight protein in edamame (100kDa) decreased, whereas medium and small molecular weight protein increased. Selenium enriched edamame had a decreased oil content, in which unsaturated fatty acids rate reduced and saturated fatty acids rate increased.
     Second, selenium component extraction method and speciation were studied. Through HCl buffer and ultrasound-assisted extraction method, selenium component in cabbage and soybean can be extracted. Results show that the main selenium form in cabbage is in free state, and main selenium form in edamame is protein binding. Using 0.01 HCl buffer, assisted with 120 sec ultrasonic probe, most selenium in cabbage can be extracted. For edamame selenium extraction, it is necessary to adopt proteolytic processing. Ultrasound can be used to deal with selenium soybean protein to shorten the enzyme process to 180s. Derivative of selenium amino acid in cabbage and edamame was done with ethyl chloride formate. Then, they were detected with gas chromatography mass mass spectrometry. Chemical analysis of selenium showed that main selenium species in cabbage was Se-methyl-selenocysteine although selenomethionine and selenocystein were also detected. For edamame, the main selenium species was selenomethionine.
     Further, effect of the cabbage and soybean juice process and the dehydrate process on selenium content were studied. When fresh cabbage and edamame were stored under 4℃for 4 weeks,the selenium degradation rate in cabbage was up to 30-45% and soybean selenium was relatively stable, with a degradation rate at about 10%. Blanching and seasoning could reduce the browning degree, and maintain the green color. But blanching process caused the loss of selenium in cabbage at about 20-30%. Edamame selenium was more stable than cabbage during the dehydrated processing. Comparing different dehydration process, freeze-drying had the highest preservation rate for organic selenium. Selenomethionine is a heat-labile component, and the spray drying process resulted in the highest loss of selenomethionine. Met-Secysteine had a certain extent loss even in the freeze-drying process. In the drying process, temperature and time were the most significant factors for the degradation of selenium but the latter had even greater impact . Fitting equation is Y=1.24321-0.00276X1-0.00075X2 (X1 is temperature , X2 is time). Se degradation agreed with a dynamic model of the Boltzmann equation: with the apparent activation energy (Ea) of 44,027 J/mol.
     Finally, the extrac of selenium cabbage was used to study in-vitro antitumor activity and the antidiabetic mechanisms in type II diabetic mice. A long-term intake of selenium enriched products for mice was done to study the antioxidant enzymes and physiological and biochemical indicators. Cytotoxic bioactivity study on H446 cell line showed that selenium extract had stronger inhibition in vitro. The cell morphology sticked to the bottle wall showed bigger change and the sum of cells was decreased distinctly than the control treated under microscope. The higher concentration the samples had, the more obvious phenomenon of cell apoptosis was. Selenium cabbage extract had no significant effect on normal mice, but could reduce blood glucose levels in diabetic mice. After gastric perfusion of selenium, mice index of SOD, GSH-Px increased and MDA reduced, blood physiological and biochemical indicators of the control group of mice and selenium-enriched group had no significant difference. Teratogenic toxicity and genetic toxicity of selenium enriched juice showed that selenium vegetable products were safe and reliable to be used as functional food.
引文
1. Frost, D.V., Selenium in Biology. Annual Review of Pharmacology and Toxicology, 1975. 15: p. 259-284.
    2. Reilly, C., Selenium in food and health. 2nd ed. 2006: Springer. XVI, 206.
    3. Broadley, M.R., et al., Biofortification of UK food crops with selenium. Proceedings of the Nutrition Society, 2006. 65(2): p. 169-181.
    4. Combs, G.E., Food system-based approaches to improving micronutrient nutrition: The case for selenium. Biofactors, 2000. 12(1-4): p. 39-43.
    5. Li, C.S., Selenium deficiency and endemic heart failure in China: A case study of biogeochemistry for human health. Ambio, 2007. 36(1): p. 90-93.
    6. Rayman, M.P., The importance of selenium to human health. Lancet, 2000. 356(9225): p. 233-241.
    7. Whanger, P.D., Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition, 2002. 21(3): p. 223-232.
    8. Clark, L.C., et al., Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin a randomized controlled trial - A randomized controlled trial. Jama-Journal of the AmericanMedical Association, 1996. 276(24): p. 1957-1963.
    9. Mo, H.Z., Y. Zhu, and M. Zhang, Selenium enrichment pattern in flowering Chinese cabbage, cabbage and asparagus. Agro Food Industry Hi-Tech, 2006. 17(2): p. 39-42.
    10. Reyes, L.H., et al., Application of isotope dilution analysis for the evaluation of extraction conditions in the determination of total selenium and selenomethionine in yeast-based nutritional supplements. Journal of Agricultural and Food Chemistry, 2006. 54(5): p. 1557-1563.
    11. Ganther, H.E., Pathways of Selenium Metabolism Including Respiratory Excretory Products. Journal of the American College of Toxicology, 1987. 5(1): p. 1-5.
    12. Navarro-Alarcon, M. and M.C. Lopez-Martinez, Essentiality of selenium in the human body: relationship with different diseases. Science of the Total Environment, 2000. 249(1-3): p. 347-371.
    13. Schrauzer, G.N., Nutritional selenium supplements: Product types, quality, and safety. Journal of the American College of Nutrition, 2001. 20(1): p. 1-4.
    14. Schrauzer, G.N. and D.A. White, Selenium in Human Nutrition - Dietary Intakes and Effects of Supplementation. Bioinorganic Chemistry, 1978. 8(4): p. 303-318.
    15. Beilstein, M.A. and P.D. Whanger, Chemical Forms of Selenium in Rat-Tissues after Administration of Selenite or Selenomethionine. Journal of Nutrition, 1986. 116(9): p. 1711-1719.
    16. Montes-Bayon, M., et al., Selenium in plants by mass spectrometric techniques: developments in bio-analytical methods - Plenary Lecture. Journal of Analytical Atomic Spectrometry, 2002. 17(9): p. 1015-1023.
    17. Ganther, H.E. and R.J. Lawrence, Chemical transformations of selenium in living organisms. Improved forms of selenium for cancer prevention. Tetrahedron, 1997. 53(36): p. 12299-12310.
    18. Lindstrom, K., Selenium as a Growth-Factor for Plankton Algae in Laboratory Experiments and in Some Swedish Lakes. Hydrobiologia, 1983. 101(1-2): p. 35-47.
    19. Demirci, A. and A.L. Pometto, III, Production of organically bound selenium yeast by continuous fermentation. Journal of Agricultural and Food Chemistry, 1999. 47(6): p. 2491-2495.
    20. Demirci, A., A.L. Pometto, III, and D.J. Cox, Enhanced organically bound selenium yeast production by fed-batch fermentation. Journal of Agricultural and Food Chemistry, 1999. 47(6): p. 2496-2500.
    21. Piepponen, S., H. Liukkonen-Lilja, and T. Kuusi, The selenium content of edible mushrooms in Finland. Zeitschrift fur Lebensmittel Untersuchung und Forschung, 1983. 177(4): p. 257-260.
    22. Brown, T.A. and A. Shrift, Selenium - Toxicity and Tolerance in Higher-Plants. Biological Reviews of the Cambridge Philosophical Society, 1982. 57(FEB): p. 59-84.
    23. Broyer, T.C., R.P. Huston, and C.M. Johnson, Selenium and Nutrition of Astragalus .1. Effects of Selenite or Selenate Supply on Growth and Selenium Content. Plant and Soil, 1972. 36(3): p. 635-649.
    24. Ullrey, D.E., Basis for Regulation of Selenium Supplements in Animal Diets. Journal of Animal Science, 1992. 70(12): p. 3922-3927.
    25. Oldfield, J.E., Risks and Benefits in Agricultural Uses of Selenium. Environmental Geochemistry and Health, 1992. 14(3): p. 81-86.
    26. Abrams, M.M., et al., Selenomethionine Uptake by Wheat Seedlings. Agronomy Journal, 1990. 82(6): p. 1127-1130.
    27. Zayed, A., C.M. Lytle, and N. Terry, Accumulation and volatilization of different chemical species of selenium by plants. Planta, 1998. 206(2): p. 284-292.
    28. Zayed, A.M. and N. Terry, Selenium Volatilization in Roots and Shoots - Effects of Shoot Removal and Sulfate Level. Journal of Plant Physiology, 1994. 143(1): p. 8-14.
