金鸡纳碱类有机催化剂催化靛红及其衍生物的不对称Henry反应、Michael加成反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括三方面工作:一、去甲奎尼丁不对称催化靛红和硝基烷烃的Henry反应;二、奎宁硫脲类催化剂不对称催化靛红不饱和腈基酯和硝基烷烃的Michael加成反应;三、奎宁胺不对称催化靛红不饱和二腈和酮的Michael加成反应。
     从上个世纪初由Bredig第一次将有机催化应用于合成反应中,即利用奎宁或奎尼丁不对称催化羟氰化反应,有机催化的概念就引起人们的注意,并陆续扩展了有机催化的应用范围,直到2000年,List、BarbasⅢ、MacMillan等人在有机催化方面的杰出贡献,将有机催化的研究推向了高潮,由于有机催化本身具有无毒无害、简单易得、反应条件温和以及立体选择性强等特点,特别适合药物、天然产物、功能材料等的合成,因此,化学家们在有机催化剂的应用方面做了大量的工作,并取得了显著成果。
     金鸡纳碱类催化剂的种类非常多,本文我们主要用到去甲奎尼丁、奎宁胺以及奎宁硫脲等三类催化剂,并分别将其用于三个以靛红或其衍生物作反应物的有机催化反应。
     第一个靛红和硝基甲烷的Henry反应可以被去甲奎尼丁催化,在DMA (N,N-二甲基乙酰胺)作溶剂,苯甲酸作添加剂,-15℃的低温条件下得到产率99%,ee值92%的高对映选择性产物,经过二氯甲烷洗涤处理,得到的固体产物选择性高达99%ee。同时,该产物经过两步转化后可以得到天然产物(+)-Dioxibrassinin,再一步转化可得另一种天然产物(-)-S-Spirobrassinin,后者已经被证实是天然提取的植物抗菌素,这也是该化合物第一次被不对称有机催化、合成得到。
     第二个有机催化的不对称Michael反应研究的是靛红不饱和腈基酯衍生物3-8和硝基烷烃3-9的加成反应,经过筛选最终采用奎宁硫脲类化合物作为手性催化剂,-10℃的无溶剂条件下可以催化得到高产率(99%)高对映选择性(88%ee)的加成产物3-10,该产物经过进一步将硝基还原成氨基的反应可以自动关环成为酰胺化合物3-11,同样得到了螺环-靛红类衍生物的重要化合物片段,且关环产物的对映选择性保持不变,增加了该不对称加成反应的研究意义。
     第三个有机催化的研究内容是靛红不饱和二腈4-6与酮4-8的Michael加成反应,以奎宁胺作为手性催化剂,THF作溶剂,在该不对称反应中最重要的是采用(R)-BNPH (BINOL-磷酸)作为手性添加剂,(R)-BNPH的加入大大增强了加成产物的立体选择性(92%ee)。而且,经过进一步研究发现,靛红、丙二腈和酮的三组分“一锅法”反应,在相同反应条件下得到的产物的对映选择性甚至略高于两组分反应的产物,为95%ee,且产率基本保持不变(92-95%)。得到的手性产物4-7a经NaBH4还原后可以关环得到螺环-靛红的重要药用结构4-8a,具有重要的研究意义。
     需要说明的是,论文对新合成的手性化合物的立体结构是通过X-射线单晶衍射确定的。并测定了相应的核磁共振(氢/碳谱)谱图、高分辨质谱、旋光度、熔点等数据作为支持。
The dissertation consists of three parts:(1) Enantioselective Henry reaction of isatin and nitromethene; (2) Enantioselective Michael addition of nitromethane to indolylidene-cyanoacetic acetate; (3) Enantioselective Michael addition of ketones to alkylidenemalononitriles.
     Since 1910, the first organocatalytic cyanohydrin reaction in the presence of quinine/quinidine was proceeded by Bredig's method with low enantioselectivity (<10%ee). However, this kind of catalysts has arisen chemists'strong interests, and they broadened the application areas of different organocatalysts. Until 2000, the passion of organocatalytic research was pushed to the climax contributing to the excellent work of List, Barbas III, MacMillan et. al. Considering the advantages of organocatalysis, especially without metal contained, chemists would like to apply it on medicine and natural products'synthesis. And a mount of good results have been achieved.
     Cinchona Alkaloids are very useful in asymmetric catalysis. In this dissertation, we used three of them, cuprine, quinine thiourea, and amino quinine, to catalyze Henry reaction and Michael addition with high enantioselectivity. Enantioselective Henry reaction of isatin and nitromethene was performed at-15℃in DMA, catalyzed by cuprine (10mol%) with 10mol% PhCOOH as additive. The chiral product could be obtained with 99% yield and 92%ee, and after the further treatment by CH2Cl2, enantioselectivity was raised up to 99%ee. The addition product could be transformed into (+)-Dioxibrassinin with two steps or (-)-S-Spirobrassinin with an additional step, the later is natural cruciferous phytoalexins.
     The enantioselective Michael reaction of nitromethane to indolylidene-cyanoacetic acetate 3-8, catalyzed by quinine thiourea without solvent at -10℃, was the second topic research. The product could be obtained with high yield (99%) and high enantioselectivity (88%ee). After the reduction of -NO2 into -NH2, the addition product 3-10b could be transformed into spiro[oxindole] amide compound 3-11 whose crystal structure helped us determine the stereo-configuration of product 3-10.
