电渗析法处理含酚废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业含酚废水主要来源于煤气、炼油、焦化等化工生产过程,具有来源广、数量多、危害大、难降解等特点。在我国水污染控制中,含酚废水被列为重点解决的有害废水之一。
     电渗析(ED)在直流电场作用下,利用离子交换膜的选择透过性,带电离子透过离子交换膜定向迁移,从水溶液或其它不带电的组分中分离出来,从而实现对溶液的浓缩、淡化、精制和提纯的目的。该法是一项非常成熟的膜分离技术,广泛用于化工脱盐和海水淡化等领域,具有能耗低,方便操作等特点。本文利用电渗析浓缩脱盐的原理,提出通过向苯酚溶液中加入碱,将苯酚转化为酚钠,使苯酚以C6H5O-离子的形式存在,然后采用电渗析法去除酚氧离子的含酚废水处理工艺,这是处理苯酚废水的一种新的尝试。
     在本论文实验过程中,选定强碱NaOH加入苯酚溶液中,考察了加碱量、苯酚初始浓度、操作电压、流量、加盐对淡室苯酚去除率的影响,并根据实验结果确定较优的电渗析操作条件为:操作电压为26V,淡室加入苯酚氢氧化钠摩尔比为1:5,流量均为40-50L/h,苯酚初始浓度大于200 mg/L。在此实验条件下,初始浓度为1000 mg/L的苯酚废水在实验运行120 min后苯酚去除率达到了97.3%。
     实验测定极限电流密度,计算能耗,为电渗析处理含酚废水提供理论依据。实验结果表明,电渗析法处理含苯酚废水,能耗低,操作方便,具有较好的效果。在本实验设备条件下,极限电流密度约为45mA。电渗析法处理苯酚废水总能耗随着电压、苯酚初始浓度和加入碱量的增加而增加,但总能耗较低,在苯酚浓度为1000mg/L,26V操作电压下,苯酚氢氧化钠的物质的量之比为1:5,流量为40L/h时总能耗仅为0.21 W·h/L。
The industrial phenol water, which is hard to degrade, is mostly rooted in the production process of oil refining, coking and so on. The phenol water is nocuous and seriously dangerous to human health and thus listed as one of the key pollutions to be treated.
     Electrodialysis (ED) is an electrochemical separation process in which ion-exchange membranes and electrical potential difference are applied to separate ionic species from an aqueous solution and other uncharged components. Electrodialysis technology is one of the very maturely membrane separation technologies, qualified many merits such as easy operation, low energy consumption and so on. In this study, a novel method was proposed for the treatment of phenol wastewater by using two-compartment electrodialysis to remove the phenol ions formed in presence of sodium hydroxide.
     In the process of experiment, the influence of the operation parameters on the removal rate of phenol was studied, such as sodium hydroxide concentration, the phenol concentration, the applied voltages, the sodium sulfate concentration and the flow rate. According to the experimental result, the optimal operating conditions are determined as follows:operating voltage 26 V, the concentration of NaOH in dilute compartment being five times of that of phenol, flow rate of all compartments 40~50 L/h, initial concentration of phenol above 200 mg/L. For a 1000 mg/L phenol water, about 97.3%of removal rate was obtained within 120 min in the above operating conditions.
     The limiting current density was determined and the total energy consumption calculated. It I showed that the electrodialysis may be used to the treatment of phenol wastewater effectively with low cost. According to the result of experiment, the limiting current density is 45 mA, and the total energy consumption is 0.21 W-h/L for a 1000 mg/L phenol water.