    29. Terry, N., et al., Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 2000. 51: p. 401-432.
    30. Sors, T.G., D.R. Ellis, and D.E. Salt, Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research, 2005. 86(3): p. 373-389.
    31.李春霞,曹慧,植物硒的营养特点及吸收转化机理研究进展.农业科学研究, 2006. 27(4): p. 72-76.
    32. Shrift, A., Aspects of Selenium Metabolism in Higher Plants. Annual Review of Plant Physiology, 1969. 20: p. 475-496.
    33. Wu, L., Z.Z. Huang, and R.G. Burau, Selenium Accumulation and Selenium-Salt Cotolerance in 5 Grass Species. Crop Science, 1988. 28(3): p. 517-522.
    34. Padmaja, K., D.D.K. Prasad, and A.R.K. Prasad, Effect of Selenium on Chlorophyll Biosynthesis in Mung Bean Seedlings. Phytochemistry, 1989. 28(12): p. 3321-3324.
    35. Aslam, M., K.B. Harbit, and R.C. Huffaker, Comparative Effects of Selenite and Selenate on Nitrate Assimilation in Barley Seedlings. Plant Cell and Environment, 1990. 13(8): p. 773-782.
    36. Bosma, W., et al., Effect of Selenate on Assimilatory Sulfate Reduction and Thiol Content of Spruce Needles. Plant Physiology and Biochemistry, 1991. 29(2): p. 131-138.
    37. Banuelos, G.S., et al., Evaluation of different plant species used for phytoremediation of high soil selenium. Journal of Environmental Quality, 1997. 26(3): p. 639-646.
    38. Terry, N., et al., Rates of Selenium Volatilization among Crop Species. Journal of Environmental Quality, 1992. 21(3): p. 341-344.
    39. Duckart, E.C., L.J. Waldron, and H.E. Donner, Selenium Uptake and Volatilization from Plants Growing in Soil. Soil Science, 1992. 153(2): p. 94-99.
    40. Lyons, G.H., et al., Selenium in Australia: Selenium status and biofortification of wheat for better health. Journal of Trace Elements in Medicine and Biology, 2005. 19(1): p. 75-82.
    41. Thomson, C.D. and M.F. Robinson, Selenium in Human Health and Disease with Emphasis on Those Aspects Peculiar to New-Zealand. American Journal of Clinical Nutrition, 1980. 33(2): p. 303-323.
    42. Pyykko, K., et al., Effect of Selenium Supplementation to Fertilizers on the Selenium Status of the Population in Different Parts of Finland. European Journal of Clinical Nutrition, 1988. 42(7): p. 571-579.
    43. Wells, N., Selenium in Horizons of Soil Profiles. New Zealand Journal of Science, 1967. 10(1): p. 142-&.
    44. Ferretti, R.J. and O.A. Levander, Effect of Milling and Processing on Selenium Content of Grains and Cereal Products. Journal of Agricultural and Food Chemistry, 1974. 22(6): p. 1049-1051.
    45. Schubert, A., J.M. Holden, and W.R. Wolf, Selenium Content of a Core Group of Foods Based on aCritical-Evaluation of Published Analytical Data. Journal of the American Dietetic Association, 1987. 87(3): p. 285-&.
    46. Yang, G., et al., Studies of Safe Maximal Daily Dietary Selenium Intake in a Seleniferous Area in China .1. Selenium Intake and Tissue Selenium Levels of the Inhabitants. Journal of Trace Elements and Electrolytes in Health and Disease, 1989. 3(2): p. 77-87.
    47. Rosenfeld, I. and O.A. Beath, Selenium: geobotany, biochemistry, toxicity, and nutrition. Selenium: geobotany, biochemistry, toxicity, and nutrition, 1964.
    48. McSheehy, S., et al., Identification of selenocompounds in yeast by electrospray quadrupole-time of flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2002. 17(5): p. 507-514.
    49. Dumont, E., F. Vanhaecke, and R. Cornelis, Selenium speciation from food source to metabolites: a critical review. Analytical and Bioanalytical Chemistry, 2006. 385(7): p. 1304-1323.
    50. Huerta, V.D., M.L.F. Sanchez, and A. Sanz Medel, Quantitative selenium speciation in cod muscle by isotope dilution ICP-MS with a reaction cell: comparison of different reported extraction procedures. Journal of Analytical Atomin Spectrometry, 2004. 19(5): p. 644-648.
    51. Polatajko, A., N. Jakubowski, and J. Szpunar, State of the art report of selenium speciation in biological samples. Journal of Analytical Atomic Spectrometry, 2006. 21(7): p. 639-654.
    52. Michalke, Effect of different extraction procedures on the yield and pattern of Se-species in bacterial samples. Analytical and Bioanalytical Chemistry, 2002. 372: p. 444-447.
    53. Wrobel, K., K. Wrobel, and J.A. Caruso, Pretreatment procedures for characterization of arsenic and selenium species in complex samples utilizing coupled techniques with mass spectrometric detection. Analytical and Bioanalytical Chemistry, 2005. 381(2): p. 317-331.
    54. Dauchy, X., et al., Analytical Methods for the Speciation of Selenium-Compounds - a Review. Fresenius Journal of Analytical Chemistry, 1994. 348(12): p. 792-805.
    55. Montes-Bayon, M., et al., Evaluation of different sample extraction strategies for selenium determination in selenium-enriched plants (Allium sativum and Brassica juncea) and Se speciation by HPLC-ICP-MS. Talanta, 2006. 68(4): p. 1287-1293.
    56. Encinar, J.R., et al., Detection of selenocompounds in a tryptic digest of yeast selenoprotein by MALDI time-of-flight MS prior to their structural analysis by electrospray ionization triple quadrupole MS. Analyst, 2003. 128(3): p. 220-224.
    57. Capelo, J.L., et al., Enzymatic probe sonication: Enhancement of protease-catalyzed hydrolysis of selenium bound to proteins in yeast. Analytical Chemistry, 2004. 76(1): p. 233-237.
    58. Takatera, K., et al., Hplc Icp Mass-Spectrometric Study of the Selenium Incorporation into Cyanobacterial Metallothionein Induced under Heavy-Metal Stress. Analytical Sciences, 1994. 10(4): p. 567-572.
    59. Casiot, C., et al., Sample preparation and HPLC separation approaches to speciation analysis of selenium in yeast by ICP-MS. Journal of Analytical Atomic Spectrometry, 1999. 14(4): p. 645-650.
    60. Gilon, N., et al., Selenoamino Acid Speciation Using Hplc-Etaas Following an Enzymatic-Hydrolysis of Selenoprotein. Applied Organometallic Chemistry, 1995. 9(7): p. 623-628.
    61. Kotrebai, M., et al., Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst, 1999. 125(1): p. 71-78.
    62. Kotrebai, M., et al., Identification of the principal selenium compounds in selenium-enriched natural sample extracts by ion-pair liquid chromatography with inductively coupled plasma- and electrospray ionization-mass spectrometric detection. Analytical Communications, 1999. 36(6): p. 249-252.
    63. Wrobel, K., et al., Hydrolysis of proteins with methanesulfonic acid for improved HPLC-ICP-MS determination of seleno-methionine in yeast and nuts. Analytical and Bioanalytical Chemistry, 2003. 375(1): p. 133-138.
    64. B'Hymer, C. and J.A. Caruso, Evaluation of yeast-based selenium food supplements using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2000. 15(12): p. 1531-1539.
    65. Larsen, E.H., et al., Selenium speciation and isotope composition in 77Se-enriched yeast using gradient elution HPLC separation and ICP-dynamic reaction cell-MS. Journal of Analytical Atomic Spectrometry, 2003. 18(4): p. 310-316.
    66. Polatajko, A., et al., Investigation of the recovery of selenomethionine from selenized yeast by two-dimensional LC-ICP MS. Analytical and Bioanalytical Chemistry, 2005. 381(4): p. 844-849.
    67. Huerta, V.D., et al., Total determination and quantitative speciation analysis of selenium in yeast and wheat flour by isotope dilution analysis ICP-MS. Journal of Analytical Atomic Spectrometry, 2003. 18(10): p. 1243-1247.
    68. Wolf, W.R., H. Zainal, and B. Yager, Selenomethionine content of candidate reference materials. Fresenius Journal of Analytical Chemistry, 2001. 370(2-3): p. 286-290.
