子宫内膜癌孕激素耐药机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子宫内膜癌的发病年龄平均为63岁,其中5—14%的患者发病年龄小于40岁,多合并有未产、不育、月经失调、肥胖及多囊卵巢刺激症,保留生育功能成为这些年轻妇女的迫切需求。孕激素大量、长期应用为子宫内膜不典型增生及子宫内膜癌保守治疗的主要方法,目前子宫内膜癌的保守治疗对象严格限定于□型子宫内膜癌、临床ⅠA期、组织病理学Ⅰ级、雌、孕激素受体(estrogen receptor ER,progesterone receptor PR)阳性、有良好随访条件、无激素和抗癌药物应用禁忌症、有强烈生育要求的年轻患者。常用的孕激素有甲地孕酮及醋酸甲羟孕酮(medropxyprogesterone acetate MPA)。临床观察表明孕激素保守治疗子宫内膜样腺癌的成功率达到57%—75%,辅以助孕技术可获得一定的妊娠率,对年轻未孕子宫内膜癌患者具有很大的鼓舞性。但并非所有的患者均对孕激素反应良好,或开始反应良好到后来不反应,存在着30%左右治疗失败率。保守治疗失败相应延迟了手术根治的时间,可能会影响病人的预后。探讨孕激素治疗不敏感的机制对于临床保守治疗具有重大的指导意义。
     本研究利用分化好、雌孕激素受体阳性、对孕激素反应良好的子宫内膜癌Ishikawa细胞,以MPA为诱导剂,采用持续作用、梯度递增的方法诱导孕激素耐药的Ishikawa细胞亚系的建立,探讨雌、孕激素受体表达的改变及TGFa/EGF-EGFR信号通路活性的增强在孕激素耐药发生中的作用,为子宫内膜癌合理、安全、有效的保守治疗提供理论依据。
     本课题共分三部分:□子宫内膜癌孕激素耐药细胞的建立及其生物学特点;□雌、孕激素受体表达的改变及EGFR信号通路活性增强与孕激素耐药发生的关系;□外源性生长因子TGFa、EGF与子宫内膜癌孕激素耐药发生的关系。
     第一部分子宫内膜癌孕激素耐药细胞的建立及及其生物学特点
     目的建立子宫内膜癌孕激素耐药细胞,并研究其生物学特点。
     方法利用子宫内膜癌Ishikawa细胞,以MPA为诱导剂,采用浓度递增(1-10μM)、持续给药的方法诱导建立子宫内膜癌孕激素耐药细胞;应用四甲基偶氮唑蓝(MTT)法、流式细胞技术(FACS)及Brdu掺入法检测孕激素对母代Ishikawa细胞及孕激素耐药细胞增殖的影响;Transwell小室检测MPA对母代Ishikawa细胞及耐药细胞侵袭能力的影响;RT-PCR技术及Westem-blot技术检测MPA对母代Ishikawa细胞及耐药细胞CyclinD1表达的影响;RT-PCR技术及明胶酶谱技术检测MPA对母代Ishikawa细胞及耐药细胞MMP2、MMP9表达及活性的影响。
     结果(1)历时10个月MPA诱导后,获得了对MPA耐药的子宫内膜癌Ishikawa细胞亚系,暂且命名为孕激素耐药Ishikawa细胞,简称为耐药细胞。耐药细胞在含10μM MPA的完全培养基中的生长速率与母代Ishikawa细胞在不含MPA的完全培养基中的生长速率基本一致,细胞群体倍增时间分别为34.18±3.15h、35.14±2.68h,差异无统计学意义(t=0.331,P=0.762)。(2)MTT结果表明:MPA抑制母代Ishikawa细胞增殖,抑制效应具有浓度依赖性,不同作用浓度0.1、1、10μM的抑制率分别为20%、28%、41%;与母代Ishikawa细胞相反,相对高浓度的MPA(1.0、10μM)反而促进耐药细胞增殖,促增殖率分别为21%、46%。FACS结果表明:MPA可阻滞母代Ishikawa细胞于G1,阻滞效应具有时间依赖性,MPA作用24、48、72、96h细胞增殖指数分别下降14.2%、18.13%、26%、45%;与母代Ishikawa细胞相反,MPA作用72、96小时明显促进耐药细胞由G1期进入S期,增殖指数分别增加21.9%、20.85%。Brdu掺入实验进一步证实了MPA对母代Ishikawa细胞增殖的抑制作用及对耐药细胞增殖的促进作用。(3)耐药细胞的侵袭能力略高于母代Ishikawa细胞(P>0.05)。MPA可抑制母代Ishikawa细胞的侵袭能力,MPA作用72h,细胞的侵袭能力下降了64%(t=6.107,P=0.026);与母代Ishikawa细胞不同,MPA促进耐药细胞的侵袭能力,在MPA的作用下,耐药细胞的侵袭能力增加了26.3%(t=8.660,P=0.013)。(4)MPA抑制母代Ishikawa细胞CyclinD1、MMP2、MMP9的表达并降低MMP2活性,促进耐药细胞CyclinD1、MMP2、MMP9的表达并提高MMP2活性,与对照相比差异均有统计学意义(P<0.05)。
     结论MPA的长期作用能够导致对孕激素抑制作用敏感的Ishikawa细胞对MPA耐药,一旦耐药发生,MPA可能通过增强CyclinD1、MMP2、MMP9表达及提高MMP2活性促进肿瘤细胞增殖、侵袭能力。提示用孕激素保守治疗子宫内膜癌是可行的,但要警惕长期用药孕激素耐药的发生。
     第二部分雌、孕激素受体表达的改变及EGFR信号通路活性增强与孕激素耐药发生的关系
     目的探讨雌、孕激素受体亚型表达的改变及内源性生长因子TGFa及其受体EGFR表达的提高及活性的增强与孕激素耐药发生的关系。
     方法采用免疫细胞化学、RT-PCR、Western-blot法检测耐药细胞及母代Ishikawa细胞ER、PR亚型的表达及EGFR的表达;RT-PCR检测两株细胞TGFa的表达及MPA对两株细胞TGFa表达的影响;Western-blot检测两株细胞EGFR-TK的表达情况;MTT及流式细胞术检测EGFR-TK抑制剂AG1478对两株细胞增殖的影响;RT-PCR、Western-blot检测AG1478对两株细胞CyclinD1表达的影响;RT-PCR检测AG1478对两株细胞MMP2、MMP9表达的影响。
     结果(1)与母代Ishikawa细胞相比,耐药细胞ERa、PRB的阳性表达率明显下降,ERβ的阳性表达率增加(均有P<0.05) (2)耐药细胞TGFa、EGFR的表达水平高于母代Ishikawa细胞(均有P<0.05),且耐药细胞EGFR自身酪氨酸磷酸化的水平也高于母代Ishikawa细胞。(3)MPA下调母代Ishikawa细胞TGFa表达,上调耐药细胞TGFa表达。(4)MTT结果显示AG1478抑制耐药细胞的增生,抑制作用成浓度依赖性(F=18.148,P=0.00;各用药组与对照相比均有P<0.05),而较低浓度的AG1478对母代Ishikawa细胞没有明显的抑制作用,高浓度(10μM)的AG1478显示出抑制作用(P=0.009)。细胞周期分析结果表明AG1478可阻滞耐药细胞于G1期,AG1478作用24、48、72h抑制率分别为19.4%、11.2%、10.7%(均有P<0.05),而对母代Ishikawa细胞细胞周期分布没有明显影响,仅于作用48h显示出阻抑作用(t=5.074,P=0.037),抑制率为9%。细胞侵袭实验结果表明AG1478抑制母代Ishikawa细胞及耐药细胞的侵袭能力,抑制效率分别为42.4%±4.1%及58.1%±6.9%(t=6.083,P=0.026;t=38.105,P=0.001),对耐药细胞侵袭能力的抑制效率要高于母代Ishikawa细胞(t=4.614,P=0.044)。(5)耐药细胞及母代Ishikawa细胞经AG1478作用48h后,CyclinD1、MMP2、MMP9三种基因的表达均下降,在母代IshikaWa细胞中的表达分别下降为原水平的0.767、0.336及0.348倍,在耐药细胞中的表达分别下降为原水平的0.45、0.022、0.148倍。与母代Ishikawa细胞相比,AG1478引起的耐药细胞CyclinD1、MMP2、MMP9表达的下降程度均高于母代Ishikawa细胞(均有P<0.05)。
     结论(1)ERa表达的下降,ERβ表达的升高、PRB表达的下降及TGFa-EGFR信号通路活性增强可能参与了子宫内膜癌孕激素耐药的发生。(2)EGFR-TK抑制剂有望成为孕激素耐药子宫内膜癌的一种新型有效的治疗方法。
     第三部分外源性生长因子TGFa、EGF与子宫内膜癌孕激素耐药发生的关系
     目的探讨外源性生长因子TGFa/EGF对子宫内膜癌Ishikawa细胞孕激素作用的影响。
     方法采用MTT法、划痕实验检测TGFa/EGF、MPA及TGFa/EGF联合MPA对母代Ishikawa细胞增殖、迁移运动能力的影响:Western-blot检测TGFa/EGF、MPA及TGFa/EGF联合MPA对母代Ishikawa细胞CyclinD1、E-cadherin蛋白表达的影响;RT-PCR及Western-blot技术检测TGFa/EGF及MPA对母代Ishikawa细胞PRB表达的影响;Western-blot技术检测TGFa/EGF刺激MAPK磷酸化的情况及MPA预作用48h对TGFa/EGF刺激MAPK磷酸化强度的影响。
     结果(1)TGFa/EGF促进母代Ishikawa细胞的增殖、迁移运动能力,MPA抑制母代Ishikawa细胞的增殖及迁移运动能力,与对照相比差异均有统计学意义(P<0.05),TGFa/EGF联合MPA促进母代Ishikawa细胞的增殖、迁移运动能力,与单用TGFa、EGF组差异无统计学意义(P>0.05)。(2)TGFa、EGF促进细胞周期蛋白CyclinD1的表达,下调E-cadherin的表达,MPA与TGFa、EGF的作用相反,降低CyclinD1的表达,促进E-cadherin的表达,TGFa/EGF联合MPA与TGFa、EGF单独作用的结果相一致,引起CyclinD1表达的上调及E-cadherin表达的下调。(3)TGFa、EGF、MPA均下调PRB的表达,下调作用具有剂量依赖性,小剂量的生长因子TGFa(1ng/ml)、EGF(1ng/ml)、MPA(0.1μM)即能引起PRB表达的下降,随着剂量的增加,下调作用愈明显。TGFa、EGF作用12h,PRB表达下降,24h达到最低点;MPA作用6h,PRB表达开始下降,24h达到最低点,与对照相比差异均有统计学意义(P<0.05),之后表达又逐渐恢复,但不能恢复至原来水平。(4)TGFa、EGF能激活MAPK的活性分子P-ERK的表达,MPA预作用于母代Ishikawa细胞48h,此时再加入生长因子TGFa/EGF作用5min、15min、30min,P-ERK的表达强度要高于无血清预处理组(不含MPA)。
     结论(1)外源性生长因子TGFa/EGF促进子宫内膜癌Ishikawa细胞的增殖、迁移运动能力,拮抗MPA的抑制作用,可能通过上调CyclinD1的表达及下调E-cadherin的表达而发挥作用。(2)MPA抑制子宫内膜癌细胞的增殖及侵袭能力,下调CyclinD1的表达及上调E-cadherin的表达,却不能拮抗生长因子的促进作用及其引起的CyclinD1表达的升高及E-cadherin表达的下降。(3)生长因子TGFa/EGF与MPA都能够下调Ishikawa细胞PRB的表达,降低了细胞对MPA的反应,且MPA的预作用增强了生长因子TGFa/EGF刺激MAPK磷酸化的强度。
     上述结果提示:MPA的长期作用能够导致对孕激素抑制作用敏感的Ishikawa细胞对MPA耐受,雌孕激素受体亚型表达的失衡及内外源性TGFa/EGF-EGFR信号通路活性的增强可能为子宫内膜癌孕激素耐药发生的机制之一。一旦耐药发生,MPA可能通过增强CyclinD1、MMP2、MMP9表达及提高MMP2活性促进子宫内膜癌细胞的增殖、侵袭能力。在耐药发生过程中,子宫内膜癌由激素依赖型转为生长因子依赖型。EGFR-TK抑制剂有望成为孕激素耐药的子宫内膜癌新型有效的治疗药物。
Endometrial carcinoma is often diagonised at the average age of sixty-thre years old. 5%-14% of endometrial adenocarcinoma occurs in women (<40 years of age), who very often still desire pregnancy. Progestin, especially medroxyprogesterone acetate (MPA) have been used as conservative treatment in atypical hyperplasia and endometrial adenocarcinoma for a long time.The response rate varies from 57%-75%. It has been reported that conservative treatment followed by IVF enable such patients to obtain a successful pregnancy. These relatively good response rates are encouraging with respect to the possibility of conservative treatment by progestins in young patients who desire for pregnancy, but over a third of patients with endometrial adenocarcinoma will display resistance to endocrine therapies at the time of presentation and most cancer patients that initially respond to progestin treatment would develop resistance later, resulting in tumor progression. Moreover, the conservative treatment failure might delay radical treatment and alter the prognosis. Progestin therapy is limited by the development of resistance in the tumor. The cellular mechanisms of primary and acquired resistance to progestin are poorly understood. In order to investigate the molecular mechanisms we have developed a subcell line resistant to the growth inhibitory effects of progestins from Ishikawa (human endometrial adenocarcinoma cell line) by stepwise selection in increasing concentrations of the synthetic progestin: MPA and investigate the relationship between progestin resistance and the imbalance of ER and PR subtype and the relationship between progestin resistance and the intrinsic/ extrinsic upregulation of the signaling of TGFa/EGF-EGFR.
