深海采矿船升沉模拟平台运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据现阶段的研究,深海采矿船在海浪的影响下所产生的六个运动中,艏摇、纵荡和横荡可以通过动力定位进行消除,纵横摇可由升沉补偿装置中的万向架得到补偿,也就是说,只需要解决采矿船升沉运动的补偿就可以了。因此本文致力于对采矿船升沉运动的研究,为下一步升沉运动的补偿系统研究打下基础。
     本文的主要目标是进行深海采矿船升沉运动模拟平台电液伺服控制系统的特性分析及控制策略研究。在分析模拟平台液压驱动系统动态性能的基础上,对电液位置伺服控制系统进行特性分析、理论建模等基础性研究,然后对模拟平台的控制算法进行研究,通过试验验证得出符合模拟平台的工程应用和精度要求的控制算法。本文主要成果和结论如下:
     1、根据深海采矿船的作业条件,研究了升沉运动模拟平台机械结构和液压动力系统,并对阀控非对称缸系统进行了数学建模仿真,在Simulink软件中建模得出液压缸输出特性曲线,依此进行了仿真验证;
     2、通过所建立的模型,对阀控非对称缸系统压力特性和由于非对称缸正反向运动不对称等所引起的系统非线性因素进行了分析,为其控制策略的研究提供比较接近于实际系统的仿真模型。
     3、对模拟平台进行了增量式PID控制和相应非线性系统的模糊自整定PID控制研究,通过理论分析和建模,选择了能达到平台模拟实际运动中各项技术指标要求的控制算法,有效提高了模拟平台的运动姿态精度。
     4、提出并完成了利用LabVIEW和Matlab/Simulink两种软件针对阀控非对称缸系统控制策略的联合仿真,实现了两个软件的优势互补,取得了良好的可视化效果,也为今后课题的研究设计提供了便利。
     5、应用LabVIEW软件编制了主控制软件,对模拟平台进行了综合试验研究,验证了阀控缸系统建模和控制策略的正确性和科学性,实验表明,深海采矿船升沉运动模拟平台的设计达到了各项指标的要求。
According to the current study, deep-ocean mining vessel generates six motions under the influence of waves which the bow shake, vertical swing and sway can eliminate by the dynamic positioning system, and vertical-horizontal shaking can compensate by the Universal Holder in heave compensation device, that is, the only problem is to solve the compensation of mining vessel's heave-sink motion. Therefore, this article is committed to the study of mining vessel's heave-sink motion, and to lay the foundation to the compensation system of heave motion for the further study.
     The main aim of this paper is the characteristics'analysis and control strategy study of electro-hydraulic Servo Control System for heave motion simulation platform of deep-ocean mining vessel. Based on the analysis of the performance of hydraulic drive system of simulation platform, the basic study which includes characteristics analysis and theoretical simulation of electro-hydraulic position servo control system is done, then the control algorithm for heave motion simulation platform of mining vessel is also researched, the control algorithm which meets the precise requirement and engineering application has been verified by experiments.
     The main results and conclusions are shown as following:
     1. According to the working condition of deep-ocean mining vessel, the mechanical structure and hydraulic dynamic system of heave motion simulation platform is researched, furthermore the nonlinear mathematical simulation and model of valve controlled asymmetrical cylinder system is conducted, on the basis of modeling by using Simulink software and obtaining the hydraulic output-characterisitc curve, the verified simulation is done.
     2. Through the built model, it is analyzed that the pressure characteristics of valve controlled asymmetrical cylinder system and system nonlinear factors owing to the asymmetry of positive and reverse motion of asymmetrical cylinder, providing the simulation model which is closed to actual condition for the research of control strategy.
     3. Incremental PID control and the fuzzy self-tuning PID control of corresponding nonlinear system is performed for simulation platform, by theoretical analysis and model, the control algorithm which meets the requirements of all technical specifications in simulation of actual motion of platform is chosen, the motion attitude precision of simulation platform is effectively improved.
     4. The joint simulation aiming at valve controlled asymmetrical cylinder system using LabVIEW and Matlab/Simulink is proposed and finished, achieving complement of each other's advantage to achieve a good visual effect, also supplying facilities for research design of further task.
     5. By the LabVIEW software main control software is compiled and the comprehensive experiment research for simulation platform is conducted, then it is verified the correct and Scientific aspects of the system nonlinear model, parameter selection and control strategy. The experiment indicates that the design of heave motion simulation platform of deep-ocean mining vessel meets the demand of all the indexes.