     The third topic was about enantioselective Michael addition of ketones to alkylidenemalononitriles 4-6 which was catalyzed by amino quinine with high yield (92-95%) and high ee value (92%ee). The enantioselectivity would become better (95%ee) if the three-component "one pot" addition of isatin, malononitrile, and acetone was reacted under the same condition. As we found that the addition of (R)-BNPH as additive could increase the ee value greatly from 75% to 92%. Then cycloaddition of chiral product 4-7a with NaBH4 occurred to give the corresponding spiro dihydropyran compounds 4-8a.
     Additionally, The stero-structures of new compounds were determined by X-ray tests, followed by nuclear magnetic resonance spectroscopy (1H and 13C), high performance mass spectrometry, optical rotation, and melting point.
引文
[1](a) Siegel. J. S. Chemistry:Shattered Mirrors. Nature.2002,419:346-347 (b) Bailey. J. Chirality and the Origin of Life. Acta Astronautica.2000,46:627-631
    [2](a)Chyba. C. E. Single-handed Cooperation. Nature.2001,409:777-778; Left-handed Solar System. Nature,1997,389:234-235
    [3]尤天耙.手性化合物的现代研究方法.合肥:中国科学技术大学出版社.1993:6-10
    [4]林国强,陈耀全,李月明,陈新滋.手性合成—不对称反应及其应用(第三版).北京:科学出版社.2007:6
    [5]Park J.H, Oh K.H, Lee D.C. et al. Modeling and kinetic analysis of the reaction system using whole cells with separately and co-expressed D-hydantoinase and N-carbamoylase. Biotech Bioeng.2003,78(7):779-793
    [6]Yin B.D, Chen Y.C. Production of D-amino acid precursors with permeabilized recombinant Escherichia coli with D-hydantoinase activity. Process Biochem.2002,35(9): 915-921
    [7]Morrison J D, Mosher H S. Asymmetric Organic Reactions (revised ed) Washington D.C. American Chem Soc Books,1976
    [8](a) Knowles. W. S. Asymmetric hydrogenations. Angew Chem Int Ed.2002,41: 1998-2007 (b) Noyori. R. Asymmetric catalysis:Science and opportunities. Angew Chem Int Ed.2002,41:2008-2022 (c) Sharpless. K B. Searching for new reactivity. Angew Chem Int Ed.2002,41:2024-2032
    [9](a)Blaser. H. U, Schmidt. E (eds). Asymmetric catalysis on industrial scale. Wiley-VCH. Weinheim.2004 (b)方唯硕主译.立体选择性生物催化(第一版).北京:化学工业出版社.2004
    [10](a) Chapman C J, Christopher G, Frost C G. Tandem and Domino Catalytic Strategies for Enantioselective Synthesis. Synthesis.2007,1:1-21 (b) Julia-Christina Wasilke, Stephen J. Obrey, R. Tom Baker, Guillermo C. Bazan. Concurrent Tandem Catalysis. Chem Rev.2005, 105(3):1001-1020
    [11](a) Belen Martin-Matute, Jan-E Backvall. Dynamic kinetic resolution catalyzed by enzymes and metals. Curr Opin Chem Biol.2007,11(2):226-232 (b)张占辉,刘庆彬.酶-过渡金属配合物催化的动态动力学拆分研究进展.有机化学.2005,25(7):780-787(c)Fernando F. Huerta, Alexander B. E. Minidis, Jan-E. Backvall. Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem Soc Rev.2001,30:321-331 (d) Oscar Pamies, Jan-E Backvall. Combined metal catalysis and biocatalysis for an efficient deracemization process. Curr Opin Biotech. 2003,14(4):407-413 (e) Oscar Pamies, Jan-E Backvall. Combination of Enzymes and Metal Catalysts. A Powerful Approach in Asymmetric Catalysis. Chem Rev.2003,103(8): 3247-3262 (f) Oscar Pamies, Jan-E. Backvall. Chemoenzymatic dynamic kinetic resolution. Trends Biotech.2004,22(3):130-135 (g) Mahn-Joo Kim, Yangsoo Ahn, Jaiwook Park. Dynamic kinetic resolutions and asymmetric transformations by enzymes coupled with metal catalysis. Curr Opin biotechnology.2002,13(6):578-587
    [12](a) Christophe M. Thomas, Thomas R. Ward. Artificial metalloenzymes:proteins as hosts for enantioselective catalysis. Chem Soc Rev.2005,34:337-346 (b) Thomas R. Ward.Artificial Metalloenzymes for Enantioselective Catalysis Based on the Noncovalent Incorporation of Organometallic Moieties in a Host Protein. Chem Eur J.2005,11(13): 3798-3804 (c) Yi Lu, Steven M. Berry, Thomas D. Pfister. Engineering Novel Metalloproteins:Design of Metal-Binding Sites into Native Protein Scaffolds. Chem Rev. 2001,101:3047-3080 (d) Dongfeng Qi, Cheng-Min Tann, Dietmar Haring, Mark D. Distefano. Generation of New Enzymes via Covalent Modification of Existing Proteins. Chem Rev.2001, 101:3081-3112
    [13]陈加荣.新型有机催化剂的合成及其在不对称催化中的应用.武汉:华中师范大学.2009
    [14]丁奎岭,范青华.不对称催化新概念与新方法.北京:化学工业出版社.2008