    These experiments were divided into 3 parts, as following: Establishment of endometrial carcinoma cell resistant to medroxyprogesterone and its biological characteristic; The imbalance of ER and PR subtype and the intrinsic upregulation of the signaling of TGFa-EGFR might contribute to progestin resistance; D The extrinsic of TGFa/EGF might contribute to progestin resistance.
    Section Establishment of endometrium carcinoma cell resistant to medroxyprogesterone and its biological characteristic
    Objective To develop a subcell line of Ishikawa cells resistant to the growth-inhibitory actions of medroxyprogesterone acetate (MPA) and investigate its biological characteristic.
    Methods Progestin-resistant cell line was developed from Ishikawa human endometrial adenocarcinoma cells by stepwise selection in increasing concentrations of the synthetic progestin, MPA. MTT, FACS and Brdu were used to detect the effect of MPA on the proliferation of the original Ishikawa cell line and the progestin-resistant subcell line. Matrigel invasion assay was used to detect the effect of MPA on the invasive capability of the two cell lines. RT-PCR and Western-blot were used to detect the expression of CyclinD1 under the treatment of MPA over different time. RT-PCR was used to detect the expression of MMP1, MMP9 under the treatment of MPA over different time. Zymographic analysis was used to detect the activity of MMP2, MMP9 secreted from the two cell lines over MPA treatment. Results (1) The progestin-resistant cell line was established from human Ishikawa cell (endometrial cancer cell line) by stepwise selection in continual and increasing concentrations of MPA (1-10μM) over ten months. The doubling time of the progestin-resistant cells (34.18±3.15 hours) grown routinely in the medium containing 10μM MPA was not significantly different from the doubling time of the original Ishikawa cell line (35.14±2.68 hours) grown in the absence of MPA (t=-0.331, P=0.762). (2) MPA inhibited the original Ishikawa cell growth, the inhibitory action was concentration dependent (F=29.525, P=0.000), low concentration of MPA (0.01, 0.1μM) had no effect on the growth of the progestin-resistant cells, but relatively higher concentration (1,10μM) of MPA significantly increased the proliferation of progestin-resistant cells(F=36.20, P=0.00). The inhibitory effects of MPA on the original Ishikawa cells and the stimulatory effects on the progesterone-resistant cells were further confirmed by the cell cycle analysis. The results of cell cycle analysis showed that MPA caused time-dependent inhibition of cell cycle of the original Ishikawa cells, MPA produced a 14.2% fall in the proliferation index on day 1 and a 45% reduction by day 4; reversely, MPA exert no effect on the cell cycle of the progestin-resistant cells on dayl and day 2, by day 3 and day 4, MPA produced an increase in the proliferation index 21.9% and 20.85% respectively. These results were further confirmed by Brdu experiment. (3) The
    invasiveness capability of the progestin-resistant cells were higher than that of the original Ishikawa cells, but the difference was not stastically significant (P>0.05). MPA inhibit the invasiveness capability of the original Ishikawa cells dramatically (t=6.107, P - 0.026) and promote the invasiveness capability of the progestin-resistant cells (t=8.660, P=0.013). (4) Consistent with the phenomena, treatment with MPA on the original Ishikawa cells reduced the expression of CyclinD1, MMP2, MMP9 and the activity of MMP2, and reversely, treatment with MPA on the progestin-resistant cell increased the expression of CyclinD1, MMP2, MMP9 and the activity of MMP2.
    Conclusions These results suggested that prolonged treatment with MPA on Ishikawa cell could give rise to the resistant effect to MPA, when the resistance was acquired, treatment with MPA could enhance the cancer cell proliferation, invasiveness and metastasis, which might be due to up-regulating CyclinD1, MMP2 and MMP9 expression and the activity of MMP2.
    Section D The imbalance of ER and PR subtype and the intrinsic upregulation of the signaling of EGFR contribute to progestin resistance
    Objective To investigate the relationship between progestin resistance and the imbalance of ER and PR subtype and the relationship between progestin resistance and the intrinsic upregulation of the signaling of TGFa-EGFR. Methods Immunocytochemistry, RT-PCR and western-blot were used to detect the expression of ERa, ERp, PR, PRB and EGFR in the two cell lines. RT-PCR was used to detect the expression of TGFa mRNA in the two cell lines and TGFa expression under the treatment of MPA over different time. Western-blot was used to detect the expression of EGFR-TK in the two cell lines. MTT and FACS were used to detect the effects of EGFR-TK inhibitor AG1478 on the proliferation of the two cell lines.Matrigel invasion assay was used to detect the effects of MPA on the invasive capability of the two cell lines. RT-PCR and western-blot were used to detect the expression of CyclinD1 over AG1478 treatment and RT-PCR was used to detect the expression of MMP2, MMP9 over AG1478 treatment in the two cell lines. Results (1) Compared with original Ishikawa cells, ERa, PRB expression were downregulated and the expression of ERP was upregulated in progestin-resistant cells, the differences were statistically significant (P<0.05). (2) The expression of TGFa and EGFR were higher in progestin-resistant cells than that in the original
    Ishikawa cells (P<0.05), and the expression of EGFR-TK was higher in progestin-resistant cells than that in the original Ishikawa cells. (3) MPA downregulated the expression of TGFa in original Ishikawa cells, but upregulated the expression of TGFa in progestin-resistant cells, the differences were both statistically significant (P<0.05). (4) MTT results showed that AG1478 inhibited progestin-resistant cells proliferation, the inhibitory effect was dose-dependent (F=18.148,P=0.00; compared with vehicle control, P<0.05), but the inhibitory effects on Ishikawa cells were significant only when AG1478 amounted to a higher level(10μM).The results of cell cycle analysis showed that AG1478 caused inhibition of cell cycle of progestin-resistant cells, the inhibitory rates were 19.4%, 11.2%, 10.7% respectively over 24,48, 72h treatment; but AG1478 produced little fall in the proliferation index on day 1 and 9% reduction on day 2 in the progestin-resistant cells. (5)AG1478 inhibited the invasiveness capability of original Ishikawa cells and the progestin-resistant cells, the inhibitory effects were 42.4% and 58.1% respectively, the inhibitory effect on progestin-resistance cells was higher than the inhibitory effect on original Ishikawa cells(P<0.05). (6) AG1478 downregulated the expression of CyclinD1, MMP2, MMP9 in the two cell lines, the inhibitory effects (55%,97.8%,85.2%) on progestin-resistance cells were higher than the inhibitory effects on Ishikawa cells(23.3%,66.4%,65.2%). Conclusion The downregulation of ERa and PRB, the upregulation of ERβ and the highly activated TGF-EGFR signaling might contribute to progestin resistance in endometrial carcinoma. The inhibitory chemicals AG1478 of EGFR-TK might benefit the conservative treatment of progestin-resistant endometrial carcinoma.