引文
[1]吕东,何将三,刘少军.深海资源开发技术的研究现状.矿山机械,2004,(09):6~9
    [2]莫杰.中国大洋矿产资源勘查进展概况.海洋地质动态,2000,16(3):6~8
    [3]方银霞,包更生,金翔龙.21世纪深海资源开发利用的展望.海洋通报,2000,19(5):73~78
    [4]U. S. Congress. Office of Technology Assessment. Marine Minerals: Exploring Our New Ocean Frontier, Washington, DC:U. S. Government Printing Office, July,1987.56~58
    [5]吕华.海洋开发与管理的探讨.地质科技管理,1999,(1):7~11
    [6]简曲.中太平洋富钻结壳的研究.矿业研究与开发,1999,19(1):25~27
    [7]Jean-Pierre Lenoble. Future deep-sea bed mining of polymetallic nodules ore deposits. XV World Mining Congress Madrid,1992.1~9
    [8]Deep ocean floor nodule mining-first generation techniques are here. Mining Engineering,1975, No.4:47~52
    [9]Vadim S, Tikhonov. Viadimir K. Zubarev. Simulation of nonlinear vibration of an elevating pipeline. OTC 4234,1982
    [10]简曲,陈新明,王明和.21世纪中国的大洋多金属结核工业开采.中国矿业,1997,6(4):16~19
    [11]吴秀恒.船舶操纵性与耐波性.北京:人民交通出版社,1999.125~130
    [12]方华灿.海洋石油钻采设备理论基础.北京:石油工业出版社,1984.205~209
    [13]肖体兵,吴百海.升沉补偿模拟试验系统的设计与实验研究.机床与液压,2003,(4):36~39
    [14]张震.深海采矿升沉补偿模拟试验平台研究:[硕士学位论文].长沙:中南大学,2008
    [15]蒋德才,刘百桥.工程环境海洋学.北京:海洋出版社,2005.134~140
    [16]简曲,王明和.大洋多金属结核工业采矿系统的研究.湖南有色金属,1995,12(4):12~15
    [17]方华灿.海洋石油钻采装备与结构.北京:石油工业出版社,1990.256~264
    [18]肖体兵.深海采矿装置智能升沉补偿系统的研究:[博士学位论文].广
    州:广东工业大学,2004
    [19]肖体兵.重型扬矿管主动升沉补偿系统的设计与仿真研究.机床与液压,2002(6):47~50
    [20]Jan Lundgren, Anders Berg. Wave-included motions on a four-column semi-submersible obtained from model tests. Proceedings of the 14th annual offshore technology conference. Houston, Tex..,1982, OTC 4230: 759-763
    [21]美国NBL研制的三自由度船舶运动模拟平台.www.nbdl.org, 2002.7(download)/2000.6(updated)
    [22]美国August设计公司研制的六自由度船舶运动模拟平台.www.august-design.com/html/projects/prj-sms. htm,2002.7(download)/2001.3(updated)
    [23]美国SPAWAR系统中心研制的三自由度船舶运动模拟平台.www.spawar. navy.mil www.spawar.navy.mil/sti/publications/pubs/sd/176/sdl176.pdf, 2002.7 (download)/2000.4(updated)
    [24]日本OSAKAFU公司研制的三自由度船舶运动模拟平台.www.marine.osak afu-u.ac.jp/fuc/simu,2002.7(download)/2000.4(updated)
    [25]荷兰TNO人员因素研究院研制的三自由度船舶运动模拟平台.www.tm.tno. nl/facilities/text-shipm. html,2002.8(download)/2000.5(updated)
    [26]刑继峰,曾小华,戴余良.协调式六自由度运动平台的运动学分析.海军工程大学学报,2000,(6):15~19
    [27]王勇亮,卢颖,梁建民.飞行模拟器六自由度运动平台的位置分析与测量控制.计算机测量与控制,2005,(11):1243~1249
    [28]郝轶宁,王军政,汪首坤.六自由度运动姿态模拟模拟系统的研究.北京理工大学学报,2002,22(3):331~334
    [29]杨灏泉,赵克定,吴盛林等.飞行模拟器六自由度运动系统的关键技术及研究现状.系统仿真学报,2002,14(1):84~87
    [30]杨灏泉,飞行模拟器六自由度运动系统及其液压伺服系统的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2002
    [31]吴江宁,骆涵秀,李世伦.并联式六自由度电液伺服平台.中国机械工程,1997,8(6):92~94
    [32]王栋梁,李洪人,李春萍.对称阀控制非对称缸系统的静态及动态特性分析.机床与液压,2003,(1):198~200
    [33]许贤良,丁雪峰,杨球来.称伺服阀控制非对称液压缸的理论分析.液压与气动,2004,(3):16~18
    [34]Bonchis A, Corke PI. Variable structure methods in hydraulic servo systems control. Automatic.2001,37:589~595
