基于空间约束的路径规划与视景仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在经济全球化和信息化的推动下,现代物流技术已经成为一个包含机械学、计算机科学、管理工程学和自动控制技术等多学科融合的技术,自动导引小车(AGV)正是现代物流技术的典型代表。作为物流配送过程中的关键问题之一,车辆路径规划问题(VRP)是指AGV按照某一性能指标(如距离、时间、能量等)搜索一条从起始点到目标点的最优或次优安全路径,因此它主要涉及的问题包括:如何利用已知AGV工作环境信息建立一个合理的模型,利用某种算法寻找一条从起始点到目标点的最优或者次优安全路径。
     本文首先对AGV的全局路径规划方法进行了研究。在工作环境已知的情况下,按照一定简化规则得到AGV运行环境的电子地图数据,从而对运行环境进行建模,再利用voronoi图对环境进行划分,最后采用dijkstra最优搜索算法为AGV寻找到一条威胁代价最小情况下的粗略最短路径。考虑到AGV的动力学约束,利用B样条曲线对粗略最短路径进行平滑和修正,得到最终全局优化路径。
     提出在利用二维仿真对路径规划算法进行理论验证的基础上,利用视景仿真(Scene Simulation)技术,模拟AGV运行的整个场景和AGV随时间变化的运行状态,从而对先期的理论算法进行检验和评估。
     在三维视景仿真软件Vega中,利用Hermite曲线对全局优化路径上的关键点进行拟合,构建平滑的曲线,从而根据曲线上点的位置坐标和欧拉角(x,y,z,h,p,r)来控制AGV的连续运动。
     对于路径规划与视景仿真的交互方法,本文对数据接口的定义,特殊效果、声效的模拟,人机交互的方法分别进行了详细的阐述,并对将Opengl引入到Vega开发环境的一些关键技术和方法进行了相关的研究。
     最后介绍了自动导引小车(AGV)运动视景仿真系统的体系结构和视景仿真的实验效果。仿真结果表明:自动导引小车(AGV)在按照全局路径规划求解得到的路径运动过程中,没有与障碍物等空间约束发生碰撞等事故,从而验证了全局路径规划算法的正确性。因此,利用视景仿真系统,能够使设计人员在虚拟场景中得到形象、直观、准确的信息,对基于voronoi图的路径规划理论和算法进行检验,从而提升了理论和算法在现实中的工程应用价值。
With the impromotion of the economic globalization and information, the modern logistics has combined many other technologies, such as mechanics、computer science、manage engineering、automation technology etc. Automation Guided Vehicle (AGV) is just the representation of modern logistics technology. As one of the most important problems of the logistics process, Vehicle Routing Problem (VRP) is searching an optimal path without touch from the start to the end according to the performance index (such as:distance、time、energy) for AGV. So it includes these problems:how to build a reasonable model using the AGV's working environment information that known, how to search an optimal path without touch from the start to the end if we could find the arithmetic.
     This thesis first focuses on the study of global path planning for AGV. Under the condition that we have known the AGV's environment information, we can get the electronic map data according to some simplified regulations, and then we can use the data to model the environment. Using the voronoi diagram to divide the environment and the optimal searching arithmetic of dijkstra can be used to find an initial shortest path for AGV, at the same time, the threat weight of this way is the least. Considering the AGV's dynamic constrains, the initial shortest path is smoothed by using B spline, then the latest global optimal path is gained.
     Using the two-dimensional simulation to verify the path planning arithmetic.On the basis of this, we use the scene simulation technology to simulate the AGV's moving environment and it's moving state according to time. All the methods are designed to illustrate and demonstrate the feasibility of the presented theory and arithmetic.
     In the 3D scene simulation software of Vega, the points from the global optimal path are fitting into Hermite spline. By Constructed the smooth spline, we can use the points' positions and Ouler angles to control the AGV's continual movement.
     As the method merges the path planning and the scene simulation, this thesis has a detail study on the next points:defining data interface, building special effects、Audio application, man-machine alternation method. And this thesis expatiate some key technology and development means about integration of OpenGL and Vega.
     At last, this thesis introduces the system's structure of AGV movement scene simulation. The simulation result shows, in the course of AGV's movement according to the path which calculated by the global path planning arithmetic, there is no collsion accident etc. between AGV and space restriction like obstacles. It proves the correctness of the global path planning arithmetic. With the scene simulation system, it can offers designer visual、intuitionistic and xact information in the visual environment, verifies the path planning theory and arithmetic based on voronoi graph. It advances the theory and arithmetic's usefulness in reality.