    Section The extrinsic TGFa and EGF might contribute to progestin
    resistance in endometrial carcinoma
    Objective To investigate the relationship between extrinsic growth factors and progestin resistance in endometrial carcinoma.
    Methods MTT was used to detect the effect of extrinsic growth factors (TGFa/EGF), MPA and TGFa/EGF combined with MPA on the proliferation of Ishikawa cells. Wound healing assays was used to detect the effects of TGFa/EGF, MPA and TGFa/EGF combined with MPA on the metastatic capability of Ishikawa cells. Western-blot was applied to detect the expression of CyclinD1, E-cadherin in Ishikawa cells under the treatment of TGFa/EGF, MPA and TGFa/EGF combined with MPA over different time. RT-PCR and Western - blot were used to investigate the expression of PRB under the treatment of TGFa/EGF and MPA over different concentration and different time. Western-blot was used to detect the expression of P-ERK under different condition that the cells were treated with or without MPA for 48 h and with or without growth factors for the indicated time. Results (1) TGFa/EGF and TGFa/EGF combined with MPA stimulated the proliferation and the motility of Ishikawa cells, contrary to TGFa/EGF, MPA inhibited the proliferation and the motility of Ishikawa cells, compared with control, the differences were statistically significant (P<0.05), the stimulatory effects of TGFa/EGF and TGFa/EGF combined with MPA were not significant(P>0.05). (2) TGFa/EGF and TGFa/EGF combined with MPA increased the expression of CyclinDl and decreased the expression of E-cadherin, MPA decreased the expression of CyclinDl and increased the expression of E-cadherin, these actions were significant when treatment for 24 h. (3) TGFa/EGF and MPA downregulated the expression of PRB, the effects were dose-dependent and these actions were significant when MPA treatment for 12h and TGFa/EGF treatment for 24 h, then PRB expression refreshed but could not attain to the primary level. (4) TGFa/EGF activated MAPK, the expression of P-ERK were higher under the condition that the cells were pretreated with MPA for 48h than the cells not pretreated with MPA with TGFa/EGF for the indicated time.
    Conclusion (1) TGFa/EGF stimulated Ishikawa cell proliferation, motility and antagonized the inhibitory effect of MPA which might be through upregulating the expression of CyclinDl and downregulating the expression of E-cadherin associated with proliferation and metastasis. (2) MPA inhibited Ishikawa cell proliferation,
    motility which might be through downregulating the expression of CyclinD1 and upregulating the expression of E-cadherin, but could not antagonized the stimulatory effect of TGFa/EGF on the proliferation and metastasis and the effect of TGFa/EGF on the expression of CyclinDl and E-cadherin. (3) TGFa/EGF downregulated the expression of PRB and attenuated the effect of MPA, and MPA potentiated the stimulatory action of TGFa/EGF on the tyrosine phosphorylation of MAPK. In a word, extrinsic TGFa/EGF accelerated progestin resistance in endometrial carcinoma,.
    In conclusion, the results of the experiment suggested that prolonged treatment with MPA on Ishikawa cell could give rise to the resistant effect to MPA, the downregulation of ERa, PRB, the upregulation of ERβ and the highly activated intrinsic/ extrinsic TGF-EGFR signaling might contribute to progestin resistance in endometrial carcinoma. When the resistance subtype was acquired, treatment with MPA could enhance the cancer cell proliferation, invasiveness and metastasis, the progestin-resistance cell line progressed from steroid-dependent to growth factors dependent. The inhibitory chemicals of EGFR-TK might benefit the conservative treatment of progestin-resistant endometrial carcinoma.
引文
1. Rose PG. Endometrial carcinoma, N Engl J Med, 1996, 335(9):640-649.
    2. Mark E. Sherman. Theories of Endometrial Carcinogenesis: A Multidisciplinary Approach. Mod Pathol, 2000, 13(3):295-308.
    3. Oehler MK, Brand A, Wain GV. Molecular genetics and endometrial cancer. J Br Menopause Soc, 2003, 9(1):27-31.
    4. Koshiyama M, Ueta M. Two kinds of endometrial neoplasia arising from different origins in the uterine corpus: comparison of p53 expression and sex steroid receptor status. Eur J Obstet Gynecol Reprod Biol, 2002, 104(2):167-170.
    5.丰有吉、沈铿主编.妇产科学,八年制教材[M].北京:人民卫生出版社,2005:325-329.
    6.杨业洲,陈廉.子宫内膜癌的激素治疗,实用医院临床杂志,2005,2(2):12-14.
    7. Randall TC, Kurman RJ. Progestin treatment of atypical hyperplasia and well-differentiated carcinoma of the endometrium in women under age 40. Obstet Gynecol. 1997, 90(3):434-440.
    8. Jadoul P, Donnez J. Conservative treatment may be beneficial for young women with atypical endometrial hyperplasia or endometrial adenocarcinoma. Fertil Steril, 2003, 80 (6) 1315-1324.
    9. Kaku T, Yoshikawa H, Tsuda H, et al. Conservative therapy for adenocarcinoma and atypical endometrial hyperplasia of the endometrium in young women: central pathologic review and treatment outcome. Cancer Lett, 2001, 167 (1) 39-48.
    10. Niwa K, Tagami K, Lian Z, et al. Outcome of fertility-preserving treatment in young women with endometrial carcinomas. BJOG, 2005, 112 (3) 317-320.
    11. Wang CB, Wang CJ, Huang HJ, et al. Fertility-preserving treatment in young patients with endometrial adenocarcinoma. Cancer, 2002, 94(8):2192-2198.
    12. Lowe MP, Cooper BC, Sood AK, et al. Implementation of assisted reproductive technologies following conservative management of FIGO grade I endometrial adenocarcinoma and/or complex hyperplasia with atypia. Gynecol Oncol. 2003 91(3):569-572
    13. Yang YC, Wu CC, Chen CP, et al. Reevaluating the safety of fertility-sparing hormonal therapy for early endometrial cancer. Gynecol Oncol, 2005, 99 (2): 287-293.
    14. Gururaj AE, Rayala SK, Vadlamudi RK, et al. Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations.: Clin Cancer Res, 2006,12(3 Pt 2): 1001-1007
    