    [35]Shao J P,Chen L H,Ji Y J,et al. The application of fuzzy control strategy in electro-hydraulic servo system. IEEE International Symposium on Communications and Information Technology.2005, pp.1 65-170
    [36]Shoorehdeli M A, Shoorehdeli H A, Teshnehlab M, et al. Velocit Control of an Electro Hydraulic Servo system. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control. 2006, pp.985~988
    [37]Guan C, Zhu S N. Adaptive time-Varying sliding mode control for hydraulic servo system. The 8th Control, Automation, Robotics and Vision Conference.2004, pp.1774~1779
    [38]Hong YU. Nonlinear control for a class of hydraulic servo system Journal of Zhejiang University science.2004,5(11):1413~1417
    [39]丁雪峰,许贤良.液压伺服系统的非线性最优控制.液压与气动,2004,(2):32~35
    [40]李运华,王占林.电气液压复合调节容积式舵机的精确线性化控制.机械工程学报,2004,(11):21~25
    [41]曹建福,韩崇昭,方洋旺.非线性系统理论及应用.西安:西安交通大学出版社,2001
    [42]张利平.液压传动与控制.西安:西北工业大学出版社,2005.262~265
    [43]石辛民,郝整清.模糊控制及其MATLAB仿真.北京:清华大学出版社,北京交通大学出版社,2008.4~6
    [44]李运华,史维样,林廷圻.近代液压伺服系统控制策略的现状与发展.液压与气动,1995,(1):3~6
    [45]XU Jian-Xin, XU-Jing, Cao Wen-Jun. A PD Type Fuzzy Logic Learn Control Approch for Repeatable Tracking Control Tasks.自动化学报, 2001,27 (4):434~445
    [46]张栋,许纯新,金立生,冯尊田,邓文.挖掘机单神经元比例—积分—微分节能控制系统.西安交通大学学报,2004,38(5):529~532
    [47]张日华.六自由度飞行模拟器的单通道电液位置伺服系统的研究:[博士学位论文].哈尔滨:哈尔滨工业大学.1997
    [48]卢长耿,李金良.液压控制系统的分析与设计.北京:煤炭工业出版社,1991.336-340
    [49]路甬祥.液压气动技术手册.北京:机械工业出版社,2002.278~286
    [50]金燕.海底移动机器人路径跟踪的模糊自整定PID控制:[硕士学位论文].长沙:中南大学,2005
    [51]汤展跃.以高速开关阀为先导阀的锥阀-油缸系统模糊PID控制研究:[硕士学位论文].长沙:中南大学,2006
    [52]陶永华,新型PID控制及其应用.北京:机械工业出版社,1999.138~145
    [53]王正林,王胜开,陈国顺,王琪.MATLAB/Simulink与控制系统仿真(第二版).北京:电子工业出版社,2008.56~68
    [54]诸静.模糊控制原理与应用.北京:机械工业出版社,2001.106~112
    [55]席爱民.模糊控制技术.西安:西安电子科技大学出版社,2008.68~75
    [56]郭圣敏.深海采矿装置升沉补偿系统模糊自整定PID控制研究.长沙:中南大学硕士学位论文,2006
    [57]吴振顺,姚建均,岳东海.模糊自整定PID控制器的设计及其应用.哈尔滨工业大学学报.2004,11(11):1578~1580
    [58]飞思科技产品研发中心.MATLAB7辅助控制系统设计与仿真.北京:电子工业出版社,2008.273~280
    [59]庞胜利,高占凤,张育军等.用LabVIEW进行自动控制原理实验研究.电测与仪表.2000,(3):41~43
    [60]徐明远,邵玉斌.Matlab仿真在通信与电子工程中的应用.西安:西安电子科技大学出版业社,2005.98~112
    [61]National Instruments Corporation. LabVIEW User Manual [EB/OL]. http://www. ni. com
    [62]龙脉工作室,岂兴明,周建兴,矫津毅.LabVIEW8.2中文版入门与典型实例.北京:人民邮电出版社,2008.5~15
    [63]薛定宇,陈阳泉.基于MATLAB/Simulink系统仿真技术与应用.北京:清华大学出版社,2002.3~20
    [64]曹更彦,李银国.基于MATLAB/Simulink和LabVIEW的发动机仿真.电子测试.2008,(8):57~66
    [65]陈桂,盛党红,汪木兰.LabVIEW与MATLAB在伺服系统中的应用研究.现代雷达.2005,27(11):67~70
    [66]徐挺.相似方法及其应用.北京:机械工业出版社,1995.42~67
    [67]丁汉哲.试验技术.北京:机械工业出版社,1982.25~41
    [68]张氢等.起重机模型试验的相似性分析.起重运输机械.2000,(12):29~33
    [69]戴鹏飞,王胜开.测试工程与LabVIEW应用.北京:电子工业出版社,2006.82~90
    [70]王磊,陶梅.精通LabVIEW8.0.北京:电子工业出版社,2007.110~145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700