    69. Wolf, W.R. and R.J. Goldschmidt, Selenomethionine contents of NIST wheat reference materials. Analytical and Bioanalytical Chemistry, 2004. 378(5): p. 1175-1181.
    70. Kaiser, R. and L. Metzka, Enhancement of cyanogen bromide cleavage yields for methionyl-serine and methionyl-threonine peptide bonds. Analytical Biochemistry, 1999. 266(1): p. 1-8.
    71. Yang, L., et al., Comparison of extraction methods for quantitation of methionine and selenomethionine in yeast by species specific isotope dilution gas chromatography-mass spectrometry. Journal of Chromatography A, 2004. 1055(1-2): p. 177-184.
    72. Yang, L., et al., Determination of selenomethionine in yeast using CNBr derivatization and species specific isotope dilution GC-ICP-MS and GC-MS. Journal of Analytical Atomic Spectrometry, 2004. 19(11): p. 1448-1453.
    73. Yang, L., Z. Mester, and R.E. Sturgeon, Determination of methionine and selenomethionine in yeast by species-specific isotope dilution GC/MS. Analytical Chemistry, 2004. 76(17): p. 5149-5156.
    74. Gomez Ariza, J.L., et al., Speciation analysis of selenium compounds in yeasts using pressurised liquid extraction and liquid chromatography-microwave-assisted digestion-hydride generation-atomic fluorescence spectrometry. Analytica Chimica Acta, 2004. 524(1-2): p. 305-314.
    75. Pyrzynska, K., Speciation analysis of some organic selenium compounds - A review. Analyst, 1996. 121(8):p. R77-R83.
    76. Taylor, A., et al., Atomic spectrometry update - Clinical and biological materials, food and beverages. Journal of Analytical Atomic Spectrometry, 1996. 11(4): p. R103-R186.
    77. Uden, P.C., et al., Selective detection and identification of Se containing compounds - review and recent developments. Journal of Chromatography A, 2004. 1050(1): p. 85-93.
    78. Capelo, J.L., et al., Trends in selenium determination/speciation by hyphenated techniques based on AAS or AFS. Talanta, 2006. 68(5): p. 1442-1447.
    79. Pyrzynska, K., Determination of selenium species in environmental samples. Microchimica Acta, 2002. 140(1-2): p. 55-62.
    80. Uden, P.C., Modern trends in the speciation of selenium by hyphenated techniques. Analytical and Bioanalytical Chemistry, 2002. 373(6): p. 422-431.
    81. Ellis, D.R. and D.E. Salt, Plants, selenium and human health. Current Opinion in Plant Biology, 2003. 6(3): p. 273-279.
    82. Cai, X.J., et al., Allium Chemistry - Identification of Selenoamino Acids in Ordinary and Selenium-Enriched Garlic, Onion, and Broccoli Using Gas-Chromatography with Atomic-Emission Detection. Journal of Agricultural and Food Chemistry, 1995. 43(7): p. 1754-1757.
    83. Iscioglu, B. and E. Henden, Determination of selenoamino acids by gas chromatography-mass spectrometry. Analytica Chimica Acta, 2004. 505(1): p. 101-106.
    84. Mounicou, S., et al., Analysis of selenized yeast for selenium speciation by size-exclusion chromatography and capillary zone electrophoresis with inductively coupled plasma mass spectrometric detection (SEC-CZE-ICP-MS). Journal of Analytical Atomic Spectrometry, 2002. 17(1): p. 15-20.
    85. Pedrero, Z., et al., Identification of selenium species in selenium-enriched Lens esculenta plants by using two-dimensional liquid chromatography-inductively coupled plasma mass spectrometry and [Se-77]selenomethionine selenium oxide spikes. Journal of Chromatography A, 2007. 1139(2): p. 247-253.
    86. Johansson, M., G. Bordin, and A.R. Rodriguez, Feasibility study of ion-chromatography microwave assisted on-line species conversion hydride generation atomic absorption spectrometry for selenium speciation analysis of biological material. Analyst, 2000. 125(2): p. 273-279.
    87. Richardson, D.D., et al., Hydride generation interface for speciation analysis coupling capillary electrophoresis to inductively coupled plasma mass spectrometry. Analytical Chemistry, 2004. 76(23): p. 7137-7142.
    88. Kannamkumarath, S.S., K. Wrobel, and R.G. Wuilloud, Studying the distribution pattern of selenium in nut proteins with information obtained from SEC-UV-ICP-MS and CE-ICP-MS. Talanta, 2005. 66(1): p. 153-159.
    89. Ajtony, Z., et al., Determination of total selenium content in cereals and bakery products by flow injection hydride generation graphite furnace atomic absorption spectrometry applying in-situ trapping on iridium-treated graphite platforms. Microchimica Acta, 2005. 150(1): p. 1-8.
    90. Liang, L., et al., Selenium speciation by high-performance anion-exchange chromatography-post-columnUV irradiation coupled with atomic fluorescence spectrometry. Journal of Chromatography A, 2006. 1118(1): p. 139-143.
    91. Wrobel, K., et al., HPLC-ICP-MS speciation of selenium in enriched onion leaves a potential dietary source of Se-methylselenocysteine. Food Chemistry, 2004. 86(4): p. 617-623.
    92. Kannamkumarath, S.S., et al., HPLC-ICP-MS determination of selenium distribution and speciation in different types of nut. Analytical and Bioanalytical Chemistry, 2002. 373(6): p. 454-460.
    93. Diaz-Huerta, V., M.L. Fernandez-Sanchez, and A. Sanz-Medel, An attempt to differentiate HPLC-ICP-MS selenium speciation in natural and selenised Agaricus mushrooms using different species extraction procedures. Analytical and Bioanalytical Chemistry, 2006. 384(4).
    94. Kapolna, E., et al., Selenium speciation studies in Se-enriched chives (Allium schoenoprasum) by HPLC-ICP-MS. Food Chemistry, 2007. 101(4): p. 1398-1406.
    95. Sugihara, S., et al., Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Bioscience Biotechnology and Biochemistry, 2004. 68(1): p. 193-199.
    96. Smrkolj, P., et al., Selenium species in buckwheat cultivated with foliar addition of Se(VI) and various levels of UV-B radiation. Food Chemistry, 2006. 96(4): p. 675-681.
    97. Slekovec, M. and W. Goessler, Accumulation of selenium in natural plants and selenium supplemented vegetable and selenium speciation by HPLC-ICPMS. Chemical Speciation and Bioavailability, 2005. 17(2): p. 63-73.
    98. Kahakachchi, C., et al., Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. Journal of Chromatography A, 2004. 1054(1-2): p. 303-312.
    99. Chassaigne, H., et al., Development of new analytical methods for selenium speciation in selenium-enriched yeast material. Journal of Chromatography A, 2002. 976(1-2): p. 409-422.
    100. Larsen, E.H., et al., Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Analytical and Bioanalytical Chemistry, 2006. 385(6): p. 1098-1108.
    101. Foster, L.H., M.F. Chaplin, and S. Sumar, The effect of heat treatment on intrinsic and fortified selenium levels in cow's milk. Food Chemistry, 1998. 62(1): p. 21-25.
    102. Bratakos, M.S., et al., Selenium Losses on Cooking Greek Foods. International Journal of Food Science and Technology, 1988. 23(6): p. 585-590.
    103. Lyons, G.H., et al., Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biological Trace Element Research, 2005. 103(2): p. 155-168.
    104. Higgs, D.J., V.C. Morris, and O.A. Levander, Effect of Cooking on Selenium Content of Foods. Journal of Agricultural and Food Chemistry, 1972. 20(3): p. 678-&.
    105. Olson, O.E. and I.S. Palmer, Selenium in Foods Purchased or Produced in South-Dakota. Journal of Food Science, 1984. 49(2): p. 446-452.
    106. Arthur, D., Selenium content of Canadian foods. Canadian Institute of Food Science and TechnologyJournal, 1972. 5(3).
    107. Morris, V.C. and O.E. Levander, Selenium content of foods. Journal of Nutrition, 1970. 100(12).
    108. Hakansson, B., et al., The effects of various thermal processes on protein quality, vitamins and selenium content in whole-grain wheat and white flour. Journal of Cereal Science, 1987. 6(3): p. 269-282.
    109. Zhang, M., C.L. Li, and P. Cao, Effects of processing conditions of the green-leafy vegetable juice enriched with selenium on its quality stability. Journal of Food Engineering, 2004. 62(4): p. 393-398.
