颅内动脉狭窄的微栓塞与血流动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分烟雾病患者微栓子信号预测未来脑缺血事件
     研究背景:
     烟雾病患者脑梗死一直被认为是由于血管狭窄引起的低灌注所致。然而,最近有研究显示,在烟雾病患者可以检测到微栓子信号(microembolic signals, MES)。这表明在烟雾病中有动脉到动脉的微栓塞发生。但是,MES在烟雾病患者脑梗死中的作用尚不明确。
     目的:探索MES在预测烟雾病患者未来脑缺血事件中的作用。
     方法:连续入组54例烟雾病患者。应用经颅多普勒超声(transcranial Doppler, TCD)监测入组患者双侧大脑中动脉30分钟。随访1年,记录主要终点事件:缺血性卒中及短暂性脑缺血发作(transient ischemic attack, TIA)的情况。
     结果:共有11(20.4%)例烟雾病患者患者监测到MES,占烟雾病半球数的10.2%。Logistic回归分析发现MES与烟雾病患者3个月内脑缺血症状有关(OR=4.41,95%CI1.11-17.59)。在中位时间384天的随访期间,共有14(13.0%)个半球发生脑缺血事件(7例缺血性卒中、7例TIA)。Cox生存分析显示,在调整了年龄、性别、缺血性卒中及TIA史、铃木分期以及血管重建术后,MES阳性半球发生缺血性卒中及TIA的风险是MES阴性半球的6.84倍(95%CI1.82-25.66),缺血性卒中的风险是阴性半球的10.61倍(95%CI1.66-67.70),
     结论:烟雾病患者MES与近期脑缺血症状相关,而且MES是烟雾病患者未来脑缺血事件的独立预测因子。对烟雾病患者进行TCD微栓子监测或将有利于对患者更好的临床管理,亟待进一步研究。
     第二部分烟雾病脑血流自动调节机能研究
     背景:既往研究表明烟雾病患者的脑血流自动调节机能受损,有可能会增加其脑组织缺血及出血的风险。然而在烟雾病逐渐进展的过程中,我们尚不清楚自动调节这种重要的脑保护机制从何时开始受损,以及如何随疾病的进展而变化。
     目的:应用无创的新型方法研究烟雾病患者动态脑血流自动调节机能与烟雾病血管分期之间的关系。
     方法:连续入组13例经数字减影血管造影诊断为双侧烟雾病的患者及10例健康对照。应用改良铃木分期对入组的26个烟雾病半球进行血管分级。应用传递函数的算法分析大脑中动脉血流速度及动脉血压的自然波动以分析脑血流自动调节机能。
     结果:工期烟雾病的脑血流自动调节参数-恢复率及相位与对照相比即显著降低(恢复率22.70±4.93%/s VS.40.78±20.92%/s, p<0.05:相位35.20±12.29°VS.60.01±18.96°,p<0.05)°而增益及相关函数自Ⅱ期开始也出现显著变化(增益0.40±0.16VS.0.86±0.50,p<0.05:相关函数0.64±0.11VS.0.42±0.16,p<0.05)。恢复率(r=-0.478,p<0.05)、增益(r=-0.507,p<0.001)及相位(r=-0.619,p<0.001)均同狭窄程度显著相关。
     结论:烟雾病早期患者脑血流自动调节机能即显著受损,且自动调节参数与烟雾病血管分期显著负相关,表明调节机能受损程度随疾病的进展而加剧。
     第三部分大脑中动脉狭窄脑血流自动调节及脑血管反应性研究
     背景:既往研究表明,颈内动脉狭窄后脑血流自动调节及脑血管反应性会受损,且受损患者未来罹患缺血性卒中的风险显著增加。而颅内动脉尤其是大脑中动脉(middle cerebral artery,MCA)粥样硬化性狭窄在中国人群高发,且是缺血性卒中的主要病因。然而,目前有关大脑中动脉狭窄后脑血流自动调节及脑血管反应性的研究非常少。
     目的:研究大脑中动脉狭窄患者脑血流自动调节机能及脑血管反应性是否受损,以及二者同狭窄程度之间的关系。
     方法:入组21例经磁共振血管成像诊断为MCA狭窄的患者及15例健康对照。应用传递函数的算法分析MCA血流速度及动脉血压的自然波动以分析脑血流自动调节机能。应用自呼吸的方法测量脑血管反应性。
     结果:MCA中度狭窄侧的脑血流自动调节参数(恢复率、相位)及脑血管反应性参数与对照相比均显著降低(恢复率17.76±8.21%/s VS.39.62±27.99%/s, p     结论:MCA狭窄超过50%的患者同侧脑血流自动调节及脑血管反应性受损,且受损程度随狭窄的程度增加而加剧。
Part1Microembolic Signals Predict Cerebral Ischemic Events in Patients with Moyamoya Disease
     Background:
     Recent studies found that microembolic signals (MES) could be detected by transcranial Doppler in patients with moyamoya disease. However the clinical significance of MES in moyamoya disease remains unclear.