引文
1.胡怀邦,郝渊晓等.现代物流管理学[M],广州:中山大学出版社,2001,1-15.
    2.田源,周建勤.物流运作实务[M],北京:清华大学出版社,2004.
    3. Dantzig G B, Ramser J H. THE TRUCK DISPATCHING PROBLEM [J], Management Science,1959, 10(6):80-91.
    4.吴家铸等.视景仿真技术及应用[M],西安:西安电子科技大学出版社,2001.
    5. Goel A K, Callantine T J. An Experience-based Approach To Navigational Route Planning[J], Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems,1992, 2(7):705-710.
    6.戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J],控制工程,2005,12(3):198-202.
    7. A.Ram, J.C.Santamaria. Continuous case-based reasoning[J]. Artificial Intelligence,1997,90(1-2):25-77.
    8. M.MAREFAT, J.BRITANIK. CASE-BASED PROCESS PLANNING USING AN OBJECT-ORIENTED MODEL REPRESENTATION[J], Robotics and Computer-Integrated Manufacturing,1997,13(3):229-251.
    9. Maarja Kruusmaa, Jan Willemson. Covering the path space:a casebase analysis for mobile robot path planning[J], Knowledge-Based Systems,2003,16:235-242.
    10. Rong Pan, Qiang Yang, Sinno Jialin Pan. Mining competent case bases for case-based reasoning[J]. Artifical Intelligence,2007,16:1-30.
    11.张悍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J],系统仿真学报,2005,17(2):439-443.
    12.徐秀娜,赖汝.移动机器人路径规划技术的现状与发展[J],计算机仿真,2006,23(10):1-52.
    13.艾海舟,张钹.基于拓补的路经规划问题的图形解法[J],机器人,1990,12(5):20-24.
    14.王卫华,陈卫东,席裕庚.基于不确定信息的移动机器人地图创建研究进展[J],机器人,2001,23(6):563-568.
    15.李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来[J],机器人,2002,24(5):475-480.
    16.马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J],机器人,1996,18(6):344-348.
    17.袁曾任,高明.在动态环境中移动机器人导航和避碰的一种新方法[J],机器人,2002,22(2):81-88.
    18. Habib, M. K, Asama, H. Efficient method to generate collision free paths for an autonomousmobile robot based on new free space structuring approach[J]. Proc. IEEE/RSJ International Workshop on Intelligent Robots and Systems,1991,2:563-567.
    19.石知白.移动机器人环境建模的结构基自由网络法[J],机器人,1991,13(6):22-25.
    20.郭丙华,胡跃华.考虑障碍物约束的非完整运动规划[J],机器人技术与应用,2002,4:25-27.
    21.禹建丽,V Kroumov,孙增,成久洋之.一种快速神经网络路径规划算法[J],机器人,2001,23(3):201-205.
    22.陈志华,谢存禧,曾德怀.基于神经网络的移动机器人路径规划算法的仿真[J],华南理工大学学报(自然科学版),2003,31(6):56-59.
    23. Oussama Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots[J]. The International Journal of Robotics Research,1986,5(1):90-98.
    24. K Sato. Deadlock-free motion planning using the Laplace potential field[J]. Advanced Robotics,1993, 7(5):449-461.
    25.庄晓东,孟庆春,殷波等.动态环境中基于模糊概念的机器人路径搜索方法[J].机器人,2001,23(5):397-400.
    26. Nelson H.C, Yung and Cang Ye. An Intelligent Mobile Vehicle Navigator Based on Fuzzy Logic and Reinforcement Learning[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS. PartB, CYBERNETICS,1999,29(2):314-320.
    27. R. Fierro, F. L. Lewis, Fellow. Control of nonholonomic mobile robot using neural networks[J]. IEEE Transactions on Neural Nertworks.1998,9(4):589-600.
    28.孙羽,张汝波.神经网络在智能机器人导航系统中的应用研究[J].计算机工程,2002,28(1):138-140.
    29. Michael Gerke, Genetic Path Planning for Mobile Robots[C], Proceedings of the American Control Conference, San Diego, CA, USA,1999:596-601.