    110. Lamand, M., J.C. Tressol, and S. Villart, Evaluation des pertes minerales a la cuisson dans quelques aliments.; Evaluation of mineral cooking losses in some food items. Cahiers de Nutrition et de Dietetique, 1997. 32(1): p. 28-30.
    111. Driskell, J.A., et al., Retention of vitamin B-6, thiamin, vitamin E, and selenium in grilled boneless pork chops prepared at five grill temperatures. Journal of Food Quality, 1998. 21(3): p. 201-210.
    112. Wei, G.J. and C.T. Ho, Volatile compounds formed in a glucose-selenomethionine model system, in Heteroatomic Aroma Compounds. 2002, Amer Chemical Soc: Washington. p. 289-301.
    113. Tsai, J.H., et al., Determination of volatile organic selenium compounds from the Maillard reaction in a selenomethionine-glucose model system. Journal of Agricultural and Food Chemistry, 1998. 46(7): p. 2541-2545.
    114. Mo, H.Z., M. Zhang, and J.C. Sun, Effect of drying process parameters on dehydrated cabbage enriched with selenium. Drying Technology, 2006. 24(12): p. 1657-1663.
    115.陈晓滨,林少彬,杨文婕,环境和生物体内不同含硒化合物测定的研究进展.卫生研究, 2005. 34(3): p. 371-374.
    1. Finley, J.W., Bioavailability of selenium from foods. Nutrition Reviews, 2006. 64(3): p. 146-151.
    2. Duffield-Lillico, A.J., et al., Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. Journal of the National Cancer Institute, 2003. 95(19): p. 1477-1481.
    3. Ip, C., Y. Dong, and H.E. Ganther, New concepts in selenium chemoprevention. Cancer and Metastasis Reviews, 2002. 21(3-4): p. 281-289.
    4.杨光圻,膳食硒需要量和安全摄入量范围研究结果述要.营养学报, 1992. 14(3): p. 318-321.
    5. Muller, R., M. Anke, and K. Frobus, The selenium content of the flora and plant and animal foodstuffs in Germany. Fresenius Environmental Bulletin, 2003. 12(6): p. 584-588.
    6. Stibilj, V., et al., Enhanced selenium content in buckwheat (Fagopyrum esculentum Moench) and pumpkin (Cucurbita pepo L.) seeds by foliar fertilisation. European Food Research and Technology, 2004. 219(2): p. 142-144.
    7.李曙轩,李树德,蒋先明,中国农业百科全书蔬菜卷. 1990,北京:中国农业出版社.
    8. Poggi, V., et al., Foliar application of selenite and selenate to potato (Solanum tuberosum): Effect of a ligand agent on selenium content of tubers. Journal of Agricultural and Food Chemistry, 2000. 48(10): p.4749-4751.
    9. Yang, F.M., et al., Effect of the application of selenium on selenium content of soybean and its products. Biological Trace Element Research, 2003. 93(1-3): p. 249-256.
    10. Suarez, D.L., C.M. Grieve, and J.A. Poss, Irrigation method affects selenium accumulation in forage Brassica species. Journal of Plant Nutrition, 2003. 26(1): p. 191-201.
    11. Ylaranta, T., Effect of Selenium Fertilization and Foliar Spraying at Different Growth-Stages on the Selenium Content of Spring Wheat and Barley. Annales Agriculturae Fenniae, 1984. 23(2): p. 85-95.
    12. Gisselnielsen, G., Foliar Application of Selenite to Barley Plants Low in Selenium. Communications in Soil Science and Plant Analysis, 1981. 12(6): p. 631-642.
    13. Nyberg, S., Multiple Use of Plants - Studies on Selenium Incorporation in Some Agricultural Species for the Production of Organic Selenium-Compounds. Plant Foods for Human Nutrition, 1991. 41(1): p. 69-88.
    14.段咏新,傅庭治,大蒜对硒的吸收及硒对大蒜生长的影响.广东微量元素科学, 1997. 4(11): p. 52-55.
    15.徐志豪,朱祝军,李登超,硒对菠菜抗氧化系统及过氧化氢含量的影响.园艺学报, 2002. 29(6): p. 547-550.
    16. Chen, L.C., et al., Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. Journal of Agricultural and Food Chemistry, 2002. 50(18): p. 5128-5130.
    17. Xu, J. and Q.H. Hu, Effect of foliar application of selenium on the antioxidant activity of aqueous and ethanolic extracts of selenium-enriched rice. Journal of Agricultural and Food Chemistry, 2004. 52(6): p. 1759-1763.
    18. Macleod, J.A. and U.C. Gupta, Effect of Selenium Seed Treatment on Selenium Concentrations in Soybeans. Canadian Journal of Soil Science, 1995. 75(3): p. 287-291.
    19. Germ, M., et al., Effect of selenium foliar application on chicory (Cichorium intybus L.). Journal of Agricultural and Food Chemistry, 2007. 55(3): p. 795-798.
    20. Hu, Q.H., J. Xu, and G.X. Pang, Effect of selenium on the yield and quality of green tea leaves harvested in early spring. Journal of Agricultural and Food Chemistry, 2003. 51(11): p. 3379-3381.
    21. Smrkolj, P., et al., Selenium species in buckwheat cultivated with foliar addition of Se(VI) and various levels of UV-B radiation. Food Chemistry, 2006. 96(4): p. 675-681.
    22. Finley, J.W., Selenium accumulation in plant foods. Nutrition Reviews, 2005. 63(6): p. 196-202.
    23. Lauchli, A., Selenium in Plants - Uptake, Functions, and Environmental Toxicity. Botanica Acta, 1993. 106(6): p. 455-468.
    24. Hu, Q.H., G.X. Pan, and J.C. Zhu, Effect of fertilization on selenium content of tea and the nutritional function of Se-enriched tea in rats. Plant and Soil, 2002. 238(1): p. 91-95.
    25. Sugihara, S., et al., Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Bioscience Biotechnology and Biochemistry, 2004. 68(1): p. 193-199.
    26. Mo, H.Z., Y. Zhu, and M. Zhang, Selenium enrichment pattern in flowering Chinese cabbage, cabbage andasparagus. Agro Food Industry Hi-Tech, 2006. 17(2): p. 39-42.
    27.国家标准,食品中硒的测定方法GB/T 12399-1996. 1996.
    28. Pyrzynska, K., Determination of selenium species in environmental samples. Microchimica Acta, 2002. 140(1-2): p. 55-62.
    29. Li, Z.Y., S.Y. Guo, and L. Li, Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresource Technology, 2003. 89(2): p. 171-176.
    30.胡秋辉,潘根兴,丁瑞兴,低硒土壤茶园茶叶富硒方法及其富硒效应.南京农业大学学报, 1999. 22(3): p. 91-94.
    31. Shrift, A., Aspects of Selenium Metabolism in Higher Plants. Annual Review of Plant Physiology, 1969. 20: p. 475-496.
    32. Wu, L., Z.Z. Huang, and R.G. Burau, Selenium Accumulation and Selenium-Salt Cotolerance in 5 Grass Species. Crop Science, 1988. 28(3): p. 517-522.
    33. Brown, T.A. and A. Shrift, Selenium - Toxicity and Tolerance in Higher-Plants. Biological Reviews of the Cambridge Philosophical Society, 1982. 57(FEB): p. 59-84.
    34. Padmaja, K., D.D.K. Prasad, and A.R.K. Prasad, Effect of Selenium on Chlorophyll Biosynthesis in Mung Bean Seedlings. Phytochemistry, 1989. 28(12): p. 3321-3324.
    35. Aslam, M., K.B. Harbit, and R.C. Huffaker, Comparative Effects of Selenite and Selenate on Nitrate Assimilation in Barley Seedlings. Plant Cell and Environment, 1990. 13(8): p. 773-782.
    36. Clark, L.C., et al., Effect of selenium supplementation for cancer prevention 1983-96: A randomized clinical trial. Faseb Journal, 1997. 11(3): p. 1371-1371.
    37. de Souza, M.P., et al., Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiology, 1998. 117(4): p. 1487-1494.
    38. Eustice, D.C., F.J. Kull, and A. Shrift, Selenium Toxicity - Aminoacylation and Peptide-Bond Formation with Selenomethionine. Plant Physiology, 1981. 67(5): p. 1054-1058.