     Objective:
     We aimed to investigate whether the MES could predict cerebral ischemic events in patients with moyamoya disease.
     Methods:
     Fifty-four consecutive patients with moyamoya disease were recruited. MES were monitored by transcranial Doppler for30minutes in bilateral middle cerebral arteries of each patient on admission. Patients were followed up for1year. The primary endpoint was cerebral ischemic events including stroke and transient ischemic attack (TIA).
     Results:
     MES were detected in11(20.4%) patients, with a frequency of11(10.2%) in108hemispheres. Logistic regression analysis revealed that previous ischemic events within3months was associated with the presence of MES (OR=4.41,95%CI1.11-17.59). During median follow-up of384days,14(13.0%) hemispheres had ischemic events (7strokes and7TIAs). Cox regression showed that the hazard ratio for the risk of new ischemic stroke and TIA in the hemispheres with MES was6.84(95%CI1.82-25.66) compared with those without, and10.61(95%CI1.66-67.70) for ischemic stroke alone, after controlling for age, sex, presence of ischemic events at baseline, Suzuki stages and revascularization surgery.
     Conclusions:
     In patients with moyamoya disease, the presence of MES is associated with recent ischemic symptoms, and independently predict cerebral ischemic events. MES detection may be of potential clinical value in the management of patients with MMD.
     Part2Impaired Dynamic Cerebral Autoregulation in Moyamoya Disease
     Background:
     Moyamoya disease (MMD) can lead to deficit of cerebral autoregulation, thus may increases the risk of cerebral ischemia and hemorrhage. It is desirable to know when this protective mechanism begins to impair and how it changes as MMD progress.
     Purpose:
     We applied a non-invasive method to investigate the status of autoregulation at different stages of MMD.
     Methods:
     This study investigated26hemispheres with MMD amongl3patients and20hemispheres without stenosis amonglO controls. Degree of distal carotid artery stenosis was classified according to modified Suzuki stage. Cerebral autoregulation was assessed by transfer function analysis from spontaneous oscillations of cerebral blood flow velocity and blood pressure.
     Results:
     Three autoregulatory parameters, the rate of recovery (RoRc), phase shift, and gain were derived from transfer function. RoRc and phase shift estimated from the first stage are significantly different from controls (RoRc22.70±4.93%/s VS.40.78±20.92%/s, p<0.05; phase35.20±12.29°VS.60.01±18.96°, p<0.05).Gain and coherence becomes significantly different when MMD develops to stage II(gain0.40±0.16VS.0.86±0.50,p<0.05; coherence0.64±0.11VS.0.42±0.16,p<0.05).RoRc (r=-0.478, p<0.05), phase (r=-0.619, p<0.001)and gain (r=-0.507, p<0.001) are all significantly correlated with the angiographic stages.
     Conclusions:
     Cerebral autoregulation starts to impair at early stage of MMD. And autoregulatory parameters are highly correlated with the stages, suggesting the dysautoregulation may tend to worsen gradually with progression of MMD.
     Part3Impaired Dynamic Cerebral Autoregulation and Cerebrovascular Reactivity in Middle Cerebral Artery Stenosis
     Background:
     A number of studies reported that stenosis in internal carotid artery may impair cerebral hemodynamics, including cerebral autoregulation and cerebrovascular reactivity (CVR), which increases the risk of cerebral ischemic events. And intracranial artery occlusive diseases, especially middle cerebral artery (MCA) stenosis, are major causes of ischemic stroke in Chinese populations. However such studies in intracranial artery stenosis are lacking.
     Purpose:
     We sought to investigate the capacity of cerebral autoregulation and CVR in patients with MCA stenosis.
     Methods:
     Twenty-one patients with MCA stenosis diagnosed by magnetic resonance angiography and15healthy controls were enrolled. Cerebral autoregulation was assessed by autoregulatory parameters (rate of recovery/phase/gain) derived from transfer function from spontaneous oscillations of cerebral blood flow velocity and blood pressure. CVR was tested by a rebreathing maneuver.