    [15]Knowles William S, Sabacky M. J. Catalytic Asymmetric Hydrogenation Employing a Soluble Optically Active Rhodium Complex. Chem Commun.1968,22,1445
    [16]Jayasree Seayad, Benjamin List. Asymmetric organocatalysis. Org. Biomol. Chem.2005, 3:719-724
    [17]蒋志斌.Mannich反应探析.彭城职业大学学报.2001,16(2):72-74
    [18]Breding G, Fiske P. S. Biochem. Z.1912,46:7
    [19]For a review see:Noal Cohen. Asymmetric induction in 19-norsteroid total synthesis. Acc Chem Res.1976,9(11):412-417
    [20]Zoltan G. Hajos, David R. Parrish. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem.1974,39(12):1615-1621
    [21](a) Martin J. O' Donnell, William D. Bennett, Shengde Wu. The stereoselective synthesis of.alpha.-amino acids by phase-transfer catalysis. J. Am. Chem. Soc.1989,111(6): 2353-2355 (b) Martin J. O'Donnell, Shengde Wu, John C. Huffman. A new active catalyst species for enantioselective alkylation by phase-transfer catalysis. Tetrahedron.1994,50(15): 4507-4518 (c) Barry Lygo, Philip G Wainwright. Tetrahedron Lett.1997,38(49):8595-8598
    [22](a)Barry Lygo, Philip G. Wainwright. Asymmetric phase-transfer mediated epoxidation of α,β-unsaturated ketones using catalysts derived from Cinchona alkaloids. Tetrahedron Letter.1998,39(12):1599-1602 (b) B. Lygo, P. G. Wainwright. Phase-transfer catalysed asymmetric epoxidation of enones using N-anthracenylmethyl-substituted Cinchona alkaloids. Tetrahedron.1999,55(20):6289-6300 (c) Barry Lygo, Daniel C. M To. Improved procedure for the room temperature asymmetric phase-transfer mediated epoxidation of α,β-unsaturated ketones. Tetrahedron Letter.2001,42(7):1343-1346
    [23]Waldemar Adam, Paraselli Bheema Rao, Hans-Georg Degen, Albert Levai, Tamas Patonay, Chantu R. Saha-Moller. Asymmetric Weitz-Scheffer Epoxidation of Isoflavones with Hydroperoxides Mediated by Optically Active Phase-Transfer Catalysts. J. Org. Chem. 2002,67:259-264
    [24]Jinxing Ye, Yongcan Wang, Jiping Chen, Xinmiao Liang. Trichloroisocyanuric Acid:A Convenient Oxidation Reagent for Phase-Transfer Catalytic Epoxidation of Enones under Non-Aqueous Conditions. Adv. Synth. Catal.2004,346(6):691-696
    [25]Fu-Yao Zhang, E. J. Corey. Highly Enantioselective Dimerization of α,β-Enones Catalyzed by a Rigid Quaternary Ammonium Salt. Org. Lett.2004,6(19):3397-3399
    [26]Jan C. Hummelen, Hans Wynberg. Alkaloid assisted asymmetric synthesis IV additional routes to chiral epoxides. Tetrahedron Lett,1978,19(12):1089-1092
    [27](a) Norio Shibata, Emiko. Suzuki, Yoshio. Takeuchi. A Fundamentally New Approach to Enantioselective Fluorination Based on Cinchona Alkaloid Derivatives/Selectfluor Combination. J. Am. Chem. Soc.2000,122 (43):10728-10729 (b) Norio. Shibata, Emiko. Suzuki, Toru. Asahi, Motoo. Shiro. J. Am. Chem. Soc.2001,123(29):7001-7009
    [28]Harald. Wack, Andrew E. Taggi, Ahmed.M.Hafez, William J. Drury, Ⅲ, Thomas. Lectka. Catalytic, Asymmetric α-Halogenation. J. Am. Chem. Soc.2001,123:1531-1532
    [29](a) Hans. Wynberg, R. Helder. Asymmetric induction in the alkaloid-catalysed Michael reaction. Tetrahedron Lett.1975,16(46):4057-4060 (b) K. Hermann, Hans. Wynberg. Asymmetric induction in the Michael reaction. J. Org. Chem.1979,44(13):2238-2244
    [30]Charles. D. Papageorgiou, Steven V. Ley, Matthew. J. Gaunt. Organic-Catalyst-Mediated Cyclopropanation Reaction. Angew. Chem.2003,115(7):852-855; Angew Chem. Int. Ed.2003,42(7):828-831
    [31](a) Nadine.Bremayer, Stephen C. Smith, Steven V. Ley, Matthew J. Gaunt. An Intramolecular Organocatalytic Cyclopropanation Reaction. Angew. Chem.2004,116: 2735-2738; Angew. Chem. Int. Ed.2004,43,2681-2684 (b) Charles D. Papageorgiou, Maria A. Cubillo de Dios, Steven V. Ley, Matthew J. Gaunt. Enantioselective Organocatalytic Cyclopropanation via Ammonium Ylides. Angew. Chem.2004,116:4741-4744; Angew. Chem. Int. Ed.2004,43:4641-4644
    [32](a) R.Helder, R.Arends, W.Bolt, H.Hiemstra, Hans. Wynberg. Tetrahedron. Lett.1977, 18(25):2181-2182 (b) Henk. Hiemstra, Hans. Wynberg. Addition of aromatic thiols to conjugated cycloalkenones, catalyzed by chiral.beta.-hydroxy amines. A mechanistic study of homogeneous catalytic asymmetric synthesis. J. Am. Chem. Soc.1981,103(2):417-430