    39. Terry, N., et al., Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 2000. 51: p. 401-432.
    40.许春霞,李向民,肖永绥,土施硒肥与茶叶含硒量和产量的关系.西北农业学报, 1996. 5(1): p. 71-75.
    41. Bosma, W., et al., Effect of Selenate on Assimilatory Sulfate Reduction and Thiol Content of Spruce Needles. Plant Physiology and Biochemistry, 1991. 29(2): p. 131-138.
    42. Sors, T.G., D.R. Ellis, and D.E. Salt, Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research, 2005. 86(3): p. 373-389.
    43.李春霞,曹慧,植物硒的营养特点及吸收转化机理研究进展.农业科学研究, 2006. 27(4): p. 72-76.
    44.王其兵,李凌洁,刑雪荣,植物叶片对硒的吸收与转运.植物学通报, 1995(12): p. 149-155.
    45. Hamilton, J.W. and O.A. Beath, Selenium Uptake and Conversion by Certain Crop Plants. Agronomy Journal, 1963. 55(6): p. 528-&.
    46.左银虎,环境与植物中硒形态研究进展.植物学通报, 1999. 16(4): p. 378~380.
    47.李合生,现代植物生理学. 2002,北京:高等教育出版社.
    48.施和平,番茄叶片对75Se的吸收和在植株中的转化.核农学报, 1992. 6(3): p. 190-192.
    49. Zayed, A., C.M. Lytle, and N. Terry, Accumulation and volatilization of different chemical species of selenium by plants. Planta, 1998. 206(2): p. 284-292.
    50. Asher, C.J., G.W. Butler, and P.J. Peterson, Selenium Transport in Root Systems of Tomato. Journal of Experimental Botany, 1977. 28(103): p. 279-291.
    51. Hall, D.I. and I.K. Smith, Partial-Purification and Characterization of Cystine Lyase from Cabbage (Brassica-Oleracea-Var-Capitata). Plant Physiology, 1983. 72(3): p. 654-658.
    1. Diaz-Huerta, V., M.L. Fernandez-Sanchez, and A. Sanz-Medel, An attempt to differentiate HPLC-ICP-MS selenium speciation in natural and selenised Agaricus mushrooms using different species extraction procedures. Analytical and Bioanalytical Chemistry, 2006. 384(4).
    2. Reilly, C., Selenium in food and health. 2nd ed. 2006: Springer. XVI, 206.
    3. Foster, L.H., M.F. Chaplin, and S. Sumar, The effect of heat treatment on intrinsic and fortified selenium levels in cow's milk. Food Chemistry, 1998. 62(1): p. 21-25.
    4. Combs, G.F., A.M. Hodgson, and L.C. Clark, Effects of selenium supplementation on antioxidant status of free-living Americans. Faseb Journal, 1997. 11(3): p. 2080-2080.
    5. Valle, G., et al., Selenium Concentration of Bermudagrass after Spraying with Sodium Selenate. Communications in Soil Science and Plant Analysis, 1993. 24(13-14): p. 1763-1768.
    6.胡秋辉,潘根兴,丁瑞兴,低硒土壤茶园茶叶富硒方法及其富硒效应.南京农业大学学报, 1999. 22(3): p. 91-94.
    7. Taylor, J.B., J.W. Finley, and J.S. Caton, Effect of the chemical form of supranutritional selenium on selenium load and selenoprotein activities in virgin, pregnant, and lactating rats. Journal of Animal Science, 2005. 83(2): p. 422-429.
    8. Clark, L.C. and G.F. Combs, Selenium-Compounds and the Prevention of Cancer - Research Needs and Public-Health Implications. Journal of Nutrition, 1986. 116(1): p. 170-173.
    9. Hu, Q.H., J. Xu, and L.C. Chen, Antimutagenicity of selenium-enriched rice on mice exposure to cyclophosphamide and mitomycin C. Cancer Letters, 2005. 220(1): p. 29-35.
    10. Thomson, C.D. and M.F. Robinson, Selenium in Human Health and Disease with Emphasis on Those Aspects Peculiar to New-Zealand. American Journal of Clinical Nutrition, 1980. 33(2): p. 303-323.
    11. Hu, Q.H., G.X. Pan, and J.C. Zhu, Effect of fertilization on selenium content of tea and the nutritional function of Se-enriched tea in rats. Plant and Soil, 2002. 238(1): p. 91-95.
    12. Hu, Q.H., J. Xu, and G.X. Pang, Effect of selenium on the yield and quality of green tea leaves harvested in early spring. Journal of Agricultural and Food Chemistry, 2003. 51(11): p. 3379-3381.
    13. Terry, N., et al., Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 2000. 51: p. 401-432.
    14. Zieve, R. and P.J. Peterson, The Accumulation and Assimilation of Dimethylselenide by 4 Plant-Species. Planta, 1984. 160(2): p. 180-184.
    15. Zayed, A., C.M. Lytle, and N. Terry, Accumulation and volatilization of different chemical species of selenium by plants. Planta, 1998. 206(2): p. 284-292.
    16.左银虎,环境与植物中硒形态研究进展.植物学通报, 1999. 16(4): p. 378~380.
    17.乔玉辉,商树田,施硒对钝顶螺旋藻(Sp.-D)品质的影响.中国农业大学学报, 2000. 5(1): p. 31~34.
    18.吴永尧,不同供硒水平对水稻生长的影响及水稻的富集作用.湖南农业大学学报, 1998. 24(3): p. 176-179.
    19.赵镭,灵芝生物富硒及富硒灵芝硒蛋白的分离纯化和抗氧化性研究.中国农业大学博士学位论文, 2004.
    20. Yang, F.M., et al., Effect of the application of selenium on selenium content of soybean and its products. Biological Trace Element Research, 2003. 93(1-3): p. 249-256.
    21.段咏新,傅庭治,大蒜对硒的吸收及硒对大蒜生长的影响.广东微量元素科学, 1997. 4(11): p. 52-55.
    22.张驰,吴永尧,彭振坤,硒对油菜苗期叶片色素的影响研究.湖北民族学院学报, 2002. 20(3): p. 63-65.
    23.李登超,朱祝军,徐志豪,硒对菠菜抗氧化系统及过氧化氢含量的影响.园艺学报, 2002. 29(6): p. 547-550.
    24.胡秋辉,潘根兴,硒提高茶叶品质效应的研究.茶叶科学, 2000. 20(2): p. 137-140.
    25.周大寨,唐巧玉,张驰,硒对花椰菜幼苗叶绿素、脯氨酸及丙二醛含量的影响.湖北农业科学, 2005(2): p. 77-79.
    26. Turakainen, M., et al., Distribution of selenium in different biochemical fractions and raw darkening degree of potato (Solanum tuberosum L.) tubers supplemented with selenate. Journal of Agricultural and Food Chemistry, 2006. 54(22): p. 8617-8622.
    27.宁正祥,食品成分分析手册. 1998,北京:中国轻工业出版社.
    28. Chen, Y. Growing Se rich tea plant. in Proceedings of‘95 International Tea Quality-Human Health Symposium. 1995.
    29. Zhang, Y.L., et al., Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant and Soil, 2003. 253(2): p. 437-443.
    30. Padmaja, K., D.D.K. Prasad, and A.R.K. Prasad, Effect of Selenium on Chlorophyll Biosynthesis in Mung Bean Seedlings. Phytochemistry, 1989. 28(12): p. 3321-3324.
    31.李合生,现代植物生理学. 2002,北京:高等教育出版社.
    32.徐志豪,朱祝军,李登超,硒对菠菜抗氧化系统及过氧化氢含量的影响.园艺学报, 2002. 29(6): p. 547-550.
    33. Bosma, W., et al., Effect of Selenate on Assimilatory Sulfate Reduction and Thiol Content of Spruce Needles. Plant Physiology and Biochemistry, 1991. 29(2): p. 131-138.
    34.史衍玺,杜振宇,马丽,不同施硒方式下小白菜对硒的吸收与累积特征.土壤通报, 1998. 29(5): p. 229-231.
    35. Brown, T.A. and A. Shrift, Selenium - Toxicity and Tolerance in Higher-Plants. Biological Reviews of the Cambridge Philosophical Society, 1982. 57(FEB): p. 59-84.
    36. Belokobylsky, A.I., et al., Accumulation of selenium and chromium in the growth dynamics ofspirulina platensis. Journal of Radioanalytical and Nuclear Chemistry, 2004. 259(1): p. 65-68.