     Results:
     Rate of recovery, phase and CVR estimated from moderate MCA stenosis (rate of recovery=17.76±8.21%/s, phase=26.93±15.67°,and CVR=1.53±0.84%/mmHg, respectively) were significantly different (p<0.05) from controls (rate of recovery=39.62±27.99%/s, phase=55.66±22.1°, and CVR=2.18±0.80%/mmHg, respectively). Rate of recovery (r=-0.698, p<0.001), phase (r--0.738, p<0.001)) and CVR (r=-0.690, p<0.001) were all significantly correlated with the degree of stenosis.
     Conclusion:
     Cerebral autoregulation and CVR were impaired in patients with≥50%MCA stenosis. The measures of both hemodynamic properties were inversely correlated with the stenotic degree.
引文
1. Suzuki J, Takaku A. Cerebrovascular" moyamoya" disease:disease showing abnormal net-like vessels in base of brain[J]. Archives of neurology,1969,20(3): 288.
    2. Fukui M. Guidelines for the diagnosis and treatment of spontaneous occlusion of the circle of Willis (Moyamoya'disease)[J]. Clinical neurology and neurosurgery,1997, 99:S238-S240.
    3. Scott R M, Smith E R. Moyamoya disease and moyamoya syndrome[J]. New England Journal of Medicine,2009,360(12):1226-1237.
    4. Kuroda S, Houkin K. Moyamoya disease:current concepts and future perspectives[J]. The Lancet Neurology,2008,7(11):1056-1066.
    5. Kuriyama S, Kusaka Y, Fujimura M, et al. Prevalence and clinicoepidemiological features of Moyamoya disease in Japan findings from a nationwide epidemiological survey[J]. Stroke,2008,39(1):42-47.
    6. Miao W, Zhao P L, Zhang Y S, et al. Epidemiological and clinical features of Moyamoya disease in Nanjing, China[J]. Clinical neurology and neurosurgery,2010, 112(3):199-203.
    7. Duan L, Bao X Y, Yang W Z, et al. Moyamoya Disease in China Its Clinical Features and Outcomes[J]. Stroke,2012,43(1):56-60.
    8. Bao X Y, Duan L, Li D S, et al. Clinical features, surgical treatment and long-term outcome in adult patients with moyamoya disease in China[J]. Cerebrovascular Diseases,2012,34(4):305-313.
    9. Lee M, Zaharchuk G, Guzman R, et al. Quantitative hemodynamic studies in moyamoya disease:a review[J]. Neurosurgical focus,2009,26(4):E5.
    10. Kuroda S, Houkin K, Kamiyama H, et al. Regional cerebral hemodynamics in childhood moyamoya disease[J]. Child's Nervous System,1995,11(10):584-590.
    11. Kuwabara Y, Ichiya Y, Otsuka M, et al. Cerebral hemodynamic change in the child and the adult with moyamoya disease[J]. Stroke,1990,21(2):272-277
    12. Horowitz M, Yonas H, Albright A L. Evaluation of cerebral blood flow and hemodynamic reserve in symptomatic moyamoya disease using stable Xenon-CT blood flow[J]. Surgical neurology,1995,44(3):251-262.
    13. Ogawa A, Yoshimoto T, Suzuki J, et al. Cerebral blood flow in moyamoya disease[J]. Acta neurochirurgica,1990,105(1-2):30-34.
    14. McAuley D J, Poskitt K, Steinbok P. Predicting stroke risk in pediatric moyamoya disease with xenon-enhanced computed tomography[J]. Neurosurgery,2004,55(2): 327-333.
    15. Piao R, Oku N, Kitagawa K, et al. Cerebral hemodynamics and metabolism in adult moyamoya disease:comparison of angiographic collateral circulation[J]. Annals of nuclear medicine,2004,18(2):115-121.
    16. Suzuki R, Nariai T, Matsushima Y, et al. Xe-CT in cerebrovascular disease and moyamoya disease[J]. Acta Neurologica Scandinavica,1996,93(s166):69-71.
    17. Takeuchi S, Tanaka R, Ishii R, et al. Cerebral hemodynamics in patients with Moyamoya disease. A study of regional cerebral blood flow by the< sup> 133 Xe inhalation method[J]. Surgical neurology,1985,23(5):468-474.
    18. Ikezaki K, Matsushima T, Kuwabara Y, et al. Cerebral circulation and oxygen metabolism in childhood moyamoya disease:a perioperative positron emission tomography study[J]. Journal of neurosurgery,1994,81(6):843-850.
    19. Nariai T, Matsushima Y, Imae S, et al. Severe haemodynamic stress in selected subtypes of patients with moyamoya disease:a positron emission tomography study[J]. Journal of Neurology, Neurosurgery & Psychiatry,2005,76(5):663-666.