    15. Normanno N, Di Maio M, De Maio E, et al. Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer. 2005, 12(4):721-747.
    
    16. Schiemann S, Ruckels M, Engelholm LH, et al. Differential gene expression in human mammary carcinoma cells: identification of a new member of a receptor family. Anticancer Res, 1997, 17(1 A): 13-20.
    
    17. Hall JM, McDonnell DP. The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates Eralpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology, 1999, 140(12): 5566-5578.
    
    18. Knowlden JM, Gee JM, Robertson J F, et al. A possible divergent role for the oestrogen receptor alpha and beta subtypes in clinical breast cancer. Int J Cancer, 2000, 89(2): 209-212.
    
    19. Mylonas I, Jeschke U, Shabani N, et al. Normal and malignant human endometrium express immunohistochemically estrogen receptor alpha (ER-alpha), estrogen receptor beta (ER-beta) and progesterone receptor (PR). Anticancer Res, 2005,25(3 A): 1679-1686.
    
    20. Hu K, Zhong G, He F. Expression of estrogen receptors ERalpha and ERbeta in endometrial hyperplasia and adenocarcinoma. Int J Gynecol Cancer, 2005, 15(3):537-541.
    
    21. Ali SH, O'Donnell AL, Mohamed S, et al. Overexpression of estrogen receptor-alpha in the endometrial carcinoma cell line Ishikawa: inhibition of growth and angiogenic factors. Gynecol Oncol, 2004, 95(3):637-645.
    
    22. Smid-Koopman E, Blok LJ, Kuhne LC, et al. Distinct functional differences of human progesterone receptors A and B on gene expression and growth regulation in two endometrial carcinoma cell lines. J Soc Gynecol Investig. 2003, 10(1):49-57
    
    23. Miyamoto T, Watanabe J, Hata H, et al. Significance of progesterone receptor-A and -B expressions in endometrial adenocarcinoma, J Steroid Biochem Mol Biol. 2004,92(3): 111-118.
    24. Dai D, Wolf DM, Litman ES, et al. Progesterone inhibits human endometrial cancer cell growth and invasiveness: down-regulation of cellular adhesion molecules through Progesterone B receptors. Cancer Res, 2002,62 (3):881-886.
    
    25. Horiuchi S, Kato K, Suga S, et al. Expression of progesterone receptor B is associated with G0/G1 arrest of the cell cycle and growth inhibition in NIH3T3 cells. Exp Cell Res, 2005, 305(2):233-243.
    
    26. Sasaki M, Dharia A, Oh BR, et al. Progesterone receptor B gene inactivation and CpG hypermethylation in human uterine endometrial cancer. Cancer Res, 2001, 61(1):97-102.
    
    27. Hanekamp EE, Gielen SC, Smid-Koopman E, et al. Consequences of loss of progesterone receptor expression in development of invasive endometrial cancer. Clin Cancer Res, 2003, 9(11):4190-4199.
    
    28. McGowan EM, Clarke CL. Effect of overexpression of progesterone receptor A on endogenous progestin-sensitive endpoints in breast cancer cells. Mol Endocrinol, 1999, 13(10):1657-1671.
    
    29. Fukuda K, Mori M, Uchiyama M, et al. Prognostic significance of progesterone receptor immunohistochemistry in endometrial carcinoma, Gynecol Oncol, 1998, 69(3): 220-225
    
    30. Kim HJ, Cui X, Hilsenbeck SG, et al. Progesterone receptor loss correlates with human epidermal growth factor receptor 2 overexpression in estrogen receptor-positive breast cancer. Clin Cancer Res, 2006, 12(3 Pt 2): 1013-1018.
    
    31. Mcclelland RA, Barrow D, Madden DA, et al. Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the Presence of the pure antiestrogen ICI 182780 (Faslodex), Endocrinology, 2001, 142 (7): 2776-2788.
    
    32. Hemes E, Fossa SD, Berner A, et al. Expression of the epidermal growth factor receptor family in prostate carcinoma before and during androgen-independence. Br J Cancer, 2004, 90(2):449-454.
    
    33. Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, Elledge RM, Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance, J Natl Cancer Inst, 2005, 97 (17): 1254-1261.
    
    34. Murphy LC, Dotzlaw H, Wong MS, et al. Mechanisms involved in the evolution of progestin resistance in human breast cancer cells. Cancer Res, 1991, 51(8):2051-2057.
    
    35. Rony S, Edwin GK. The MAPK signaling cascade. FASEB J, 1995, 9(9): 726-735.
    
    36. Getzenberg, R H, Pienta, K J, and Coffey, D. S. The tissue matrix: cell dynamics and hormone action. Endocr Rev, 1990, 11(3): 399-417.
    
    37. Cunha GR, Chung LWK, Shannon JM, et al. Hormone induced morphogenesis and growth: role of mesenchymal-epithelial interactions. Recent Prog Horm Res, 1983, 39: 559-598.
    
    38. Cooke, PS, Uchima FDA, Fujii DK, et al. Restoration of normal morphology and estrogen responsiveness in cultured vaginal and uterine epithelia transplanted with stroma. Proc. Nat. Acad. Sci, 1986, 839(7):2109-2113.
    
    39. Cunha, GR, Bigsby RM, Cooke PS, et al. Stromal-epithelial interactions in the determination of hormonal responsiveness. In: J. A. McLachlan (ed.), Estrogens in the Environment II, 1985, pp 273-287. New York: Elsevier.
    
    40. Yang SJ, Fang ZJ, Gurates B, etal. Stromal PRs Mediate Induction of 17-Hydroxysteroid Dehydrogenase Type 2 Expression in Human Endometrial Epithelium: A Paracrine Mechanism for Inactivation of E2. Mol Endocrinol 15(12):2093-2105.
    
    41. Gospodarowicz D, Tauber JP. Growth factors and the extracellular matrix. Endocr Rev, 1980, 1(3): 201-227.
    
    42. Sarup JC, Rao KV, Fox CF. Decreased progesterone binding and attenuated progesterone action in cultured human breast carcinoma cells treated with epidermal growth factor. Cancer Res, 1988,48(18):5071-5078.
    
    43. Murphy LC, Dotzlaw H. Endogenous growth factor expression in T-47D, human breast cancer cells, associated with reduced sensitivity to antiproliferative effects of progestins and antiestrogens. Cancer Res, 1989,49(3):599-604.
    