    [33]Henk. Pluim, Hans Wynberg. Alkaloid catalysed asymmetric synthesis. The addition of selenophenols to 2-cyclohexen-1-ones and conversion to optically active allylic alcohols. Tetrahedron Lett.1979,20(14):1251-1254
    [34]Wolter. Ten Hoeve, Hans Wynberg. Chiral spiranes. Optical activity and nuclear magnetic resonance spectroscopy as a proof for stable twist conformations. J.Org. Chem. 1979,44(9):1508-1514
    [35](a) T. Ishikawa, Y.Oku, T. Tanaka, T. Kumamoto. An Approach to Anti-HIV-1 Active Calophyllum Coumarin Synthesis:An Enantioselective Construction of 2,3-Dimethyl-4-chromanone Ring by Quinine-Assisted Intramolecular Michael-Type Add-ition. Tetrahedron Lett.1999,40:3777-3780 (b) T.Tanaka, T. Kumamoto, T.Ishikawa. Solvent effects on stereoselectivity in 2,3-dimethyl-4-chromanone cyclization by quinine-catalyzed asymmetric intramolecular oxo-Michael addition. Tetrahedron:Asymmetry.2000,11:4633-4637
    [36](a) Andrew E. Taggi, Ahmed M. Hafez, Harald Wack, Brandon Young, William J. Drury, Ⅲ, Thomas Lectka. Catalytic, Asymmetric Synthesis of β-Lactams. J. Am. Chem. Soc.2000, 122(32):7831-7832 (b) Andrew E. Taggi, Ahmed M. Hafez, Harald Wack, Brandon Young, Dana Ferraris, Thomas Lectka. The Development of the First Catalyzed Reaction of Ketenes and Imines:Catalytic, Asymmetric Synthesis of β-Lactams. J. Am. Chem. Soc.2002,124(23): 6626-6635
    [37]Guillermo S. Cortez, Reginald L. Tennyson, Daniel Romo. Intramolecular, Nucleophile-Catalyzed Aldol-Lactonization (NCAL) Reactions:Catalytic, Asymmetric Synthesis of Bicyclic β-Lactones. J. Am. Chem. Soc.2001,123:7945-7946
    [38]Cortez Guillermo S, Oh Seong Ho, Romo Daniel. Bicyclic β-Lactones via Intramolecular NCAL Reactions with Cinchona Alkaloids:Effect of the C9-Substituent on Enantioselectivity and Catalyst Conformation. Synthesis.2001,11:1731-1736
    [39]Hans Wynberg, Emiel G. J. Staring. Asymmetric synthesis of (S)- and (R)-malic acid from ketene and chloral. J. Am. Chem. Soc.1982,104:166-168
    [40]Reginald Tennyson, Daniel Romo. Use of In Situ Generated Ketene in the Wynberg β-Lactone Synthesis:New Transformations of the Dichlorinated β-Lactone Products. J. Org. Chem.2000,65(21):7248-7252
    [41]Hans Wynberg, Ab A. Smaardijk. Asymmetric catalysis in carbon-phosphorus bond formation. Tetrahedron Lett.1983,24(52):5899-5900
    [42]Ab.A.Smaardijk, Simon Noorda, Fre.van Bolhuis, Hans Wynberg. The absolute configuration of a-hydroxyphosphonates. Tetrahedron Lett.1985,26(4):493-496
    [43]Olivier Riant, Henri B. Kagan. Asymmetric Diels-Alder reaction catalyzed by chiral bases. Tetrahedron Lett.1989,30(52):7403-7406
    [44]Hiroaki Okamura, Yasuko Nakamura, Tetsuo Iwagawa, Munehiro Nakatani. Asymmetric Base-Catalyzed Diels-Alder Reaction of 3-Hydroxy-2-Pyrone with N-Methyl-maleimide. Chem. Lett.1996,25(3):193-194
    [45]M. Inagaki, J. Hiratake, Y. Yamamoto, J. I. Oda. Asymmetric Induction in the Base-Catalyzed Reactions Using Polymer-Supported Quinines with Spacer Groups Bull.Chem.Soc. Jpn.1987,60:4121-4126
    [46](a) R. Alan Aitken, Jayalakshmi Gopal, Jennifer A. Hirst. Catalytic asymmetric synthesis of highly functionalised compounds with six contiguous stereocentres. J.Chem.Soc., Chem. Commun.1988,632-634 (b) R. Alan Aitken, Jayalakshmi Gopal. Catalytic asymmetric ring-opening of bridged tricyclic anhydrides. Tetrahedron:Asymmetry.1990, 1(8):517-520
    [47](a) Bolm Carsten, Gerlach Arne, Dinter Christian L. Simple and Highly Enantioselective Nonenzymatic Ring Opening of Cyclic Prochiral Anhydrides. Synlett.1999,2:195-196 (b) Carsten Bolm, Ingo Schiffers, Christian L. Dinter, Arne Gerlach. Practical and Highly Enantioselective Ring Opening of Cyclic Meso-Anhydrides Mediated by Cinchona Alkaloids. J. Org. Chem.2000,65(21):6984-6991
    [48]Vittorio Farina, Jonathan T. Reeves, Chris H. Senanayake, Jinhua J. Song. Asymmetric Synthesis of Active Pharmaceutical Ingredients. Chem. Rev.2006,106:2734-2793
    [49]Lirong Song et.al. An Organocatalytic Approach to the Construction of Chiral Oxazolidinone Rings and Application in the Synthesis of Antibiotic Linezolid and Its Analogues. Org. Lett.2008,10(23):5489-5492
    [50]Haoyi Zhang et.al. Synthesis of Chiral 3-Substituted Phthalides by a Sequential Organocatalytic Enantioselective Aldol-Lactonization Reaction. Three-Step Synthesis of (S)-(-)-3-Butylphthalide. J. Org. Chem.2010,75:368-374