引文
[1]Brasquet C, Subrenat E, Cloirec P L. Removal of Phenol Compounds from Aqueous Solution by Activated Carbon Cloths[J]. Water Science Technology,1999,39(10-11):201-205
    [2]于萍,姚琳,罗运柏.高浓度含酚废水处理的新工艺[J].工业水处理,2002,22(9):5-8
    [3]许晓路,申秀英.活性污泥在工业废水处理中的应用进展[J].环境科学进展,1994,2(1):58-65
    [4]Mohammadi T, Razmi A, Sadrzadeh M. Effect of operating Parameters on Pb2+ Separation from Wastewater using Electrodialysis[J]. Desalination,2004,167:379-385
    [5]Moon P J, Parulekar S J, Tsai S P. Competitive Anion Transport in desalting of Mixtures of organic acids by batch Electrodialysis[J]. Journal of Membrane Science,1998,141:75-89
    [6]索宏图.固定化微生物三相流化床技术处理含苯酚废水[D].天津:天津大学,2007,2-10
    [7]United State Environmental Protection Authority. Toxic Substances Control ACT (TSCA)[M]. USEPA, Washington, DC,1979
    [8]林齐平.含酚废水治理技术的进展[J].水处理技术,1993,19(3):174-180
    [9]Rengaraj S, Moon S H, Sivabalan R. Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste:rubber deed coat[J]. Journal of Hazardous Materials,2002,89(2-3):185-196
    [10]张全兴,刘天华.我国应用树脂吸附法处理有机废水的进展[J].化工环保,1994,14(6):344-347,15(1):24-27
    [11]陈金龙,张全兴,徐建平,等.树脂吸附法处理高浓度混甲酚生产废水的研究[J].南京大学学报,1995,31(4):598-605
    [12]Lin S H, Wang C S. Treatment of high-strength phenolic wastewater by a new two-step method[J]. Journal of Hazardous Materials,2002,90(2):205-216
    [13]赵天亮,陈芳媛,宁平,等.工业含酚废水治理进展及前景[J].环境科学与技术,2008,31(6):64-66
    [14]Li Z, Wu M H, Jiao Z, et al. Extraction of phenol from wastewater by N-octanoylpyrrolidine[J]. Journal of Hazardous Materials,2004,114(1/3):111-114
    [15]杨义燕,李芮雨,党广悦,等.络合萃取法处理工业含酚废水[J].环境科学,1995,16(2):35-38
    [16]葛宜掌.协同-络合萃取法及其应用[J].现代化工,1996,(8):49-50
    [17]何建文.液膜技术处理高浓度含酚废水[J].上海化工,1989,14(1):41-42
    [18]李玲,严春晓.高浓度含酚废水的处理方法[C].首届全国高浓度有机废水处理技术及工程建设研讨会,2003,3-38
    [19]张威,张文卿.国内外含酚废水处理技术的研究与进展[J].环境保护与循环经济,2008(2):29-31
    [20]周定,侯文华.固定化微生物法处理含酚废水的研究[J].环境科学,1990,11(1):2-5
    [21]Wang S J, Loh K C. Growth kinetics of Pseudomonas putida in cometabolism of phenol and 4-chlorophenol in the presence of a conventional carbon source[J]. Biotechnology and Bioengineering,2000,68(4):437-447
    [22]Onysko K A, Budman H M, Robinson C W. Effect of Temperature on the Inhibition Kinetics of Phenol Biodegradation by Pseudomonas putida Q5[J]. Biotechnology and Bioengineering, 2000,70(3):291-299
    [23]黄志勇,陈国树.含酚废水的治理方法及其进展[J].环境与开发,1997,12(2):32-34
    [24]赵天亮,宁平,陈芳媛.含酚废水治理技术研究进展[J].环境与健康杂志,2007,24(8):648-650
    [25]满春生,徐守忠,王骏.温度对提高活性污泥法处理含酚废水效率的研究[J].中国环境科学,1995,15(1):14-17
    [26]刘建荣,吴国庆,张敏,等.PSB活性污泥法处理含酚废水的研究[J].环境科学与技术,1993,(3):1-4,22
    [27]Sarfaraz S, Thomas S, Tewari U K, et al. Anoxic treatment of phenolic wastewater in sequencing batch reactor[J]. Water Research,2004,38(4):965-971
    [28]Chan C H, Lim P E. Evaluation of sequencing batch reactor performance with aerated and unaerated FILL periods in treating phenol-containing wastewater[J]. Bioresource Technology, 2007,98(7):1333-1338