    37.张艳玲,叶面喷施硒肥对低硒土壤中大豆不同蛋白组成及其硒分布的影响.南京农业大学学报, 2003. 26(1): p. 37-40.
    38.李应生,李亚男,陈大清,硒的生物学功能及植物的富硒机理.湖北农学院学报, 2003.
    39. Sors, T.G., D.R. Ellis, and D.E. Salt, Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research, 2005. 86(3): p. 373-389.
    40. Lee, J., J.W. Finley, and J.A. Harnly, Effect of selenium fertilizer on free amino acid composition of broccoli (Brassica oleracea cv. Majestic) determined by gas chromatography with flame ionization and mass selective detection. Journal of Agricultural and Food Chemistry, 2005. 53(23): p. 9105-9111.
    41.谭周锱,陈平,陈嘉勤,硒在水稻上的应用Ⅲ稻田土壤硒含量及施硒对水稻产量与米质的影响.湖南师范大学自然科学学报, 1997. 20(3): p. 62-65.
    42.孙崇延,李德安,冯杰,施加硒化肥对麦粒的化学元素及氨基酸含量的影响.微量元素与健康研究, 1995. 12(3): p. 39-40.
    43. Somerville, C. and J. Browse, Plant Lipids - Metabolism, Mutants, and Membranes. Science, 1991. 252(5002): p. 80-87.
    44. Charron, C.S., et al., Sodium selenate fertilisation increases selenium accumulation and decreases glucosinolate concentration in rapid-cycling Brassica oleracea. Journal of the Science of Food and Agriculture, 2001. 81(9): p. 962-966.
    45. Robbins, R.J., et al., Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli. Journal of Medicinal Food, 2005. 8(2): p. 204-214.
    46. Finley, J.W., et al., Selenium enrichment of broccoli: Interactions between selenium and secondary plant compounds. Journal of Nutrition, 2005. 135(5): p. 1236-1238.
    47. Hintze, K.J., K. Wald, and J.W. Finley, Phytochemicals in broccoli transcriptionally induce thioredoxin reductase. Journal of Agricultural and Food Chemistry, 2005. 53(14): p. 5535-5540.
    1. Birringer, M., S. Pilawa, and L. Flohe, Trends in selenium biochemistry. Natural Product Reports, 2002. 19(6): p. 693-718.
    2. Tapiero, H., D.M. Townsend, and K.D. Tew, The antioxidant role of selenium and seleno-compounds. Biomedicine & Pharmacotherapy, 2003. 57(3-4): p. 134-144.
    3. Ip, C., et al., In vitro and in vivo studies of methylseleninic acid: Evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Research, 2000. 60(11): p. 2882-2886.
    4. Whanger, P.D., Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition, 2002. 21(3): p. 223-232.
    5. Polatajko, A., N. Jakubowski, and J. Szpunar, State of the art report of selenium speciation in biological samples. Journal of Analytical Atomic Spectrometry, 2006. 21(7): p. 639-654.
    6. Michalke, Effect of different extraction procedures on the yield and pattern of Se-species in bacterial samples. Analytical and Bioanalytical Chemistry, 2002. 372: p. 444-447.
    7. Yang, L., et al., Comparison of extraction methods for quantitation of methionine and selenomethionine in yeast by species specific isotope dilution gas chromatography-mass spectrometry. Journal of Chromatography A, 2004. 1055(1-2): p. 177-184.
    8. Dernovics, M., Z. Stefanka, and P. Fodor, Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus. Analytical and Bioanalytical Chemistry, 2002. 372(3): p. 473-480.
    9. Casiot, C., et al., Sample preparation and HPLC separation approaches to speciation analysis of selenium in yeast by ICP-MS. Journal of Analytical Atomic Spectrometry, 1999. 14(4): p. 645-650.
    10. Gilon, N., et al., Selenoamino Acid Speciation Using Hplc-Etaas Following an Enzymatic-Hydrolysis of Selenoprotein. Applied Organometallic Chemistry, 1995. 9(7): p. 623-628.
    11. Kotrebai, M., et al., Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst, 1999. 125(1): p. 71-78.
    12. Kotrebai, M., et al., Identification of the principal selenium compounds in selenium-enriched natural sample extracts by ion-pair liquid chromatography with inductively coupled plasma- and electrospray ionization-mass spectrometric detection. Analytical Communications, 1999. 36(6): p. 249-252.
    13. Wrobel, K., et al., Hydrolysis of proteins with methanesulfonic acid for improved HPLC-ICP-MS determination of seleno-methionine in yeast and nuts. Analytical and Bioanalytical Chemistry, 2003. 375(1): p. 133-138.
    14. B'Hymer, C. and J.A. Caruso, Evaluation of yeast-based selenium food supplements using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2000. 15(12): p. 1531-1539.
    15. Larsen, E.H., et al., Selenium speciation and isotope composition in 77Se-enriched yeast using gradient elution HPLC separation and ICP-dynamic reaction cell-MS. Journal of Analytical Atomic Spectrometry, 2003. 18(4): p. 310-316.
    16. Polatajko, A., et al., Investigation of the recovery of selenomethionine from selenized yeast by two-dimensional LC-ICP MS. Analytical and Bioanalytical Chemistry, 2005. 381(4): p. 844-849.
    17. Huerta, V.D., et al., Total determination and quantitative speciation analysis of selenium in yeast and wheat flour by isotope dilution analysis ICP-MS. Journal of Analytical Atomic Spectrometry, 2003. 18(10): p. 1243-1247.
    18. Gomez Ariza, J.L., et al., Speciation analysis of selenium compounds in yeasts using pressurised liquid extraction and liquid chromatography-microwave-assisted digestion-hydride generation-atomic fluorescence spectrometry. Analytica Chimica Acta, 2004. 524(1-2): p. 305-314.
    19. Capelo, J.L., et al., Enzymatic probe sonication: Enhancement of protease-catalyzed hydrolysis of selenium bound to proteins in yeast. Analytical Chemistry, 2004. 76(1): p. 233-237.
    20. Montes-Bayon, M., et al., Evaluation of different sample extraction strategies for selenium determination in selenium-enriched plants (Allium sativum and Brassica juncea) and Se speciation by HPLC-ICP-MS. Talanta, 2006. 68(4): p. 1287-1293.
    21. Iscioglu, B. and E. Henden, Determination of selenoamino acids by gas chromatography-mass spectrometry. ANALYTICA CHIMICA ACTA, 2004. 505(1): p. 101-106.
    22. Lee, J., J.W. Finley, and J.A. Harnly, Effect of selenium fertilizer on free amino acid composition of broccoli (Brassica oleracea cv. Majestic) determined by gas chromatography with flame ionization and mass selective detection. Journal of Agricultural and Food Chemistry, 2005. 53(23): p. 9105-9111.
    23. Uden, P.C., et al., Selective detection and identification of Se containing compounds - review and recent developments. Journal of Chromatography A, 2004. 1050(1): p. 85-93.
    24. Infante, H.G., et al., Simultaneous identification of selenium-containing glutathione species in selenised yeast by on-line HPLC with ICP-MS and electrospray ionisation quadrupole time of flight (QTOF)-MS/MS. Journal of Analytical Atomic Spectrometry, 2006. 21(11): p. 1256-1263.
    25. Lavilla, I., et al., Ultrasound-assisted extraction technique for establishing selenium contents in breast cancer biopsies by Zeeman-electrothermal atomic absorption spectrometry using multi-injection. ANALYTICA CHIMICA ACTA, 2006. 566(1): p. 29-36.
    26. Mendez, H., et al., Ultrasonic extraction combined with fast furnace analysis as an improved methodology for total selenium determination in seafood by electrothermal-atomic absorption spectrometry. ANALYTICA CHIMICA ACTA, 2002. 452(2): p. 217-222.
    27. Quijano, M.A., et al., Selenium speciation in animal tissues after enzymatic digestion by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. Journal of Mass Spectrometry, 2000. 35(7): p. 878-884.
    28. Izgi, B., S. Gucer, and R. Jacimovic, Determination of selenium in garlic (Allium sativum) and onion (Allium cepa) by electro thermal atomic absorption spectrometry. Food Chemistry, 2006. 99(3): p. 630-637.