    20. Saito N, Nakagawara J, Nakamura H, et al. Assessment of cerebral hemodynamics in childhood moyamoya disease using a quantitative and a semiquantitative IMP-SPECT study[J]. Annals of nuclear medicine,2004,18(4):323-331.
    21. So Y, Lee H Y, Kim S K, et al. Prediction of the clinical outcome of pediatric moyamoya disease with postoperative basal/acetazolamide stress brain perfusion SPECT after revascularization surgery[J]. Stroke,2005,36(7):1485-1489.
    22. Touho H, Karasawa J, Ohnishi H. Preoperative and postoperative evaluation of cerebral perfusion and vasodilatory capacity with 99mTc-HMPAO SPECT and acetazolamide in childhood Moyamoya disease[J]. Stroke,1996,27(2):282-289.
    23. Kang K H, Kim H S, Kim S Y. Quantitative cerebrovascular reserve measured by acetazolamide-challenged dynamic CT perfusion in ischemic adult Moyamoya disease:initial experience with angiographic correlation[J]. American Journal of Neuroradiology,2008,29(8):1487-1493.
    24. Kuwabara Y, Ichiya Y, Sasaki M, et al. Response to Hypercapnia in Moyamoya Disease Cerebrovascular Response to Hypercapnia in Pediatric and Adult Patients With Moyamoya Disease[J]. Stroke,1997,28(4):701-707.
    25. Chen J, Liu J, Duan L, et al. Impaired Dynamic Cerebral Autoregulation in Moyamoya Disease[J]. CNS neuroscience & therapeutics,2013,19(8):638-640.
    26. Rim N J, Kim H S, Shin Y S, et al. Which CT perfusion parameter best reflects cerebrovascular reserve?:correlation of acetazolamide-challenged CT perfusion with single-photon emission CT in Moyamoya patients [J]. American Journal of Neuroradiology,2008,29(9):1658-1663.
    27. Sakamoto S, Ohba S, Shibukawa M, et al. CT perfusion imaging for childhood moyamoya disease before and after surgical revascularization[J]. Acta neurochirurgica,2006,148(1):77-81.
    28. Tanaka Y, Nariai T, Nagaoka T, et al. Quantitative evaluation of cerebral hemodynamics in patients with moyamoya disease by dynamic susceptibility contrast magnetic resonance imaging-comparison with positron emission tomography[J]. Journal of Cerebral Blood Flow & Metabolism,2006,26(2): 291-300.
    29.陈洁,高山,胡英环.烟雾病患者微栓子信号与临床表现及梗死灶关系的初步观察[J].中国卒中杂志,2012,7(7):531-536.
    30. Horn P, Lanczik O, Vajkoczy P, et al. Hemodynamic reserve and high-intensity transient signals in moyamoya disease[J]. Cerebrovascular Diseases,2005,19(3): 141-146.
    31. Kraemer M, Heienbrok W, Berlit P. Moyamoya disease in Europeans[J]. Stroke, 2008,39(12):3193-3200.
    32. Iguchi Y, Kimura K, Tateishi Y, et al. Microembolic signals are associated with progression of arterial lesion in Moyamoya disease:a case report[J]. Journal of the neurological sciences,2007,260(1):253-255.
    33. Consensus Committee of the Ninth International Cerebral Hemodynamics Symposium. Basic identification criteria of Doppler microembolic signals[J].Stroke,1995;26:1123.
    34. Ritter M A, Dittrich R, Thoenissen N, et al. Prevalence and prognostic impact of microembolic signals in arterial sources of embolism[J]. Journal of neurology,2008, 255(7):953-961.
    35. Babikian V L, Wijman C A C, Hyde C, et al. Cerebral microembolism and early recurrent cerebral or retinal ischemic events[J]. Stroke,1997,28(7):1314-1318.
    36. Censori B, Partziguian T, Casto L, et al. Doppler microembolic signals predict ischemic recurrences in symptomaticcarotid stenosis[J]. Acta neurologica scandinavica,2000,101(5):327-331.
    37. Daffertshofer M, Ries S, Schminke U, et al. High-intensity transient signals in patients with cerebral ischemia[J]. Stroke,1996,27(10):1844-1849.
    38. Del Sette M, Angeli S, Stara I, et al. Microembolic Signals With Serial Transcranial Doppler Monitoring in Acute Focal Ischemic Deficit A Local Phenomenon?[J]. Stroke,1997,28(7):1311-1313.