    [29]肖庚富,王家玲.曝气浸没固定生物膜法及其在污水处理中的应用[J].环境科学与技术,1993(4):1-5
    [30]Stoilova I, Krastanov A, Stanchec V, et al. Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells[J]. Enzyme and Microbial Technology,2006,39(5):1036-1041
    [31]刘和,王晓云,陈英旭.固定化微生物技术处理含酚废水[J].中国给水排水,2003,19(5):53-55
    [32]王春敏,李亚峰,陈健.含酚废水治理技术研究现状及其进展[J].辽宁化工,2004,33(5):276-279
    [33]胡文伟.焚烧法处理含酚废水[J].工业用水与废水,2000,31(4):28-29
    [34]Fention H J H. Oxidation of tartaric acid in the presence of iron[J]. Journal of Chemical Society, 1894,65(5):899-910
    [35]Christoskova S, Stoyanova M. Degradation of Phenolic Waste Waters over Ni-Oxide[J]. Water Research,2001,35(8)2073-2077
    [36]李宝东,刘冬梅,林涛.饮用水处理过程中的化学氧化技术[J].哈尔滨商业大学学报(自然科学版),2004,20(2):199-202
    [37]曾炳蔚,郑景涛,王天寿.我国含酚废水处理技术的应用近况[J].化工时刊,1997,11(7):18-21
    [38]Parida K M, Parija S. Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide[J]. Solar Energy,2006,80(8):1048-1054
    [39]Bauer R, Waldner G, Fallmann H, et al. The photo-fention reaction and the TiO2/UV process for wastewater treatment-novel development[J]. Catalysis Today,1999,53(2):131-134
    [40]Adan C, Bahamonde A, Fernandez-Garcia M, et al. Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation[J]. Applied Catalysis B: Enviromental,200,72(1-2)11-17
    [41]Koerbahti B K, Tanyolac A. Continuous electrochemical treatment of phenolic wastewater in a tubular reactor[J]. Water research,2003,37:1505-1514
    [42]胡春,王仪中.TiO2光催化氧化苯酚动力学研究[J].环境科学,1997,18(4):1-4
    [43]刘荣娥.膜分离技术[M].北京:化学工业出版社,2001
    [44]曹晓峻.膜分离技术在水处理中的应用与进展[J].资源节约,2008,24(2):29-31
    [45]戴军,袁惠新,俞建峰.膜技术用于工业废水处理的现状及进展[J].过滤与分离,2001,11(3):5-8.
    [46]孙敏,钟志雄,李江.膜分离技术在环境分析中的应用[J].干旱环境检测,2005,19(3):169-171,190
    [47]Juda W, McRae W A. Coherent ion-exchanged gels and membranes[J]. Journal of American Chemical Society,1950,72:1044
    [48]Suto T, Ehara L. Seawater Desalination by Electrodialysis[C].5th International Symposium, on Fresh Water from the Sea,1975(3):131
    [49]马成良.我国电渗析技术发展浅析[J].膜科学与技术,1998(4):58-60
    [50]张维润.电渗析工程学[M].北京:科学出版社,1995
    [51]邵刚.膜法水处理技术(第2版)[M].北京:冶金工业出版社,2001
    [52]王学松.膜分离技术及其应用[M].北京:科学出版社,1994.
    [53]张艳华,田景新.电渗析在化工行业中应用展望[J].辽宁化工,1997,26(2):13-17
    [54]写文彬,俞凌云,张新申.苯酚的测定方法及其研究进展[J].西部皮革,2009,31(2):10-15
    [55]Bremner D H, Burgess A E, Houllemare D, et al. Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide[J]. Applied Catalysis B:Environmental, 2006,63(1-2):15-19
    [56]Meng H, Zhang S, Li C X, et al. Removal of heat stable salts from aqueous solutions of N-methyldiethanolamine using a specially designed three-compartment configuration electrodialyzer[J]. Journal of Membrane Science,2008,322:436-440
    [57]孟洪,彭吕盛,卢寿慈.电渗析过程中的浓差极化及水解离机理[J].膜科学与技术,2003,12(3):25-26
    [58]曹连城,吴文珊.电渗析器极限电流的测定及与水型水温的关系[J].湖北化工,1999,3(12):22-26
    [59]殷雪峰.用电渗析法净化化学镀镍老化液之研究[D].大连:大连理工大学,2005,22-23
    [60]赵婧.超滤和电渗析的组合分离γ-氨基丁酸发酵液[D].无锡:江南大学,2006,24-25
    [61]王方.离子交换膜间水的电离及其应用.化工进展,2003,6(11):34-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700