    29. Arvy, M.P., Selenate and Selenite Uptake and Translocation in Bean-Plants (Phaseolus-Vulgaris). Journal of Experimental Botany, 1993. 44(263): p. 1083-1087.
    30. Asher, C.J., G.W. Butler, and P.J. Peterson, Selenium Transport in Root Systems of Tomato. Journal of Experimental Botany, 1977. 28(103): p. 279-291.
    31. Terry, N., et al., Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 2000. 51: p. 401-432.
    32. Liang, L., et al., Direct amino acid analysis method for speciation of selenoamino acids using high-performance anion-exchange chromatography coupled with integrated pulsed amperometric detection. Journal of Chromatography A, 2006. 1118(1): p. 134-138.
    33. Dumont, E., et al., Liquid chromatography-mass spectrometry (LC-MS): a powerful combination for selenium speciation in garlic (Allium sativum). Analytical and Bioanalytical Chemistry, 2006. 384(5): p. 1196-1206.
    34. Tsuneyoshi, T., J. Yoshida, and T. Sasaoka, Hydroponic culitvation offers a practical means of producing selenium-enriched garlic. Journal of Nutrition, 2006. 136(3): p. 870S-872S.
    35. Sugihara, S., et al., Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. BioscienceBiotechnology and Biochemistry, 2004. 68(1): p. 193-199.
    36. Clark, L., B. Turnbull, and G. Combs, The nutritional prevention of cancer with selenium: A randomized trial. American Journal of Epidemiology, 1996. 143(11): p. 59-59.
    37. Clark, L.C., et al., Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin a randomized controlled trial - A randomized controlled trial. Jama-Journal of the American Medical Association, 1996. 276(24): p. 1957-1963.
    38. Polatajko, A., et al., A systematic approach to selenium speciation in, selenized yeast. Journal of Analytical Atomic Spectrometry, 2004. 19(1): p. 114-120.
    39. Uden, P.C., et al., Element selective characterization of stability and reactivity of selenium species in selenized yeast. Journal of Analytical Atomic Spectrometry, 2004. 19(1): p. 65-73.
    40. Mounicou, S., et al., Analysis of selenized yeast for selenium speciation by size-exclusion chromatography and capillary zone electrophoresis with inductively coupled plasma mass spectrometric detection (SEC-CZE-ICP-MS). Journal of Analytical Atomic Spectrometry, 2002. 17(1): p. 15-20.
    41. McSheehy, S., et al., Analysis for selenium speciation in selenized yeast extracts by two-dimensional liquid chromatography with ICP-MS and electrospray MS-MS detection. Journal of Analytical Atomic Spectrometry, 2001. 16(1): p. 68-73.
    42. Ip, C., et al., Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. Journal of Agricultural and Food Chemistry, 2000. 48(6): p. 2062-2070.
    43. Whanger, P.D., et al., Tumorigenesis, metabolism, speciation, bioavailability, and tissue deposition of selenium in selenium-enriched ramps (Allium tricoccum). Journal of Agricultural and Food Chemistry, 2000. 48(11): p. 5723-5730.
    1. Foster, L.H., M.F. Chaplin, and S. Sumar, The effect of heat treatment on intrinsic and fortified selenium levels in cow's milk. Food Chemistry, 1998. 62(1): p. 21-25.
    2. Zhang, M., C.L. Li, and P. Cao, Effects of processing conditions of the green-leafy vegetable juice enriched with selenium on its quality stability. Journal of Food Engineering, 2004. 62(4): p. 393-398.
    3. Bratakos, M.S., et al., Selenium Losses on Cooking Greek Foods. International Journal of Food Science and Technology, 1988. 23(6): p. 585-590.
    4. Ferretti, R.J. and O.A. Levander, Effect of Milling and Processing on Selenium Content of Grains and Cereal Products. Journal of Agricultural and Food Chemistry, 1974. 22(6): p. 1049-1051.
    5. Lyons, G.H., et al., Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biological Trace Element Research, 2005. 103(2): p. 155-168.
    6. Hakansson, B., et al., The effects of various thermal processes on protein quality, vitamins and selenium content in whole-grain wheat and white flour. Journal of Cereal Science, 1987. 6(3): p. 269-282.
    7. Reilly, C., Selenium in food and health. 2nd ed. 2006: Springer. XVI, 206.
    8. Lamand, M., J.C. Tressol, and S. Villart, Evaluation des pertes minerales a la cuisson dans quelques aliments.; Evaluation of mineral cooking losses in some food items. Cahiers de Nutrition et de Dietetique, 1997. 32(1): p. 28-30.
    9. Higgs, D.J., V.C. Morris, and O.A. Levander, Effect of Cooking on Selenium Content of Foods. Journal of Agricultural and Food Chemistry, 1972. 20(3): p. 678-&.
    10. Olson, O.E. and I.S. Palmer, Selenium in Foods Purchased or Produced in South-Dakota. Journal of Food Science, 1984. 49(2): p. 446-452.
    11. Arthur, D., Selenium content of Canadian foods. Canadian Institute of Food Science and Technology Journal, 1972. 5(3).
    12. Morris, V.C. and O.E. Levander, Selenium content of foods. Journal of Nutrition, 1970. 100(12).
    13. Driskell, J.A., et al., Retention of vitamin B-6, thiamin, vitamin E, and selenium in grilled boneless pork chops prepared at five grill temperatures. Journal of Food Quality, 1998. 21(3): p. 201-210.
    14. Wei, G.J. and C.T. Ho, Volatile compounds formed in a glucose-selenomethionine model system, in Heteroatomic Aroma Compounds. 2002, Amer Chemical Soc: Washington. p. 289-301.
    15. Tsai, J.H., et al., Determination of volatile organic selenium compounds from the Maillard reaction in a selenomethionine-glucose model system. Journal of Agricultural and Food Chemistry, 1998. 46(7): p. 2541-2545.
    16.胡庆国,毛豆热风与真空微波联合干燥过程研究, in江南大学博士学位论文. 2006:无锡.
    17. Hall, D.I. and I.K. Smith, Partial-Purification and Characterization of Cystine Lyase from Cabbage(Brassica-Oleracea-Var-Capitata). Plant Physiology, 1983. 72(3): p. 654-658.
    18. Mo, H.Z., M. Zhang, and J.C. Sun, Effect of drying process parameters on dehydrated cabbage enriched with selenium. Drying Technology, 2006. 24(12): p. 1657-1663.
    19. Zhang, M., et al., Optimization for preservation of selenium in sweet pepper under low-vacuum dehydration. Drying Technology, 2003. 21(3): p. 569-579.
    20.国家标准,食品中硒的测定方法GB/T 12399-1996. 1996.
    21. Zayed, A.M. and N. Terry, Selenium Volatilization in Roots and Shoots - Effects of Shoot Removal and Sulfate Level. Journal of Plant Physiology, 1994. 143(1): p. 8-14.
    22.李向荣,方晓,胡丽燕,不同烹调方法及冷冻贮藏对食物中硒含量的影响.食品科技, 2002(1): p. 68-69.
    23. Dauchy, X., et al., Analytical Methods for the Speciation of Selenium-Compounds - a Review. Fresenius Journal of Analytical Chemistry, 1994. 348(12): p. 792-805.
    24. Capelo, J.L., et al., Trends in selenium determination/speciation by hyphenated techniques based on AAS or AFS. Talanta, 2006. 68(5): p. 1442-1447.
    25. Gondi, F., et al., Selenium in Hungary - the Rock-Soil-Human System. Biological Trace Element Research, 1992. 35(3): p. 299-306.
    26. Montes-Bayon, M., et al., Evaluation of different sample extraction strategies for selenium determination in selenium-enriched plants (Allium sativum and Brassica juncea) and Se speciation by HPLC-ICP-MS. Talanta, 2006. 68(4): p. 1287-1293.
    27. Montes-Bayon, M., et al., Selenium in plants by mass spectrometric techniques: developments in bio-analytical methods - Plenary Lecture. Journal of Analytical Atomic Spectrometry, 2002. 17(9): p. 1015-1023.
    28. Finley, J.W., Selenium accumulation in plant foods. Nutrition Reviews, 2005. 63(6): p. 196-202.
    29. Fennema, O.R., Food chemistry. Food science and technology;76. 1996, New York [etc.]: Dekker.
    30.顾小璐,张慜,孙金才,甘蓝复合汁工艺参数的确定.无锡轻工大学学报, 2004. 23(6): p. 81-85.