    39. Droste D W, Dittrich R, Kemeny V, et al. Prevalence and frequency of microembolic signals in 105 patients with extracranial carotid artery occlusive disease[J]. Journal of Neurology, Neurosurgery & Psychiatry,1999,67(4):525-528.
    40. Eicke B M, Von Lorentz J, Paulus W. Embolus detection in different degrees of carotid disease[J]. Neurological research,1995,17(3):181-184.
    41. Georgiadis D, Lindner A, Manz M, et al. Intracranial microembolic signals in 500 patients with potential cardiac or carotid embolic source and in normal controls[J]. Stroke,1997,28(6):1203-1207.
    42. Grosset D G, Georgiadis D, Kelman A W, et al. Quantification of ultrasound emboli signals in patients with cardiac and carotid disease[J]. Stroke,1993,24(12): 1922-1924.
    43. Hutchinson S, Riding G, Coull S, et al. Are spontaneous cerebral microemboli consistent in carotid disease?[J]. Stroke,2002,33(3):685-688.
    44. Markus H S, Thomson N D, Brown M M. Asymptomatic cerebral embolic signals in symptomatic and asymptomatic carotid artery disease[J]. Brain,1995,118(4): 1005-1011.
    45. Molloy J, Markus H S. Asymptomatic embolization predicts stroke and TIA risk in patients with carotid artery stenosis[J]. Stroke,1999,30(7):1440-1443.
    46. Siebler M, Kleinschmidt A, Sitzer M, et al. Cerebral microembolism in symptomatic and asymptomatic high-grade internal carotid artery stenosis[J]. Neurology,1994, 44(4):615-615.
    47. Valton L, Larrue V, Le Traon A P, et al. Cerebral microembolism in patients with stroke or transient ischaemic attack as a risk factor for early recurrence[J]. Journal of Neurology, Neurosurgery & Psychiatry,1997,63(6):784-787.
    48. van Zuilen E V, Moll F L, Vermeulen F E E, et al. Detection of cerebral microemboli by means of transcranial Doppler monitoring before and after carotid endarterectomy[J]. Stroke,1995,26(2):210-213.
    49. Abbott A L, Chambers B R, Stork J L, et al. Embolic Signals And Prediction of Ipsilateral Stroke or Transient Ischemic Attack in Asymptomatic Carotid Stenosis A Multicenter Prospective Cohort Study[J]. Stroke,2005,36(6):1128-1133.
    50. Markus H S, MacKinnon A. Asymptomatic embolization detected by Doppler ultrasound predicts stroke risk in symptomatic carotid artery stenosis[J]. Stroke, 2005,36(5):971-975.
    51. Orlandi G, Fanucchi S, Sartucci F, et al. Can microembolic signals identify unstable plaques affecting symptomatology in carotid stenosis?[J]. Stroke,2002,33(7): 1744-1746.
    52. Siebler M, Nachtmann A, Sitzer M, et al. Cerebral microembolism and the risk of ischemia in asymptomatic high-grade internal carotid artery stenosis[J]. Stroke, 1995,26(11):2184-2186.
    53. Spence J D, Tamayo A, Lownie S P, et al. Absence of microemboli on transcranial Doppler identifies low-risk patients with asymptomatic carotid stenosis[J]. Stroke, 2005,36(11):2373-2378.
    54. Stork J L, Kimura K, Levi C R, et al. Source of microembolic signals in patients with high-grade carotid stenosis[J]. Stroke,2002,33(8):2014-2018.
    55. Markus H S, King A, Shipley M, et al. Asymptomatic embolisation for prediction of stroke in the Asymptomatic Carotid Emboli Study (ACES):a prospective observational study[J]. The Lancet Neurology,2010,9(7):663-671.
    56. Markus H S, Droste D W, Kaps M, et al. Dual Antiplatelet Therapy With Clopidogrel and Aspirin in Symptomatic Carotid Stenosis Evaluated Using Doppler Embolic Signal Detection The Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) Trial[J]. Circulation,2005,111(17): 2233-2240.
    57. Diehl R R, Samii C, Diehl A. Dynamics and embolic activity of symptomatic intra-cranial cerebral artery stenoses[J]. Acta neurologica scandinavica,2002, 106(3):173-181.
    58. Droste D W, Junker K, Hansberg T, et al. Circulating microemboli in 33 patients with intracranial arterial stenosis[J]. Cerebrovascular Diseases,2002,13(1):26-30.
    59. Gao S, Wong K S, Hansberg T, et al. Microembolic signal predicts recurrent cerebral ischemic events in acute stroke patients with middle cerebral artery stenosis[J]. Stroke,2004,35(12):2832-2836.