    44. Cui X, Zhang P, Deng W, et al. Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol, 2003, 17(4):575-588.
    
    45. Emons G, Heyl W. Hormonal treatment of endometrial cancer, J Cancer Res Clin Oncol, 2000,126(11):619-623.
    
    46. Podczaski E, Mortel R. Hormonal treatment of endometrial cancer: past, present and future. Best Pract Res Clin Obstet Gynaecol. 2001, 15(3):469-489
    47. Nishida M, Kasahara K, Kaneko M, et al. Establishment of a new human endometrial adenocarcinoma cell line, Ishikawa cells, containing estrogen and progesterone receptors. Nippon Sanka Fujinka Gakkai Zasshi, 1985, 37:1103-1111.
    48.郭瑞霞,王建六,赵丹,et al.子宫内膜癌细胞系Ishikawa和HEC-1A细胞雌激素受体表达.中国妇产科临床杂志,2005,6(4)272-274.
    49. Lessey BA, Ilesanmi AO, Castelbaum AJ, et al. Characterization of the functional progesterone receptor in an endometrial adenocarcinoma cell line (Ishikawa): progesterone-induced expression of the integrin. J. Steroid Biochem. Mol. Biol, 1996, 59(1): 31-39.
    50. Herman ME, Katzenellembogen BS. Response-specific antiestrogen resistance in a newly characterized MCF-7 human breast cancer cell line resulting from long-term exposure to trans-hydroxytamoxifen. J Steroid Biochem Mol Biol, 1996, 59 (2): 121-134.
    51. Coldham NG, Patel K, Braunsberg H. Hormone and cytotoxic drug responsiveness of cultured human breast cancer cells resistant to specific hormones. Int J Cancer, 1990, 45 (4): 712-718.
    52. Lewis JS, Osipo C, Meeke K, et al. Estrogen-induced apoptosis in a breast cancer model resistant to long-term estrogen withdrawal. J Steroid Biochem Mol Biol, 2005, 94(1-3):131-141.
    53. Shiozawa T, Horiuchi A, Kato K, et al. Up-regulation of p27kip1 by progestins is involved in the growth suppression of the normal and malignant human endometrial glandular cells. Endocrinology, 2001, 142(10):4182-4188.
    54. Shiozawa T, Nikaido T, Nakayama K, et al. Involvement of cyclin-dependment kinase inhibitor p27 in growth inhibition of endometrium in the secretory phase and of hyperplastic endometrium treated with progesterone, Mol Hum Reprod, 1998, 4(9):899-905.
    55. Dai Dh, Litman ES, Schonteich E, Leslie K K. Progesterone regulation of activating protein-1 transcriptional activity: a possible mechanism of progesterone inhibition of endometrial cancer cell growth. J Steroid Biochem Mol Biol, 2003, 87:123-131.
    56. Lisa A, Di Nezza, Tom Jobling, et al. Progestin suppresses matrix metalloproteinase production in endometrial cancer, Gynecol Oncol, 2003, 89: 325-333.
    
    57. Grenman SE, Roberts JA, England BG, Gronroos M, Carey TE, In vitro growth regulation of endometrial carcinoma cells by tamoxifen and medroxyprogesterone acetate, Gynecol Oncol, 1988, 30 (2): 239-250.
    
    58. Mortel R, Zaino R, Satyaswaroop PG, Heterogeneity and progesterone-receptor distribution in endometrial adenocarcinoma, Cancer, 1984, 53 (1):113-116.
    
    59. Umekita Y, Ohi Y, Sagara Y, et al. Overexpression of cyclinDl predicts for poor prognosis in estrogen receptor-negative breast cancer patients, Int J Cancer, 2002, 98 (3):415-418.
    
    60. Shiozawa T, Li S-F, Nakayama K, et al. Relationship between the expression of cyclins/cyclin-dependent kinases and sex-steroid receptors/K.i-67 in normal human endometrial glands and stroma during the menstrual cycle, Mol Hum Reprod, 1996,2(10): 745-752.
    
    61. E.L. Rosenthal, T.M. Johnson, E.D. Allen, et al. Role of the plasminogen activator and matrix metalloproteinase systems in epidermal growth factor and scatter factor-stimulated invasion of carcinoma cells, Cancer Res, 1998, 58 (22): 5221-5230.
    
    62. R. Tanaka, T. Saito, K. Ashihara, et al. Three-dimensional coculture of endometrial cancer cells and fibroblasts in human placenta derived collagen sponges and expression matrix metalloproteinases in these cells, Gynecol Oncol, 2003, 90(2):297-304.
    
    63. Di Nezza LA, Jobling T, Salamonsen LA. Progestin suppresses matrix metalloproteinase production in endometrial cancer, Gynecol Oncol, 2003, 89 (2): 325-333.
    
    64. Saito T, Mizumoto H, Tannka R, et al. Overexpressed Progesterone receptor form B inhibit invasive activity suppressing matrix metalloproteinases in endometrial carcinoma cells, Cancer Lett, 2004, 209 (2): 237-243.
    
    65.王殊、王杉、张嘉庆等。雌激素受体亚型在人乳腺癌的表达及意义。中华外 科杂志,2004,42(3):792—794。
    
    66. Henshall SM, Quinn DI, Lee CS, et al. Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Res, 2001, 61(2): 423-427.
    
    67. An J, Ribeiro RC, Webb P, et al. Estradiol repression of tumor necrosis factor-alpha transcription requires estrogen receptor activation function-2 and is enhanced by coactivators. Proc Natl Acad Sci USA, 1999, 96(26): 15161-15166.
    
    68. Bulun SE, Cheng YH, Yin P, Progesterone resistance in endometriosis: Link to failure to metabolize estradiol. Mol Cell Endocrinol, 2006 Jan 5; [Epub ahead of print]
    
    69. P. G. Satyaswaroop, C. L. Clarke, R. J. Zaino, et al. Apparent resistance in human endometrial carcinoma during combination treatment with tamoxifen and progestin may result from desensitization following downregulation of tumor progesterone receptor. Cancer letters, 1992, 62(2): 107-114
    
    70. Utsunomiya H, Suzuki T, Ito K, et al. The correlation between the response to progestogen treatment and the expression of progesterone receptor B and 17beta-hydroxysteroid dehydrogenase type 2 in human endometrial carcinoma. Clin Endocrinol (Oxf). 2003, 8(6):696-703.
    
    71. Koopman E, Blok LJ, Brinkmann AO, Helmerhorst TJ, Huikeshoven FJ. Differential gene expression in progesterone-sensitive and progesterone-insensitive endometrial carcinoma cells, Eur J Obstet Gynecol Reprod Biol, 1999, 82(2): 135-138.
    
    72. Wang S, Pudney J, Song J, Mor G, et al. Mechanisms involved in the evolution of progestin resistance in human endometrial hyperplasia precursor of endometrial cancer, Gynecol Oncol, 2003, 88 (2): 108-117.
    
    73. Medina D, Kittrell FS.P53 function is required for hormone-mediated protection of mouse mammary tumorigenesis. Cancer Res,2003,63:6140-6143.
    
    74. Sivaraman L, Conneely OM, Medina D, et al. P53 is a potential mediator of pregnancy and hormone-induced resistance to mammary carcinogenesis. Proc Natl Acad Sci,2001,98(22); 12349-12384.
    
    75. Alkhalaf M, El-Mowafy AM. Overexpression of wild type p53 gene renders MCF-7 breast cancer cells more sensitive to the antiprolliferative effect of progesterone. J Endocrinol,179(1):55-62.
    
    76. Musgrove EA,Hunter LJK,Lee CSL,et al.CyclinDl overexpression induces progestin resistance in T-47D breast cancer cells despit P27kipl associate with cyclin E-Cdk2, J Biol chem,2001,276(50):47675-47683.
    
    77. Reynolds RK, Owens CA, Roberts JA. Cultured endometrial cancer cells exhibit autocrine growth factor stimulation that is not observed in cultured normal endometrial cells. Gynecol Oncol. 1996, 60(3):380-386.
    