    [51]Shichao Ma, Shilei Zhang, Wenhu Duan, Wei Wang. An enantioselective synthesis of (+)-(S)-[n]-gingerols via the L-proline-catalyzed aldol reaction. Bio&Med Chem. Lett.2009, 19:3909-3911
    [52]Molineux, R. J. In Alkaloids:Chemical and Biological Perspective; Pelletier, S. W. (Ed.). Wiley:New York.1987
    [53]Fujimori, S. Jap Pat Appl 88-2912; Chem Abstr 1990,112,98409
    [54]For reviews of catalytic asymmetric synthesis of quaternary stereogenic centers, see:(a) Marco Bella, Tecla Gasperi. Organocatalytic Formation of Quaternary Stereocenters. Synthesis.2009,10:1583-1614 (b) Jens Christoffers, Angelika Baro. Stereoselective Construction of Quaternary Stereocenters. Adv. Synth. Catal.2005,347:1473-1482 (c) Emily A. Peterson, Larry E. Overman. Natural Product Synthesis Special Feature: Contiguous stereogenic quaternary carbons:A daunting challenge in natural products synthesis. Proc. Natl. Acad. Sci. U.S.A.2004,101(33):11943-11948 (d) Yus Miguel, Ramon Diego J. Enantioselective Synthesis of Oxygen-, Nitrogen- and Halogen-Substituted Quaternary Carbon Centers. Curr. Org. Chem.2004,8(2):149-183 (e) Jens Christoffers, Angelika Baro. Construction of Quaternary Stereocenters:New Perspectives through Enantioselective Michael Reactions. Angew. Chem. Int. Ed.2003,42(15):1688-1690
    [55]Fei Xue et.al. Organocatalytic Enantioselective Cross-Aldol Reactions of Aldehydes with Isatins:Formation of Two Contiguous Quaternary Centered 3-Substituted 3-Hydroxyindol-2-ones. Chem. Asian J.2009,4(11):1664-1667
    [56](a) Shuichi Nakamura, Noriyuki Hara, Hiroki Nakashima, Koji Kubo, Norio Shibata, Takeshi Toru. Enantioselective Synthesis of (R)-Convolutamydine A with New N-Heteroarylsulfonylprolinamides. Chem. Eur. J.2008,14(27):8079-8081 (b) Andrei V. Malkov, Mikhail A. Kabeshov et.al. Vicinal Amino Alcohols as Organocatalysts in Asymmetric Cross-Aldol Reaction of Ketones:Application in the Synthesis of Convolutamydine A. Org. Lett.2007,9(26):5473-5476 (c) Jia-Rong. Chen, Xiao-Peng Liu, Xiao-Yu Zhu et.al. Organocatalytic asymmetric aldol reaction of ketones with isatins: straightforward stereoselective synthesis of 3-alkyl-3-hydroxyindolin-2-ones. Tetrahedron. 2007,63(42):10437-10444 (d) Gang Chen, Ye Wang, Hongping He, Suo Gao, Xiaosheng Yang, Xiaojiang Hao. L-Proline-Catalyzed Asymmetric Aldol Condensation of N-Substituted Isatins with Acetone. Heterocycles.2006,68(11):2327-2333 (e) G.ianluigi Luppi, Pier G.iorgio Cozzi, Magda Monari, Bernard Kaptein, Quirinus B. Broxterman, Claudia Tomasini. Dipeptide-Catalyzed Asymmetric Aldol Condensation of Acetone with (N-Alkylated) Isatins. J. Org. Chem.2005,70:7418-7421
    [57]For recent reviews, see:(a) G. Rosini in Comprehensive OrganicSynthesis(Vol.2) (Eds.: B. M. Trost, I. Fleming, C. H. Heatcock), Pergamon, New York.1991 (b) Frederick A. Luzio. The Henry reaction:recent examples. Tetrahedron.2001,57(6):915-945
    [58]For recent advances on this reaction, see:(a) Bernhard Westermann.. Asymmetric Catalytic Aza-Henry Reactions Leading to 1,2-Diamines and 1,2-Diaminocarboxylic Acids. Angew. Chem. Int. Ed.2003,42(2):151-153 (b) Amal Ting, Scott E. Schaus. Organocatalytic Asymmetric Mannich Reactions:New Methodology, Catalyst Design, and Synthetic Applications. Eur. J. Org. Chem.2007,:35:5797-5815 (c) Chungui Wang, Zhenghong Zhou, Chuchi Tang. Novel Bifunctional Chiral Thiourea Catalyzed Highly Enantioselective aza-Henry Reaction.Org. Lett.2008,10(9):1707-1710 (d) Luca Bernardi, Francesco Fini, Raquel P. Herrera, Alfredo Ricci, Valentina Sgarzani. Enantioselective aza-Henry reaction using cinchona organocatalysts. Tetrahedron.2006,62:375-380
    [59]Chun-Jiang Wang, Xiu-Qin Dong, Zhi-Hai Zhang, Zhi-Yong Xue, Huai-Long Teng. Highly anti-Selective Asymmetric Nitro-Mannich Reactions Catalyzed by Bifunctional Amine-Thiourea-Bearing Multiple Hydrogen-Bonding Donors. J. Am. Chem. Soc.2008,130(27): 8606-8607
    [60]Hongming Li, Baomin Wang., Li Deng. Enantioselective Nitroaldol Reaction of a-Ketoesters Catalyzed by Cinchona Alkaloids. J. Am. Chem. Soc.2006,128(3):732-733
    [61]William R. Conn, H. G. Lindwall. Oxindole Amines from Isatin. J. Am.Chem.Soc.1936, 58(7):1236-1238