    60. Nabavi D G, Georgiadis D, Mumme T, et al. Detection of Microembolic Signals in Patients With Middle Cerebral Artery Stenosis by Means of a Bigate Probe A Pilot Study[J]. Stroke,1996,27(8):1347-1349.
    61. Segura T, Serena J, Castellanos M, et al. Embolism in acute middle cerebral artery stenosis[J]. Neurology,2001,56(4):497-501.
    62. Sliwka U, Klotzsch C, Popescu O, et al. Do chronic middle cerebral artery stenoses represent an embolic focus? A multirange transcranial Doppler study[J]. Stroke, 1997,28(7):1324-1327.
    63. Wong K S, Gao S, Chan Y L, et al. Mechanisms of acute cerebral infarctions in patients with middle cerebral artery stenosis:A diffusion-weighted imaging and microemboli monitoring study[J]. Annals of neurology,2002,52(1):74-81.
    64. Wong K S L, Chen C, Fu J, et al. Clopidogrel plus aspirin versus aspirin alone for reducing embolisation in patients with acute symptomatic cerebral or carotid artery stenosis (CLAIR study):a randomised, open-label, blinded-endpoint trial[J]. The Lancet Neurology,2010,9(5):489-497.
    65. Fukui M, Kono S, Sueishi K, et al. Moyamoya disease[J]. Neuropathology,2000, 20(s1):61-64.
    66. Ringelstein E B, Droste D W, Babikian V L, et al. Consensus on microembolus detection by TCD[J].Stroke,1998,29(3):725-729.
    67. Cullinane M, Wainwright R, Brown A, et al. Asymptomatic Embolization in Subjects With Atrial Fibrillation Not Taking Anticoagulants A Prospective Study[J]. Stroke,1998,29(9):1810-1815
    68. Alexandrov A V, Sloan M A, Tegeler C H, et al. Practice standards for transcranial Doppler (TCD) ultrasound. Part II. Clinical indications and expected outcomes[J]. Journal of Neuroimaging,2012,22(3):215-224.
    69. Xu W H, Xing Y Q, Yan Z R, et al. Cardiac right-to-left shunt subtypes in Chinese patients with cryptogenic strokes:a multicenter case- control study[J]. European Journal of Neurology,2014,21(3):525-528
    70. Anzola G P. Clinical impact of patent foramen ovale diagnosis with transcranial Doppler[J]. European journal of ultrasound,2002,16(1):11-20.
    71. Sliwka U, Diehl R R, Meyer B, et al. Transcranial Doppler "high intensity transient signals" in the acute phase and long-term follow-up of mechanical heart valve implantation[J]. Journal of Stroke and Cerebrovascular Diseases,1995,5(3): 139-146.
    72. Droste D W, Hansberg T, Kemeny V, et al. Oxygen inhalation can differentiate gaseous from nongaseous microemboli detected by transcranial Doppler ultrasound[J]. Stroke,1997,28(12):2453-2456.
    73. Easton J D, Saver J L, Albers G W, et al. Definition and Evaluation of Transient Ischemic Attack A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease:The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists [J]. Stroke, 2009,40(6):2276-2293.
    74. Yamashita M, Oka K, Tanaka K. Histopathology of the brain vascular network in moyamoya disease[J]. Stroke,1983,14(1):50-58.
    75. Kumral E, Evyapan D, Aksu K, et al. Microembolus detection in patients with Takayasu's arteritis[J]. Stroke,2002,33(3):712-716.
    76. Benninger D H, Georgiadis D, Kremer C, et al. Mechanism of ischemic infarct in spontaneous carotid dissection[J]. Stroke,2004,35(2):482-485.
    77. Droste D W, Junker K, Stogbauer F, et al. Clinically silent circulating microemboli in 20 patients with carotid or vertebral artery dissection[J]. Cerebrovascular Diseases,2001,12(3):181-185.
    78. Koennecke H C, Trocio Jr S H, Mast H, et al. Microemboli on transcranial Doppler in patients with spontaneous carotid artery dissection[J]. Journal of neuroimaging: official journal of the American Society of Neuroimaging,1997,7(4):217-220.
    79. Molina C A, Alvarez-Sabin J, Schonewille W, et al. Cerebral microembolism in acute spontaneous internal carotid artery dissection[J]. Neurology,2000,55(11): 1738-1741.
    80. Oliveira V, Batista P, Soares F, et al. HITS in internal carotid dissections[J]. Cerebrovascular Diseases,2001,11(4):330-334.