    78. Reynolds RK, Hu C, Baker VV. Transforming growth factor-alpha and insulin-like growth factor-Ⅰ, but not epidermal growth factor, elicit autocrine stimulation of mitogenesis in endometrial cancer cell lines. Gynecol Oncol. 1998, 70(2):202-209.
    79. Pfeiffer D, Spranger J, Al-Deiri M, et al. mRNA expression of ligands of the epidermal-growth-factor-receptor in the uterus. Int J Cancer. 1997, 72(4):581-586.
    80. Visco V, Carico E, Marchese C, et al. Expression ofkeratinocyte growth factor receptor compared with that of epidermal growth factor receptor and erbB-2 in endometrial adenocarcinoma. Int J Oncol, 1999, 15(3):431-435.
    81. Mariani A, Sebo TJ, Katzmann JA,et al. HER-2/neu overexpression and hormone dependency in endometrial cancer: analysis of cohort and review of literature.
    82. Lazar E, Tudose N, Lazar DC. Prognostic significance of c-erbB2 protein in endometrial cancer. Rom J Morphol Embryol, 1998, 4 4(1-4): 101-107.
    83. Gershtein ES, Shatskaya VA, Kostyleva OI, et al. Comparative analysis of the sensitivity of endometrial cancer cells to epidermal growth factor and steroid hormones. Cancer, 1995, 76(12):2524-2529.
    84.赵文辉、张清媛、娄长杰。EGFR/CerbB-2/MAPK介导乳腺癌三本氧胺耐药细胞的生长。实用肿瘤学杂志,2006,19(2):143-146.
    85. Gong YW, Anzai Y, Murphy LC, et al. Transforming growth factor gene expression in human endometrial adenocarcinoma cells:regulation by progestins, Cancer Res, 1991,51,5476-5481.
    86.郭晓宁,林莉萍,章雄文等。表皮生长因子受体酪氨酸激酶家族与肿瘤治疗。中国新药杂志,2005,14(10):1136—1140.
    87. Zhu XF, Liu ZC, Xie BF, et al. EGFR tyrosine kinase inhibitor AG1478 inhibits cell proliferation and arrests cell cycle in nasopharyngeal carcinoma cells. Cancer Lett, 2001, 169(1):27-32.
    88. Chan KC, Knox WF, Gee JM, et al. Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res. 2002, 62(1): 122-128.
    89. Gee JM, Harper ME, Hutcheson IR, et al. The antiepidermal growth factor receptor agent gefitinib (ZD 1839/Iressa) improves antihormone response and prevents development of resistance in breast cancer in vitro. Endocrinology, 2003, 144(11):5105-5117.
    90. Singer CF, Hudelist G, Lamm W, et al. Expression oftyrosine kinases in human malignancies as potential targets for kinase-specific inhibitors. Endocr Relat Cancer, 2004, 11(4):861-869.
    
    91. Vaidya AP, Parnes AD, Seiden MV. Rationale and clinical experience with epidermal growth factor receptor inhibitors in gynecologic malignancies. Curr Treat Options Oncol, 2005, 6(2): 103-114.
    
    92. Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer, 2002,2(2): 101-112.
    
    93. Ellis M. Overcoming endocrine therapy resistance by signal transduction inhibition. Oncologist, 2004, 9(Suppl 3):20-26.
    
    94. Miturski,-R; Semczuk,-A; Postawski,-K; Epidermal growth factor receptor immunostaining and epidermal growth factor receptor-tyrosine kinase activity in Proliferative and neoplastic human endometrium. Tumour-Biol. 2000 Nov-Dec; 21(6): 358-366.
    
    95. Arnold JT, Lessey BA, Seppala M, et al. Effect of normal endometrial stroma on growth and differentiation in Ishikawa endometrial adenocarcinoma cells. Cancer Res. 2002,62(1):79-88.
    
    96. Cooke PS, Buchanan DL, Young P, et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci U S A. 1997,94(12):6535-6540.
    
    97. Osteen KG, Rodgers WH, Gaire M, et al. Stromal-epithelial interaction mediates steroidal regulation of metalloproteinase expression in human endometrium. Proc. Natl. Acad. Sci. USA, 1994, 91(21): 10129-10133.
    
    98. Cooke PS, Buchanan DL, Young P, et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc. Nat. Acad. Sci. USA, 1997, 94(12):6535-6540.
    
    99. Fong, CJ, Sherwood, ER, Braun EJ, et al. Regulation of prostatic carcinoma cell proliferation and secretory activity by extracellular matrix and stromal secretions. Prostate, 1992,21(2): 121-131.
    
    100.Arnold JT, Kaufman DG, Seppala M, et al. Endometrial stromal cells regulate epithelial cell growth in vitro: A new co-culture model. Hum. Reprod. (Oxf.), 2001,16(5): 836-845.
    101.Witta SE, Gemmill RM, Hirsch FR, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res, 2006, 66(2):944-950.
    102.Hazan RB, Qiao R, Keren R, et al. Cadherin switch in tumor progression. Ann N Y Acad Sci,2004,1014: 155-163.
    103.Saito T, Nishimura M, Yamasaki H, et al. Hypermethylation in promoter region of E-cadherin gene is associated with tumor dedifferention and myometrial invasion in endometrial carcinoma. Cancer. 2003, 97(4): 1002-1009.
    104.Mell LK, Meyer JJ, Tretiakova M, et al. Prognostic significance of E-cadherin protein expression in pathological stage I-III endometrial cancer. Clin Cancer Res, 2004, 10(16):5546-5553.
    
    105.Fujimoto J, Ichigo S, Hori M, et al. Progestins and danazol effect on cell-to-cell adhesion, and E-cadherin and alpha- and beta-catenin mRNA expressions. J Steroid Biochem Mol Biol, 1996, 57(5-6):275-282.
    
    106.Lange, C.A, T Shen, KB Horwitz. Phosphorylation of human progesterone receptors at serine 295 by mitogen activated protein kinase signals their degradation by the 26S proteasome. Proc Natl. Acad. Sci. USA, 2000, 97:1032-1037.
    
    107.Shen, T, Horwitz, K.B, Lange, C.A. Transcriptional Hyper-Activity of Human Progesterone Receptors is Coupled to Their Ligand-Dependent Down-Regulation by Mitogen-Activated Protein Kinase-Dependent Phosphorylation of Serine 294. Mol Cell Biol, 2001, 21: 6122-6131.
    
    108.Qiu M, Lange CA. MAP kinases couple multiple functions of human progesterone receptors: degradation, transcriptional synergy, and nuclear association. J Steroid Biochem Mol Biol, 2003, 85(2-5): 147-157.
    
    109. Lange CA, Richer JK, Shen T, et al. Convergence of progesterone and epidermal growth factor signaling in breast cancer. Potentiation of mitogen-activated protein kinase pathways. J Biol Chem, 1998,273(47):31308-31316.
    
    110. Richer JK, Lange CA, Manning NG, et al. Convergence of progesterone with growth factor and cytokine signaling in breast cancer. Progesterone receptors regulate signal transducers and activators of transcription expression and activity. J Biol Chem, 1998, 273(47):3131.
    1. Sherman M E. Theories of Endometrial Carcinogenesis: A Multidisciplinary Approach. Modern Pathology, 2000, 13(3):295-308.
    
    2. Oehler MK, Brand A, Wain GV. Molecular genetics and endometrial cancer. J Br Menopause Soc, 2003, 9(1):27-31.
    
    3. Rose PG. Endometrial carcinoma. N Engl J Med,1996, 335(9):640-649.
    
    4. Koshiyama M, Ueta M. Two kinds of endometrial neoplasia arising from different origins in the uterine corpus: comparison of P53 expression and sex steroid receptor status, Eur J Obstet Gynecol Reprod Biol, 2002,104:167-170.
    
    5. Podczaski E, Mortel R. Hormonal treatment of endometrial cancer: past, present and future. Best Pract Res Clin Obstet Gynaecol, 2001, 15(3):469-489.
    
    6. Randall TC, Kurman RJ. Progestin treatment of atypical hyperplasia and well-differentiated carcinoma of the endometrium in women under age 40. Obstet Gynecol. 1997, 90(3):434-440.
    
    7. Yang SJ, Fang ZJ, Gurates B, et al. Stromal PRs Mediate Induction of 17-Hydroxysteroid Dehydrogenase Type 2 Expression in Human Endometrial Epithelium: A Paracrine Mechanism for Inactivation of E2. Mol Endocrinol, 15(12):2093-2105.
    
    8. Gong YW, Anzai Y, Murphy LC, et al. Transforming growth factor gene expression in human endometrial adenocarcinoma cells: regulation by progestins. Cancer Res, 1991,51:5476-5481.
    
    9. Darnel A.D, Archer T.K, Yang K, et al. Regulation of 11b-hydroxysteroid dehydrogenase type 2 by steroid hormones and epidermal growth factor in the Ishikawa human endometrial cell line. J Steroid Biochem Mol Biol, 1999, 70:203-210.
    
    10. Gareth I. Owen, Jennifer K. Richer, Lin Tung, Progesterone Regulates Transcription of the p21 WAF1 Cyclin-dependent Kinase Inhibitor Gene through Sp1 and CBP/p300. J Biol Chem, 1998, 273(17):10696-10701.
    
    11. Shiozawa T, Horiuchi A, Kato K, et al. Up-regulation of p27kipl by progestins is involved in the growth suppression of the normal and malignant human endometrial glandular cells. Endocrinology, 2001, 142(10):4182-4188.
    
    12. Shiozawa T, Nikaido T, Nakayama K, et al. Involvement of cyclin-dependment kinase inhibitor p27 in growth inhibition of endometrium in the secretory phase and of hyperplastic endometrium treated with progesterone. Mol Hum Reprod, 1998,4(9):899-905.
    