    [62]Suchy. M, Kutschy. P, Monde. K Goto. H, Harada. N, Takasugi. M, Dzurilla. M, Balentova. E. Synthesis, Absolute Configuration, and Enantiomeric Enrichment of a Cruciferous Oxindole Phytoalexin, (S)-(-)-Spirobrassinin, and Its Oxazoline Analog. J. Org. Chem.2001,66:3940-3947
    [63]Monde. K, Sasaki. K, Shirata. A, Takasugi. M. Brassicanal C and two dioxindoles from cabbage. Phytochemistry.1991,30(9):2915-2917
    [64](a) Takemoto Okino, Satoru Nakamura, Tomihiro Furukawa, Yoshiji Takemoto. Enantioselective Aza-Henry Reaction Catalyzed by a Bifunctional Organocatalyst. Org. Lett. 2004,6:625-627 (b) MaryAnn T. Robak, Monica Trincado, Jonathan A. Ellman. Enantioselective Aza-Henry Reaction with an N-Sulfinyl Urea Organocatalyst. J. Am. Chem. Soc.2007,129:15110-15111 (c)Xu-Guang Liu, Jia-Jun Jiang, Min Shi. Development of axially chiral bis(arylthiourea)-based organocatalysts and their application in the enantioselective Henry reaction. Tetrahedron:Asymmetry.2007,18(23):2773-2781
    [65](a)Tomotaka Okino, Satoru Nakamura, Tomihiro Furukawa, Yoshiji Yakemoto. Enantioselective Aza-Henry Reaction Catalyzed by a Bifunctional Organocatalyst. Org. Lett. 2004,6:625-627 (b) Xuenong Xu, Tomihiro Furukawa, Tomotaka Okino, Hideto Miyabe, Yoshiji Takemoto. Bifunctional-Thiourea-Catalyzed Diastereo- and Enantioselective Aza-Henry Reaction. Chem. Eur. J.2006,12:466-476
    [66]Tehshik P. Yoon, Eric N. Jacobsen. Highly Enantioselective Thiourea-Catalyzed Nitro-Mannich Reactions. Angew. Chem.2005,117:470; Angew. Chem. Int. Ed.2005,44(3): 466-468
    [67]Tommaso Marcelli, Richard N. S. van der Haas, Jan H. van Maarseveen, Henk Hiemstra, Asymmetric Organocatalytic Henry Reaction. Angew. Chem. Int. Ed.2006,45:929-931
    [68]For recent reviews on H-bond mediated catalysis, see:a) P. R. Schreiner. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev.2003,32: 289-291; b) S.-K. Tian, Y.-G. Chen, J.-F. Hang, L. Tang, P. McDaid, L. Deng. Asymmetric Organic Catalysis with Modified Cinchona Alkaloids. Acc. Chem. Res.2004,37:621-631; c) Y. Takemoto. Recognition and activation by ureas and thioureas:stereoselective reactions using ureas and thioureas as hydrogen-bonding donors. Org. Biomol. Chem.2005,3(24): 4299-4306; d) T. Akiyama, J. Itoh, K. Fuchibe. Recent Progress in Chiral Br(?)nsted Acid Catalysis. Adv. Synth. Catal.2006,348(9):999-1010; e) M. S.Taylor, E. N. Jacobsen. Asymmetrische Katalyse durch chirale Wasserstoffbruckendonoren. Angew. Chem.2006, 118(10):1550-1573; Angew. Chem. Int. Ed.2006,45,1520-1543; f) S. J. Connon. Organocatalysis Mediated by (Thio)urea Derivatives. Chem. Eur. J.2006,12(21):5418-5427; g) T. Marcelli, J. H. van Maarseveen, H. Hiemstra. Cupreines and Cupreidines:An Emerging Class of Bifunctional Cinchona Organocatalysts. Angew. Chem.2006,118,7658; Angew. Chem. Int. Ed.2006,45(45):7496-7504; h) E. A. Colby Davie, S. M. Mennen, Y. Xu, S. J. Miller. Asymmetric Catalysis Mediated by Synthetic Peptides. Chem. Rev.2007,107(12): 5759-5812; i) B. List. Introduction:Organocatalysis. Chem. Rev.2007,107(12):5413-5415; j) A. G. Doyle, E. N. Jacobsen. Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chem. Rev.2007,107(12):5713-5743; k) X.-H. Yu, W. Wang. Organocatalysis:asymmetric cascade reactions catalysed by chiral secondary amines. Org. Biomol. Chem.2008,6(12): 2037-2046
    [69](a) Panagiotis Polychronopoulos, Prokopios Magiatis, et al. Structural Basis for the Synthesis of Indirubins as Potent and Selective Inhibitors of Glycogen Synthase Kinase-3 and Cyclin-Dependent Kinases. J. Med. Chem.2004,47:935-946 (b) Teruhisa Tokunaga, W. Ewan Hume, et al. Oxindole Derivatives as Orally Active Potent Growth Hormone Secretagogues. J. Med. Chem.2001,44:4641-4649
    [70]Keith Smith, Gamal A. EI-Hiti, Anthony C. Hawes. Carbonylation of Doubly Lithiated N'-Aryl-N,N-Dimethylureas:A Novel Approach to Istins via Intramolecular Trapping of Acyllithiums. Synthesis.2003,13:2047-2052
    [71]Larry E. Overman, Emily A. Peterson. Enantioselective synthesis of (2)-idiospermuline. Tetrahedron.2003,59(35):6905-6919
    [72]S. Muthusamy, S. Arulananda Babu, M. Nethaji. A facile regioselective construction of spiro epoxy-bridged tetrahydropyranone frameworks. Tetrahedron.2003,59(41):8117-8128