    31. Terry, N., et al., Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 2000. 51: p. 401-432.
    32. Yang, L., et al., Comparison of extraction methods for quantitation of methionine and selenomethionine in yeast by species specific isotope dilution gas chromatography-mass spectrometry. Journal of Chromatography A, 2004. 1055(1-2): p. 177-184.
    33. Nieto, A., M.A. Castro, and S.M. Alzamora, Kinetics of moisture transfer during air drying of blanched and/or osmotically dehydrated mango. Journal of Food Engineering, 2001. 50(11): p. 175-185.
    34.张慜,丁霄霖,李春丽,几种富硒蔬菜在多种脱水方式下硒保存规律研究.农业机械学报, 1997. 28(8): p. 60-65.
    35.杨文婕,富硒大蒜和洋葱中功能性化合物的稳定性研究.卫生研究, 2002. 31(4): p. 252-255.
    36. Duckart, E.C., L.J. Waldron, and H.E. Donner, Selenium Uptake and Volatilization from Plants Growing in Soil. Soil Science, 1992. 153(2): p. 94-99.
    37. Tan, C.P., et al., Application of arrhenius kinetics to evaluate oxidative stability in vegetable oils by isothermal differential scanning calorimetry. Journal of the American Oil Chemists Society, 2001. 78(11): p. 1133-1138.
    38. Calligaris, S., et al., Application of a modified arrhenius equation for the evaluation of oxidation rate of sunflower oil at subzero temperatures. Journal of Food Science, 2004. 69(8): p. E361-E366.
    39. Hindra, F.J. and O.D. Baik, Kinetics of quality changes during food frying. Critical Reviews in Food Science and Nutrition 2006(46): p. 239–258.
    40. Kapolna, E., et al., Fate of selenium species in sesame seeds during simulated bakery process. Journal of Food Engineering, 2007. 79(2): p. 494-501.
    41. Lunde, G., Presence of Lipid-Soluble Selenium-Compounds in Marine Oils. Biochimica Et Biophysica Acta, 1973. 304(1): p. 76-80.
    42. Gomez-Ariza, J.L., et al., Stability and storage problems in selenium speciation from environmental samples. International Journal of Environmental Analytical Chemistry., 1999. 74(1-4): p. 215-231.
    43. Cooke, T.D. and K.W. Bruland, Aquatic Chemistry of Selenium - Evidence of Biomethylation. Environmental Science & Technology, 1987. 21(12): p. 1214-1219.
    1. Rayman, M.P., Selenium in cancer prevention: a review of the evidence and mechanism of action. Proceedings of the Nutrition Society, 2005. 64(4): p. 527-542.
    2. Duntas, L.H., The role of selenium in thyroid autoimmunity and cancer. Thyroid, 2006. 16(5): p. 455-460.
    3. Lavilla, I., et al., Ultrasound-assisted extraction technique for establishing selenium contents in breast cancer biopsies by Zeeman-electrothermal atomic absorption spectrometry using multi-injection.ANALYTICA CHIMICA ACTA, 2006. 566(1): p. 29-36.
    4.史传兵,卢航青,郑杰,硒-甲基硒代半胱氨酸对肝癌HepG2细胞的抑制作用.中国临床药理学与治疗学, 2006. 11(3): p. 286-291.
    5. Clark, L.C. and G.F. Combs, Determinants of Plasma Selenium Levels in Skin-Cancer Patients. Federation Proceedings, 1987. 46(4): p. 1153-1153.
    6. Clark, L.C., et al., Decreased incidence of prostate cancer with selenium (Se) supplementation: Results of a RCT. Faseb Journal, 1998. 12(5): p. A825-A825.
    7. Clark, L.C., et al., Effect of selenium supplementation for cancer prevention 1983-96: A randomized clinical trial. Faseb Journal, 1997. 11(3): p. 1371-1371.
    8. Beilstein, M.A. and P.D. Whanger, Chemical Forms of Selenium in Rat-Tissues after Administration of Selenite or Selenomethionine. Journal of Nutrition, 1986. 116(9): p. 1711-1719.
    9. Montes-Bayon, M., et al., Selenium in plants by mass spectrometric techniques: developments in bio-analytical methods - Plenary Lecture. Journal of Analytical Atomic Spectrometry, 2002. 17(9): p. 1015-1023.
    10. Ganther, H.E. and R.J. Lawrence, Chemical transformations of selenium in living organisms. Improved forms of selenium for cancer prevention. Tetrahedron, 1997. 53(36): p. 12299-12310.
    11. Ip, C., et al., In vitro and in vivo studies of methylseleninic acid: Evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Research, 2000. 60(11): p. 2882-2886.
    12. Ip, C., et al., Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. Journal of Agricultural and Food Chemistry, 2000. 48(6): p. 2062-2070.
    13. Cai, X.J., et al., Allium Chemistry - Identification of Selenoamino Acids in Ordinary and Selenium-Enriched Garlic, Onion, and Broccoli Using Gas-Chromatography with Atomic-Emission Detection. Journal of Agricultural and Food Chemistry, 1995. 43(7): p. 1754-1757.
    14. Whanger, P.D., Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition, 2002. 21(3): p. 223-232.
    15. Finley, J.W., Selenium and sulforaphane from broccoli interact to alter gene expression and protection against oxidative stress in cultured cells. Abstracts of Papers of the American Chemical Society, 2005. 230: p. U62-U62.
    16. Ip, C., et al., Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention (vol 48, pg 2062, 2000). Journal of Agricultural and Food Chemistry, 2000. 48(9): p. 4452-4452.
    17. Mueller, A.S. and J. Pallauf, Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. Journal of Nutritional Biochemistry, 2006. 17(8): p. 548-560.
    18.王椿,糖尿病防治的关键问题.现代临床医学, 2006. 32(2): p. 146-148.
    19. Satyanarayana, S., et al., Influence of selenium (antioxidant) on gliclazide induced hypoglycaemia/antihyperglycaemia in normal/alloxan-induced diabetic rats. Molecular and CellularBiochemistry, 2006. 283(1/2): p. 123-127.
    20. Reilly, C., Selenium in food and health. 2nd ed. 2006: Springer. XVI, 206.
    21. Yamaguchi, H., S. Paranawithana, and M.W. Lee, Epothilone B analogue (BMS-247550)-mediated cytotoxicity through induction of Bax conformational change in human breast cancer cells. Cancer Res, 2002(62): p. 466-471.
    22.程宝鸾,动物细胞培养技术. 2000,广州:华南理工大学出版社.
    23.胡还忠,医学机能学实验教程. 2002,北京:科学出版社.
    24. 15193.1-2003, G.,食品安全性毒理学评价试验. 2003.
    25. Yeh, J.Y., et al., Mechanism for proliferation inhibition by various selenium compounds and selenium-enriched broccoli extract in rat glial cells. Biometals, 2006. 19(6): p. 611-621.
    26. Keck, A.S. and J.W. Finley, Aqueous extracts of selenium-fertilized broccoli increase selenoprotein activity and inhibit DNA single-strand breaks, but decrease the activity of quinone reductase in Hepa lclc7 cells. Food and Chemical Toxicology, 2006. 44(5): p. 695-703.
    27. El-Bayoumy, K. and R. Sinha, Mechanisms of mammary cancer chemoprevention by organoselenium compounds. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 2004. 551(1-2): p. 181-197.
    28. Drake, E.N., Cancer chemoprevention: Selenium as a prooxidant not an antioxidant. Medical Hypotheses, 2006. 67(2): p. 318-322.
    29. Unni E, et al., Osteopontin is a potential target gene in mouse mammary cancer chemoprevention by Se-methylselenocysteine. Breast Cancer Res, 2004(6): p. 586-592.
    30. Yeo, J., et al., Se-methylselenocysteine induces apoptosis through caspase activation and Bax cleavage mediated by calpain in SKOV-3 ovarian cancer cells. Cancer Lett, 2002(182): p. 83-92.
    31. Jiang, C., et al., Caspases as key executors of methyl selenium induced apoptosis (anoikis) of DU2145 prostate cancer cells. Cancer Res, 2001(61): p. 3062-3070.
    32.王红林,吴劲,王治伦,微量元素硒与糖尿病.国外医学:医学地理分册, 2005. 26(4): p. 156-158.
    33.李应生,李亚男,陈大清,硒的生物学功能及植物的富硒机理.湖北农学院学报, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700