    81. Srinivasan J, Newell D W, Sturzenegger M, et al. Transcranial Doppler in the evaluation of internal carotid artery dissection[J]. Stroke,1996,27(7):1226-1230.
    82. Lam C K, Yoo T, Hiner B, et al. Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization[J]. Nature,2010,465(7297):478-482.
    83. Caplan L R, Wong K S, Gao S, et al. Is hypoperfusion an important cause of strokes? If so, how?[J]. Cerebrovascular diseases,2006,21(3):145-153.
    84. GAO S, Wang D. Chinese ischemic stroke subclassification[J]. Frontiers in neurology,2011,2:6.
    85. Mesiwala A H, Sviri G, Fatemi N, et al. Long-term outcome of superficial temporal artery-middle cerebral artery bypass for patients with moyamoya disease in the US[J].2008.
    86. Karasawa J, Kikuchi H, Furuse S, et al. Treatment of moyamoya disease with STA-MCA anastomosis[J]. Journal of neurosurgery,1978,49(5):679-688.
    87. Ishikawa T, Kamiyama H, Kuroda S, et al. Simultaneous superficial temporal artery to middle cerebral or anterior cerebral artery bypass with pan-synangiosis for Moyamoya disease covering both anterior and middle cerebral artery territories[J]. Neurologia medico-chirurgica,2006,46(9):462-468.
    88. Iwama T, Hashimoto N, Tsukahara T, et al. Superficial temporal artery to anterior cerebral artery direct anastomosis in patients with moyamoya disease[J]. Clinical neurology and neurosurgery,1997,99:S134-S136.
    89. Golby A J, Marks M P, Thompson R C, et al. Direct and combined revascularization in pediatric moyamoya disease[J]. Neurosurgery,1999,45(1):50.
    90. Ishikawa T, Houkin K, Kamiyama H, et al. Effects of surgical revascularization on outcome of patients with pediatric moyamoya disease[J]. Stroke,1997,28(6): 1170-1173.
    91. Caplan L R. Brain embolism, revisited[J]. Neurology,1993,43(7):1281-1281.
    92. Goertler M, Baeumer M, Kross R, et al. Rapid decline of cerebral microemboli of arterial origin after intravenous acetylsalicylic acid[J]. Stroke,1999,30(1):66-69.
    93. Junghans U, Siebler M. Cerebral microembolism is blocked by tirofiban, a selective nonpeptide platelet glycoprotein Ⅱb/Ⅲa receptor antagonist J]. Circulation,2003, 107(21):2717-2721.
    94. Kraemer M, Berlit P, Diesner F, et al. What is the expert's option on antiplatelet therapy in moyamoya disease? Results of a worldwide survey[J]. European Journal of Neurology,2012,19(1):163-167.
    95. Sakamoto T, Kawaguchi M, Kurehara K, et al. Risk factors for neurologic deterioration after revascularization surgery in patients with moyamoya disease[J]. Anesthesia & Analgesia,1997,85(5):1060-1065.
    96. Choi J U, Seok Kim D, Kim E Y, et al. Natural history of moyamoya disease: comparison of activity of daily living in surgery and non surgery groups [J]. Clinical neurology and neurosurgery,1997,99:S11-S18.
    1. Suzuki J, Takaku A. Cerebrovascular" moyamoya" disease:disease showing abnormal net-like vessels in base of brain[J]. Archives of neurology,1969,20(3): 288.
    2. Fukui M. Guidelines for the diagnosis and treatment of spontaneous occlusion of the circle of Willis (Moyamoya'disease)[J]. Clinical neurology and neurosurgery,1997, 99:S238-S240.
    3. Scott R M, Smith E R. Moyamoya disease and moyamoya syndrome[J]. New England Journal of Medicine,2009,360(12):1226-1237.
    4. Kuroda S, Houkin K. Moyamoya disease:current concepts and future perspectives[J]. The Lancet Neurology,2008,7(11):1056-1066.
    5. Kuriyama S, Kusaka Y, Fujimura M, et al. Prevalence and clinicoepidemiological features of Moyamoya disease in Japan findings from a nationwide epidemiological survey[J]. Stroke,2008,39(1):42-47.
    6. Duan L, Bao X Y, Yang W Z, et al. Moyamoya Disease in China Its Clinical Features and Outcomes[J]. Stroke,2012,43(1):56-60.
    7. Bao X Y, Duan L, Li D S, et al. Clinical features, surgical treatment and long-term outcome in adult patients with moyamoya disease in China[J]. Cerebrovascular Diseases,2012,34(4):305-313.