    [73]Sandler M, Clow A, Watkins P. J, Glover V. Tribulin. An endocoid marker of anxiety in man. Stress Med.1988,4:215-218
    [74]Glover V, Halket J. M, Watkins P. J, Clow A, Goodwin B. L, Sandler M. Isatin:Identity with the purified monoamine oxidase inhibitor tribulin. J. Neurochem.1988,51:656-659
    [75]Bhattacharya S. K, Chakrabarti A. Dose-related proconvulsant and anticonvulsant activity of isatin, a putative biological factor, in rats. Indian. J. Exp. Biol.1998,36:118-121
    [76]王进军.靛红在杂环化合物合成中的应用.延边大学学报(自然科学版).1993,19(1):56-64
    [77]Mostafa M. Khafagy, Ashraf H. F. Abd E1-Wahab, Fathy A. Eid, Ahmed M. E1-Agrody. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Ⅱ Farmaco.2002,57(9):715-722
    [78]Tai-Hyun Kang, Kinzo Matsumoto, Michihisa Tohda, Yukihisa Murakami, Hiromitsu Takayama, Mariko Kitajima, Norio Aimi, Hiroshi Watanabe. Pteropodine and isopteropodine positively modulate the function of rat muscarinic M1 and 5-HT2 receptors expressed in Xenopus oocyte. Eur. J. Pharmacol.2002,444:39-45
    [79]Yuri M. Litvinov, Valery Yu. Mortikov, Anatoliy M. Shestopalov. Versatile Three-Component Procedure for Combinatorial Synthesis of 2-Aminospiro [(3'H)-indol-3', 4-(4H)-pyrans]. J. Comb. Chem.2008,10:741-745
    [80]Dandia. Anshu, Singh. Ruby, Sarawgi. Pritima, Khaturia. Sarita, Multicomponent One-pot Diastereoselective Synthesis of Biologically Important Scaffold under Microwaves. Chinese J Chem.2006,24:950-954
    [81]尤启冬.药物化学(第二版).北京:化学工业出版社.2010
    [82]Michaud. D, Abdallah-El Ayoubi. S, Dozias. M. J, Toupet. L, Texier-Boullet. F, Hamelin. J. New route to functionalized cyclohexenes from nitromethane and electrophilic alkenes without solvent under focused microwave irradiation. J. Chem. Soc., Chem.Commun.1997, 17:1613-1614
    [83](a) Michaud. D, Hameli. J, Texier-Boullet. F, Toupet. L. MIMIRC Reactions of nitromethane with electrophilic alkenes in solvent-free reactions under microwave irradiation. Tetrahedron.2002,58(29):5865-5875 (b)David Michaud, Jack Hamelin, Francoise Texier-Boullet. Michael monoadditions of nitromethane or nitroethane with electrophilic gem-disubstituted alkenes over alumina under microwave irradiation. Tetrahedron.2003,59: 3323-3331
    [84](a)Peter Dine'r, Martin Nielsen, Soren Bertelsen, Barbara Niess, Karl Anker Jorgensen. Enantioselective hydroxylation of nitroalkenes:an organocatalytic approach. Chem. Commun. 2007,3646-3648 (b)Jian Wang, Hexin Xie, Hao Li, Liansuo Zu,Wei Wang. A Highly Stereoselective Hydrogen-Bond-Mediated Michael-Michael Cascade Process through Dynamic Kinetic Resolution. Angew. Chem. Int. Ed.2008,47:1-4 (c) Tomotaka Okino, Yasutaka Hoashi, Tomihiro Furukawa, Xuenong Xu, Yoshiji Takemoto. Enantio- and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea. J. Am. Chem. Soc.2005,127:119-125 (d) JoseM. Andres, Rube n Manzano,Rafael Pedrosa. Novel Bifunctional Chiral Urea and Thiourea Derivatives as Organocatalysts:Enantioselective Nitro-Michael Reaction of Malonates and Diketones. Chem. Eur. J.2008
    [85]Xuenong Xu, Tomihiro Furukawa, Tomotaka Okino, Hideto Miyabe, Yoshiji. Takemoto Bifunctional-Thiourea-CatalyzedDiastereo- and Enantioselective Aza-Henry Reaction. Chem. Eur. J.2006,12:466-476
    [86]Tehshik P. Yoon, Eric N. Jacobsen. Highly Enantioselective Thiourea-Catalyzed Nitro-Mannich Reactions. Angew. Chem. Int. Ed.2005,44:466-468
    [87]Benedek Vakulya, Szila'rd Varga, Antal Csa'mpai, Tibor Soo's. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Org. Lett.2005,7(10):1967-1969
    [88]C. A. Grob, O. Weissbach. Zur Herstellung von Oxindol-Derivaten aus o-Chlor-nitrobenzolen und Cyanessigsaure-bzw. Malonsaure-estern. Helvetica Chimica Acta. 1961,44(6):1748-1753
    [89]Roy W. Daisley, Jafar R. Hanbali. Synthesis of Some 1-Hydroxy Derivatives of 4- and 6-Azaindole Analogues. J. Heterocyclic Chem.1983,20(4):999-1001
    [90]Andre Chollet et. al. Discovery of a New Class of Potent, Selective, and Orally Bio-available CRTH2 (DP2) Receptor Antagonists for the Treatment of Allergic Inflammatory Diseases. J. Med. Chem.2008,51:2227-2243
    [91]Subhabrata Sen, Venkata R. Potti, Ramu Surakanti, Y. L. N. Murthy Raghavaiah Pallepogu. Enantioselective synthesis of spirooxoindoles via chiral auxiliary (bicyclic lactam) controlled SNAr reactions. Org. Biomol. Chem.2011,9:358-360