    30.李强,林良明,颜国正.基于进化的移动机器人路径规划方法[C],Proceedings of the 3rd world congress on intelligent control and automation[C]. Hefie,China,2000,28(2):1206-1209.
    31. Nils J. Nilsson. Principles of Artificial Intelligence[M], Palo Alto, CA:Tioga,1980. 32. Stentz, A. Optimal and efficient path planning for partially-known environments[C]. San Diego, CA, USA. In Proceedings of the IEEE International Conference on Robotics and Automation,1994, 4:3310-3317.
    33. Anthony Stentz. The Focussed D'Algorithm for Real-Time Replanning[C]. Montreal:In Proceedings of the International Joint Conference on Artificial Intelligence,1995.
    34. Ronald C. Arkin. Behavior-Based Robotics[M]. London:MIT Press,1998.
    35. Guldner, Juerqen. Utkin, Vadim. Bauer, Rudolf. Three-layered hierarchical path control system for mobile robots:algorithms and experiments[J]. Robotics and Autonomous Systems,1995,14(2-3):133-147.
    36. Yong-Kyun Na, Se-Young Oh. Hybrid Control for Autonomous Mobile Robot Navigation Using Neural Network Based Behavior Modules and Environment Classification[J]. Autonomous Robots,2003, 15(2):193-206.
    37. Mbede J B, Huang X H, Wang M. Fuzzy motion planning among dynamic obstacles using artificial potential fields for robot manipulators[J]. Robotics and Autonomous Systems,2000,32(1):61-72.
    38. Ivan E. Sutherland. The Ultimate Display[C]. Proceedings of Congress,1965:506-508.
    39. James D. Foley. Interfaces for advanced computing[J]. Scientific American,1987,257(4):126-135.
    40.邹湘军,孙健,何汉武等.虚拟现实技术的演变发展与展望[J].系统仿真学报,2004,16(9):1905-1909.
    41. Burdea, Grigore. Coiffet, Philippe. Virtual reality technology[M]. New York, USA:Wiley-Interscience, 1994.
    42.苏建明,张续红,胡庆全.展望虚拟现实技术[J].计算机仿真,2004,24(1):18-21.
    44. M.G.Voronoi. Nouvelles applications des parameters continues a la theorie des formes quadratiques[J]. J.Reine Angew.Math,1908,134:198-287.
    45.严洁云.基于梯森分割的连锁企业物流配送路径规划研究[D].福州大学:2006年.
    46. Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure[J]. ACM Computing Surveys,1991,3(23):345-405.
    47. Steven Fortune. Voronoi Diagrams and Delaunay Triangulation[J]. In:Computing in Euclidean Geometry[C]. Edited by Ding-Zhu Du and Frank Hwang, World Scientific, Lecture Notes Series on Computing,1992,1:193-234.
    48. Assuyuki Okabe, Barry Boots, Kokichi Sugihara. Spatial tessellations:concepts and applications of Voronoi diagrams[M]. John Wiley & Sons, Inc. New York, NY, USA.1992.
    49.刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,2:125-132.
    50.F.P.普霍帕拉塔,M.I.沙莫斯[美].计算几何导论[M].北京:科学出版社,1990.
    51.王茂林.关于障碍Voronoi图的研究[D].大连海事大学:2005.
    52. Anton F, Mioc D, Gold C.M. Line Voronoi diagram based interpolation and application to digital terrain modeling[C]. In Proceedings of Canadian Conference on Computational Geometry, University of Waterloo, Canada,2001:29-32.
    53. N. Amenta, M. Bern. Surface Reconstruction by Voronoi Filtering[J]. Discrete and Computational Geometry,1999,22:481-504.
    54. N. Amenta, M. Bern, M. Kamvysselis. A new Voronoi-based surface reconstruction algorithm[J]. Computer Graphics,1998,32:415-421.
    55. Tamal K. Dey, Stefan Funke, Edgar A. Ramos. Surface Reconstruction in Almost Linear Time under Locally Uniform Sampling[C]. Annual Symposium on Computational Geometry, Proceedings of the fifteenth annual symposium on Computational geometry, Miami Beach, Florida, United States,1999:197-206.
    56. Stefan Funke, Edgar A. Ramos. Smooth-surface reconstruction in near-linear time[C]. Symposium on Discrete Algorithms, Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, San Francisco, California,2002:781-790.
    57. Deok-Soo Kim. Polygon offsetting using a Voronoi diagram and two stacks[J]. Computer-Aided Design,1998,30(14):1069-1076.