    13. Dai Dh, Litman ES, Schonteich E, et al. Progesterone regulation of activating protein-1 transcriptional activity: a possible mechanism of progesterone inhibition of endometrial cancer cell growth. J Steroid Biochem Mol Biol, 2003, 87:123-131.
    
    14. Lisa A, Di Nezza, Tom Jobling, et al. Progestin suppresses matrix met alloproteinase production in endometrial cancer, Gynecol Oncol, 2003, 89: 325-333.
    
    15. Saito T, Mizumoto H, Tanaka R, et al. Overexpressed progesterone receptor form B inhibit invasive activity suppression matrix met alloproteinases in endometrial carcinoma cells. Cancer lett, 2004, 209:237-243.
    
    16. Dai D, Wolf DM, Litman ES, et al. Progesterone Inhibits Human Endometrial Cancer Cell Growth and Invasiveness: Down-Regulation of Cellular Adhesion Molecules through Progesterone B Receptors. Cancer Res, 2002, 62:881-886.
    
    17. Lin vcl, Woon CT, Aw SE, et al. Distinct molecular pathways mediate progesterone induced growth inhibition and focal adhesion. Endocrinology, 144:5650-5657.
    
    18. Anezcun CA, lu JJ, Felix JC, et al. Apoptosis may be an early event of progestin therapy foy endometrial hyperplasia.Gynecol Oncol,2000,79:169-176.
    
    19. Wang S, Pudney J, Song J. Mechanism involved in the evolution of progestin resistance in human endometrial hyperplasia-precusor of endometrial cancer. Gynecol Oncol, 2003, 88:108-117.
    
    20. Song J, Rutherford T, Naftolin F, et al. Hormonal regulation of apoptosis and the Fas and Fas ligand system in human endometrial cells. Mol Hum Reprod, 2002, 8(5):447-455.
    
    21. Kaka T, Yoshikawa H, Tsuda H, et al. Conservative therapy for adenocarcinoma and atypical endometrial hyperplasia of the endometrium in young women:central pathologic review and treatment outcome. Cancer Lett, 2001,167:39-48.
    
    22. Jadoul P, Donnez J. Conservative treatment may be beneficial for young women with atypical endometrial hyperplasia or endometrial adenocarcinoma. Fertil Steril, 2003, 80(6):1315-1324.
    
    23. Dahmoun M, Boman K, Cajander S, et al. Intratumal effects of medrooxy-progesterone on proliferation ,apoptosis,and sex steroid receptor in endometrioid endometrial adenocarcinoma. Gynecol oncol, 2004, 93:116-126.
    
    24. Lowe MP, Cooper BC, Sood AK, et al. Implementation of assisted reproductive technologies following consertive management of GIGO grade I endometrial adenocarsinoma and /or complex hyperplasia with atypia. Gynecol Oncol, 2003, 91:569-572.
    
    25. Imai M, Jobo T, Sato R, Kawaguchi M, et al. Medroxyprogesterone acetate therapy for patients with adenocarcinoma of the endometrium who wish to preserve the uterus-usefulness and limitations. Eur J Gynaecol Oncol, 2001, 22(3):217-220.
    
    26. Gotlieb WH, Beiner ME, Shalmon B, et al. Outcome of Fertility-Sparing Treatment With progestins in Young Patients With Endometrial Cancer. Obstet Gynecol, 2003,102(4):719-725.
    
    27. Kester HA, Van der Leede BJM, Van der Saag PT, et al. Novel progesterone target genes identified by an improved differential display technique suggest that progesterone -induced growth inhibition of breast cancer cells coincides with enhancement of differentiation. J Biol Chem, 1997, 272:16637-16643.
    
    28. Gehrig PA, Van Le L, Olatidoye B, et al. Estrogen receptor status, determined by immunohistochemistry, as a predictor of the recurrence of stage I endometrial carcinoma. Cancer, 1999, 86(10):2083-2089.
    
    29. Fukuda K, Mori M, Uchiyama M, et al. Prognostic significance of progesterone receptor immunohistochemistry in endometrial carcinoma, Gynecol Oncol, 1998, 69(3): 220-225.
    
    30. Hall JM, McDonnell DP. The estrogen receptor beta-isoform ( ERbeta) of the human estrogen receptor modulates Eralpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology, 1999, 140(12): 5566-5578.
    
    31. Knowlden JM, Gee JM, Robertson J F, et al. A possible divergent role for the oestrogen receptor alpha and beta subtypes in clinical breast cancer. Int J Cancer, 2000, 89(2): 209-212.
    
    32. Ali SH, O'Donnell AL, Mohamed S, et al. Overexpression of estrogen receptor-alpha in the endometrial carcinoma cell line Ishikawa: inhibition of growth and angiogenic factors. Gynecol Oncol, 2004,95(3):637-645.
    
    33. Satyaswaroop PG, Clarke CL, Zaino RJ, et al. Apparent resistance in human endometrial carcinoma during combination treatment with tamoxifen and progestin may result from desensitization following downregulation of tumor progesterone receptor. Cancer Lett, 1992, 62(2): 107-114.
    
    34. Koopman ES, Block LJ, Kuhne LCM, et al. Distinct functional differences of human progesterone receptors A and B on gene expression and growth regulation in two endometrial carcinoma cell lines. J Soc Gynecol Investig, 2003, 10:49-57.
    
    35. Arnett-Mansfield RL, Defazio A, Wain GV, et al. Relative expression of progesterone receptors A and B in endometrioid cancers of the endometrium, Cancer Res, 2001, 61:4576-4582.
    
    36. Sasaki M, Dharia A, Oh BR, et al. Progesterone receptor B gene inactivation and CpG hypermethylation in human uterine endometrial cancer. Cancer Res, 2001, 61:97-102.
    
    37. Kumar NS, Richer J, Owen G, et al. Selective down-regulation of progesterone receptor isoform B in poorly differentiated human endometrial cancer cells: implications for unopposed estrogen action. Cancer Res, 1998, 58:1861-1865.
    
    38. Utsunomlya H, Suzuki K, Ito Kiyoshi, et al. The correlation between the response to progestogen treatment and the expression of progesterone receptor B and 17β-hydroxysteroid dehydrogenase type 2 in human endometrial carcinoma. Clin Endocrinol, 2003, 58:696-703.
    
    39. Hideki Sakaguchi, Jiro Fujimoto, Bao Li Hong, et al. Drastic decrease of progesterone receptor form B but not A mRNA reflects poor patient prognosis in endometrial cancers, Gynecol Oncol, 2004,93:394-399.
    
    40. McGowan EM, Clarke CL. Effect of Overexpression of progesterone Receptor A on Endogenous Progestin-Sensitive Endpoints in Breast Cancer Cells, Mol Endocrinol,1999,13(10):1657-1671.
    
    41. Murphy LC, Dotzlaw H. Endogenous growth factor expression in T-47D, human breast cancer cells, associated with reduced sensitivity to antiproliferative effects of progestins and antiestrogens. Cancer Res, 1989, 49:599-604.
    
    42. Sarup JC, Rao KVS, Fred Fox C. Decreased progesterone binding and attenuated progesterone action in cultured human breast carcinoma cells treated with epidermal growth factor. Cancer Res, 1988,48:5071-5078.
    
    43. Murphy LC, Dotzlaw H, Johnson Wong MS, et al. Mechanisms involved in the evolution of progestin resistance in human breast cancer cells. Cancer Res, 1991, 51:2051-2057.
    
    44. Reynolds RK, Hu CH, Baker VV. Transforming growth factor-a and insulin like growth factor-1 but not epidermal growth factor elicit autocrine stimulation of mitogenesis in endometrialcancer cell lines. Gynecol oncol, 1998, 70:202-209.
    
    45. Reynolds RK, Owens CA, Robert JA, et al. Cultured endometrial cancer cells exhibit autocrine growth factor stimulation that is not observed incultured normal endometrial cells. Gyonecol oncol, 1996, 60,380-386.
    
    46. Imai T, Kurachi H, Adachi K, et al. Changes in epidermal growth factor receptor and the levels of its ligands during menstrual cycle in human endometrium. Biol Reprod, 1995, 52(4):928-938.
    
    47. Watson H, Franks S, Bonney RC. Regulation of epidermal growth factor receptor synthesis by ovarian steroids in human endometrial cells in culture. J Reprod Fertil, 1996, 107(2): 199-205.
    
    48. Reynolds RK, Talavera F, Roberts JA, et al. Regulation of epidermal growth factor and insulin-like growth factor I receptors by estradiol and progesterone in normal and neoplastic endometrial cell cultures. Gynecol Oncol, 1990, 38(3):396-406.
    