    [92]Barry M. Trost, Megan K. Brennan. Palladium Asymmetric Allylic Alkylation of Prochiral Nucleophiles:Horsfiline. Org. Lett.2006,8(10):2027-2030
    [93]H. O.Calvery, C.R. Noller, Roger Adams, Arsonophenyl-Cinchoninic Acid (Arsono-cinchophen) and Derivatives.Ⅱ. J.Am.Chem.Soc.1925,47:3058-3060
    [94]Henri Brunner, Peter Schmidt. Naproxen Derivatives by Enantioselective DeCarboxy-lation. Eur. J. Org. Chem.2000,2000(11):2119-2133
    [95]Yuri M. Litvinov, Valery Yu. Mortikov, Anatoliy M. Shestopalov. Versatile Three-Component Procedure for Combinatorial Synthesis of 2-Aminospiro [(3'H)-indol-3', 4-(4H)-pyrans]. J. Comb. Chem.2008,10:741-745
    [96]Mohr, S. J, Chirigos, M. A, Smith, G. T, Fuhrman, F. S. Specific potentiation of L1210 vaccine by pyran copolymer. Cancer Res.1976,36 (6):2035-2039
    [97]Ermili. A. Roma, G. Buonamici. M, Cuttica. A. Galante, M. Orsini, G. Passerini. N. Psychopharmacological study with K8409, a 1H-naptho [2,1-b] pyran-3-dialkylamino substituted derivative. Farmaco Ed. Sci.1979,34 (6):535-544
    [98]Bargagna. A, Longobardi. M, Mariani. E, Schenone. P, Losusso. C, Esposito. G, Falzarano. C, Marmo. E. Reaction of ketenes with N,N-disubstituted α-aminoMethylene-ketones 2H,5H-[1H]benzothiopyrano[4,3-b]pyran derivatives with platlet antiaggregating activity. Farmaco.1990,45 (4):405-413
    [99]阿依古丽,芦志新等.吡喃阿霉素治疗晚期恶性肿瘤临床研究.中国医学研究与临床.2006,4(7):56-57
    [100]侯进,熊晓云等.苯并二氢吡喃衍生物xy9902对乳腺癌细胞增殖的影响.中国临 床药理学与治疗学.2006,11(5):565-568
    [101]王进军,韩光范.6H-1,2-氧硫杂环己烷并[5,6-c]异苯并吡喃类衍生物的合成及其抗炎活性.应用化学.1996,13(4):83-85
    [102]Kemnitzer, W et.al. Discovery of 4-Aryl-4H-chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-based High-Throughput Screening Assay.1. Structure-Activity Relationships of the 4-Aryl Group. J. Med. Chem.2004,47(25): 6299-6310
    [103]Al-Haiza M. A, Mostafa M. S, El-Kady M. Y. Synthesis and Biological Evaluation of Some New Coumarin Derivatives. Molecules.2003,8:275-286
    [104]Charles Wiener, Collin H. Schroeder, Bruce D. West, Karl Paul Link. Studies on the 4-Hydroxycoumarins. ⅩⅧ.3-[α-(Acetamidomethyl)benzyl] -4-hydroxy co- umarin and Related Products. J. Org. Chem.1962,27:3086-3088
    [105]Jose L Marco et.al. Synthesis, biological evaluation and molecular modelling of diversely functionalized heterocyclic derivatives as inhibitors of acetylcholinesterase/butyrylcholinesterase and modulators of Ca2+ channels and nicotinic receptors. Bioorg. Med. Chem.2004,12(9):2199-2218
    [106]Abdel-Rahman A. H, Keshk E. M, Hanna M. A, El-Bady Sh. M. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg. Med. Chem.2004,12(9):2483-2488
    [107]Higashiyama K, Otomasu H. Spiro Heterocyclic Compounds. Ⅲ. Synthesis of Spiro[oxindole-3,4'-(4'H-pyran)]Compounds. Chem. Pharm. Bull.1980,28:648-651
    [108](a)Dandia. Anshu, Singh. Ruby, Sarawgi. Pritima, Khaturia. Sarita, Multicomponent One-pot Diastereoselective Synthesis of Biologically Important Scaffold under Microwaves. Chinese J Chem.2006,24:950-954 (b) Gnanamani Shanthi, Ganesan Subbulakshmi, Paramasivan T. Perumal. A new InC13-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron. 2007,63:2057-2063 (c) Song-Lei Zhu, Shun-Jun Ji, Yong Zhang, A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium. Tetrahedron. 2007,63:9365-9372
    [109]Kimio Higashiyama, Hirotaka Otomasu. Spiro Heterocyclic Compounds. Ⅳ. Synthesis of Spiro [oxindole-3,4'-(2',3'-dihydropyridine)] Compounds, Chem. Pharm. Bull.1980,28(5): 1540-1545
    [110]Lei Yue, Wei Du, Yan-Kai Liu, Ying-Chun Chen. Organocatalytic asymmetric direct Michael addition of aromatic ketones to alkylidenemalononitriles. Tetrahedron Lett.2008,49: 3881-3884
    [111]Wen-Bing Chen, Zhi-Jun Wu, Qing-Lan Pei, Lin-Feng Cun, Xiao-Mei Zhang, Wei-Cheng Yuan. Highly Enantioselective Construction of Spiro [4H-pyran-3,3'- oxindoles] Through a Domino Knoevenagel/Michael/Cyclization Sequence Catalyzed by Cupreine. Org. Lett.2010,12(14):3132-3135
    [112]Ke Shen, Xiaohua Liu, Yunfei Cai, Lili Lin, Xiaoming Feng. Facile and Efficient Enantioselective Strecker Reaction of Ketimines by Chiral Sodium Phosphate. Chem. Eur. J. 2009,15:6008-6014

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700