    58. M. llg, R. Ogniewicz. The Application of Voronoi Skeletons to Perceptual Grouping in line Images[C]. Image, Speech and Signal Analysis, Proceedings of 1 lth IAPR International Conference,1992,3:382-385.
    59. R. E. Marston, J. C. Shih. Multi-scale skeletal representations of images via Voronoi diagrams[J]. Proceedings of the SPIE,1995,18:73-82.
    60. Mark Burge, Gladys Monagan. Using the Voronoi Tessellation for Grouping Words and Multi-part Symbols in Documents[C]. In SPIE Proc. Vol.2573, Vision Geometry IV, SPIE's International Symposium on Optics, Imaging and Instrumentation, San Diego, California:July 9-141995.
    61. M. McAllister, D. Kirkpatrick, J. Snoeyink. A compact piecewise-linear voronoi diagram for convex sites in the plane[J]. Discrete and Computational Geometry,1996,15(1):73-105.
    .62. Kenneth Hoff Ⅲ, Tim Culver, John Keyser et al. Interactive motion planning using hardware-accelerated computation of generalized Voronoi diagrams[C]. Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA,2000,3:2931-2937.
    63. M.C.Lin. Efficient Collision Detection for Animation and Robotics[D]. Ph.D. thesis, University of California, Berkeley,1994.
    64. M.C.Lin, D. Manocha, M. Ponamgi. Fast algorithms for penetration and contact determination between non-convex polyhedral models[C]. Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan,1995,3:2707-2712.
    65. MultiGen-Paradigm Inc. MultiGen Creator User's Guide (Version 2.6)[M]. U.S.A:MultiGen-Paradigm Inc,2001.
    66. MultiGen-Paradigm Inc. Vega Programmer's Guide (Version 3.7)[M]. U.S.A:MultiGen-Paradigm Inc, 2001.
    67.常康.基于MULTIGEN-VEGA的城市视景仿真系统研究[D].武汉大学:2005.
    68.胡昆明.导弹试验训练视景仿真系统关键技术研究[D].国防科学技术大学:2005.
    69.符小卫,高晓光.一种无人机路径规划算法研究[J].系统仿真学报,2004,16(1):20-34.
    70.张永芳,张安,张志禹等.战术飞行路径规划算法[J].交通运输工程学报,2006,6(4):84-87.
    71.阎代维,谷良贤,王兴治.基于Voronoi图的巡航导弹突防路径规划研究[J].弹箭与制导学报,2005,25(2):11-13.
    72.叶媛媛,闵春平,沈林成等.基于VORONOI图的无人机空域任务规划方法研究[J].系统仿真学报,2005,17(6):1353-1359.
    73.赵文婷,彭俊毅.基于VORONOI图的无人机航迹规划[J].系统仿真学报,2006,18(2):159-165.
    74.许松清.基于环境地图信息的移动机器人路径规划研究[D].福州大学:2005.
    75.顾晓青,张有会,赵晔等.关于k(1≤k    76. E.W.Dijkstra. A Note on Two Problem in.Connexion with Graphs[J]. Numerische Mathmatik,1959, 1(1):269-271.
    77.杨平利,王建国,高有行等.卫星运行视景仿真中的姿态控制研究[J].系统仿真学报,2006,18(1):217-220.
    78. Tomas Akenine-Moller, Eric Hainesi(著);普建涛(译).实时计算机图形学(第2版)[M].北京:北京大学出版社,2004.
    79.倪明田,吴良芝.计算机图形学[M].北京:北京大学出版社,1999,205-208.
    80. Doris H. U. Kochanek. Interpolating Splines with Local Tension, Continuity, and Bias Control[C]. Proceedings of the 11th annual conference on Computer graphics and interactive techniques (0097-8930), New York, USA,1984,18(3):33-41.
    81.代丽红,尹文生,李世其.OpenGL在Vega开发环境中的应用研究[J].计算机应用与软件,2005,7.
    82.李红英,自动导引小车系统(AGVS)路径规划技术研究[D].合肥工业大学:2005.
    83.孙宇,张世琪,崔康吉.AGV自动导引技术的研究[J].中国机械工程,1996,7(6):31-33.
    84.冯洪奎,鲍劲松,金烨,颜瓅.在视景仿真中用Hermite曲线控制物体运动[J].系统仿真学报,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700