    49. Tseng L, Zhu HH. Regulation of progesterone receptor messenger ribonucleic acid by progestin in human endometrial stromal cells. Biol Reprod, 1997, 57(6): 1360-1366.
    
    50. Lange, C.A., T. Shen, and K.B. Horwitz. Phosphorylation of human progesterone receptors at serine 295 by mitogen activated protein kinase signals their degradation by the 26S proteasome. Proc Natl. Acad. Sci. USA, 2000, 97:1032-1037.
    
    51. Shen, T., Horwitz, K.B., and Lange, C.A. Transcriptional Hyper-Activity of Human Progesterone Receptors is Coupled to Their Ligand-Dependent Down-Regulation by Mitogen-Activated Protein Kinase-Dependent Phosphorylation of Serine 294. Mol Cell Biol, 2001,21: 6122-6131.
    
    52. Qiu M, Lange CA. MAP Kinases Couple Multiple Functions of Human Progesterone Receptors: Degradation, Transcriptional Synergy, and Nuclear Localization. J. Steroid Receptor Biochem Mol Biol. 2003, 85: 147-157.
    
    53. Cui X, Zhang P, Deng W, et al. Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol, 2003, 17(4):575-588.
    54. Agthoven TV, Agthoven TL, Portengen H, et al. Ectopic expression of epithelial growth factor receptor stimulate hormone independence in ZR-75-1 human breast cancer cells. Cancer Res, 1992, 52:5082-5088.
    
    55. Gershtein ES, Valentina AS, Kostyleva OI, et al. Comparative analysis of the sensitivity of endometrial cancer cells to epidermal growth factor and steroid hormones. Cancer, 1995, 76:2524-2529.
    
    56. Nllkura H, Sasano H, Kaga K, et al. Expression of epidermal growth factor family proteins and epidermal growth factor receptor in human endometrium. Hum Pathol, 1996,27:282-289.
    
    57. Kienhuis CB, Sluyser M, de Goeij CC. Epidermal growth factor receptor levels increase but epidermal growth factor receptor ligand levels decrease in mouse mammary tumors during progression from hormone dependence to hormone independence. Breast Cancer Res Treat, 1993, 26(3):289-295.
    
    58. Yokoyama Y, Takahashi Y, Hashimoto M, et al. Immunohistochemical study of estradiol, epidermal growth factor, transforming growth factor alpha and epidermal growth factor receptor in endometrial neoplasia. Jpn J Clin Oncol, 1996, 26(6):6411-6416(abstract)
    
    59. Osteen KG, Rodgers WH, Gaire M, et al. Stromal-epithelial interaction mediates steroidal regulation of metalloproteinase expression in human endometrium. Proc Natl Acad Sci USA, 1994, 91:10129-10133.
    
    60. Cooke PS, Buchanan DL, Young P, et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci USA, 1997,94:6535-6540.
    
    61. Cho Hyeseong, Aronica SM, Katzenellenbogen BS. Regulation of progesterone receptor gene expression in MCF-7 breast cancer cells:a comparison of the effects of cyclic adenosine 3 5-monmophosphata estrasiol insulin-like factor -1 and serum factors. Endocrinology, 1994,134:658-664.
    
    62. Haiyan Pang, Brian G Rowan, Mariam Al-Dhaheri, et al. Epidermal growth factor suppresses induction by progestin of the adhesion protein desmoplakin in T47D breast cancer cells. Breast Cancer Res, 2004, 6:R239-R245.
    
    63. Park YH, Ryu HS, Choi DS, Effects of hepatocyte growth factor on the expression of matrix met alloproteinases and their tissue inhibitors during the endometrial cancer invasion in a three-dimensional coculture. Int J Gynecol Cancer, 2003, 13(1):53-60.
    64. Taniguchi F, Harada T, Sakamoto Y, Activation of mitogen-activated protein kinase pathway by keratinocyte growth factor or fibroblast growth factor-10 promotes cell proliferation in human endometrial carcinoma cells. J Clin Endocrinol Metab, 2003, 88(2):773-780.
    
    65. Yoshida S, Harada T, Iwabe T, Induction of hepatocyte growth factor in stromal cells by tumor-derived basic fibroblast growth factor enhances growth and invasion of endometrial cancer. J Clin Endocrinol Metab, 2002, 87(5):2376-2383.
    
    66. Fujimoto J, Ichigo S, Sakaguchi H, et al. Expression of platelet-derived endothelial cell growth factor (PD-ECGF) and its mRNA in uterine endometrial cancers. Cancer Lett, 1998,130(1-2): 115-120.
    
    67. Bigsby RM, Li AX, Bomalaski J, et al. Immunohistochemical study of HER-2/neu, epidermal growth factor receptor, and steroid receptor expression in normal and malignant endometrium. Obstet Gynecol, 1992, 79(1):95-100.
    
    68. Lange, C.A., J.K. Richer, T. Shen, and K.B. Horwitz. Convergence of progesterone and epidermal growth factor signaling in breast cancer. Potentiation of mitogen-activated protein kinase pathways. J Biol. Chem, 1998, 273:31308-31316.
    
    69. Groshong SD, Owen GI, Grimison B, et al.Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, P21 and P27. Mol Endo, 1997,11 (11): 1593-1607.
    
    70. Boonyaratanakornkit V, Scott MP, Ribon V, et al. Progesterone receptor contains a praline-rich motif that directly interacts with SH3 domains and activates c-src family tyrosine kinase. Molecular cell, 2001, 8:269-280.
    
    71. Wang ZH, Kyo M, Takakura M, et al. Progesterone regulates human telomerase reverse transcriptase gene expression via activation of mitogen-activated protein kinase signaling pathway. Cancer Res, 2000, 60:5376-5381.
    
    72. Lange, C A., Richer JK, Horwitz KB. Hypothesis: Progesterone primes breast cancer cells for cross-talk with Proliferative or antiproliferative signals. Mol. Endo, 1999,13:829-836.
    
    73. Lange CA. Making Sense of Cross-Talk Between Steroid Hormone Receptors and Intracellular Signaling Pathways: Who Will Have the Last Word? Mol Endo, 2004, 18(2):269-278.
    
    74. Medina D, Kittrell FS. P53 function is required for hormone-mediated protection of mouse mammary tumorigenesis. Cancer Res, 2003, 63:6140-6143.
    75. Sivaraman L, Conneely OM, Medina D, et al. P53 is a potential mediator of pregnancy and hormone-induced resistance to mammary carcinogenesis. Proc Natl Acad Sci, 2001, 98(22): 12349-12384.
    
    76. Alkhalaf M, El-Mowafy A M. Overexpression of wild type p53 gene renders MCF-7 breast cancer cells more sensitive to the antiprolliferative effect of progesterone. J Endocrinol, 179(1):55-62.
    
    77. Rahkko E, Blanco G, Bloigu R, et al. A mutant TP53 gene status is associated with a kpoor prognosis and anthracycline-resistance in breast cancer patients. Eur J Cancer. 2003, 39(4):447-453.
    
    78. Ozalp S, Yalcin OT, Mete Tanir H, et al. p53 overexpression as a prognostic indicator in endometrial carcinoma. Eur J Gynaecol Oncol, 2003, 24(3-4):275-278.
    
    79. Powell B, Soong R, Grieu F. p53 protein overexpression is a prognostic indicator of poor survival in stage I endometrial carcinoma. Int J Oncol. 1999, 14(1):175-179.
    
    80. Renate M. L. Zwijsen, Ellen Wientjens, et al. CDK-Independent Activation of Estrogen Receptor by Cyclin Dl. Cell, 1997, 88:405-415.
    
    81. Rina Hui, Georgina L. Finney, Jason S, et al. Constitutive Overexpression of Cyclin Dl but not Cyclin E Confers Acute Resistance to Antiestrogens in T-47D Breast Cancer Cells. Cancer Res, 2002, 62:6916-6923.
    
    82. Musgrove EA,Hunter LJK,Lee CSL,et al.CyclinDl overexpression induces progestin resistance in T-47D breast cancer cells despit P27kipl associate with cyclin E-Cdk2. J Biol chem, 2001,276(50):47675-47683.
    
    83. Tsuda H, Yamamoto Y, Inoue T, et al. The role of pl6-cyclinD/CDK-pRb pathway in the tumorigenesis of endometrioid-type endometrial carcinoma. Br J Cancer, 2000, 82(3):675-682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700