    8. Miao W, Zhao P L, Zhang Y S, et al. Epidemiological and clinical features of Moyamoya disease in Nanjing, China[J]. Clinical neurology and neurosurgery,2010, 112(3):199-203.
    9. Nakao K, Yamada K, Hayakawa T, et al. Intraoperative measurement of cortical blood flow and its CO2 response in childhood moyamoya disease[J]. Neurosurgery, 1987,21(4):509-514.
    10. Madden J A. The effect of carbon dioxide on cerebral arteries[J]. Pharmacology & therapeutics,1993,59(2):229-250.
    11. Touho H, Karasawa J, Ohnishi H. Preoperative and postoperative evaluation of cerebral perfusion and vasodilatory capacity with 99mTc-HMPAO SPECT and acetazolamide in childhood Moyamoya disease[J]. Stroke,1996,27(2):282-289.
    12. Kraemer M, Heienbrok W, Berlit P. Moyamoya disease in Europeans[J]. Stroke, 2008,39(12):3193-3200.
    13. Lassen N A. Cerebral blood flow and oxygen consumption in man[J]. Physiol. Rev., 1959,39:183-238.
    14. Paulson O B, Strandgaard S, Edvinsson L. Cerebral autoregulation[J]. Cerebrovascular and brain metabolism reviews,1989,2(2):161-192.
    15. Faraci F M, Baumbach G L, Heistad D D. Myogenic mechanisms in the cerebral circulation[J]. Journal of hypertension. Supplement:official journal of the International Society of Hypertension,1989,7(4):S61-4; discussion S65.
    16. Golding E M, Golding R M. Mathematical modelling of responses of cerebral blood vessels to changing intraluminal pressure[J]. Physiological measurement,2001, 22(4):727.
    17. Ngai A C, Winn H R. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure[J]. Circulation Research,1995,77(4):832-840.
    18. Schubert R, Mulvany M J. The myogenic response:established facts and attractive hypotheses[J]. Clinical Science,1999,96:313-326.
    19. Thorin-Trescases N, Bartolotta T, Hyman N, et al. Diameter dependence of myogenic tone of human pial arteries possible relation to distensibility[J]. Stroke, 1997,28(12):2486-2492.
    20. Buxton R B, Uludag K, Dubowitz D J, et al. Modeling the hemodynamic response to brain activation[J]. Neuroimage,2004,23:S220-S233.
    21. Faraci F M, Brian J E. Nitric oxide and the cerebral circulation[J]. Stroke,1994, 25(3):692-703.
    22. Faraci F M, Heistad D D. Regulation of the cerebral circulation:role of endothelium and potassium channels[J]. Physiological Reviews,1998,78(1):53-98.
    23. Hyder F, Shulman R G, Rothman D L. A model for the regulation of cerebral oxygen delivery[J]. Journal of applied physiology,1998,85(2):554-564.
    24. Kuschinsky W. Coupling of function, metabolism, and blood flow in the brain[J]. Neurosurgical review,1991,14(3):163-168.
    25. Moody M, Panerai R B, Eames P J, et al. Cerebral and systemic hemodynamic changes during cognitive and motor activation paradigms[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2005,288(6): R1581-R1588.
    26. Payne S J. A model of the interaction between autoregulation and neural activation in the brain[J]. Mathematical biosciences,2006,204(2):260-281.
    27. Zonta M, Angulo M C, Gobbo S, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation[J]. Nature neuroscience,2003,6(1): 43-50.
    28. MILLAR R A. Neurogenic Control of the Cerebral Circulation[J]. International anesthesiology clinics,1969,7(3):539-556.
    29. Busija D W, Heistad D D. Factors involved in the physiological regulation of the cerebral circulation[M]. Springer Berlin Heidelberg,1984.
    30. Faraci F M, Heistad D D. Regulation of large cerebral arteries and cerebral micro vascular pressure[J]. Circulation Research,1990,66(1):8-17.
    31. Hamel E. Perivascular nerves and the regulation of cerebrovascular tone[J]. Journal of Applied Physiology,2006,100(3):1059-1064.
    32. Micieli G, Tassorelli C, Bosone D, et al. Intracerebral vascular changes induced by cold pressor test:a model of sympathetic activation[J]. Neurological research,1994, 16(3):163-167.
    33. Roatta S, Micieli G, Bosone D, et al. Effect of generalised sympathetic activation by cold pressor test on cerebral haemodynamics in healthy humans[J]. Journal of the autonomic nervous system,1998,71(2):159-166.
    34. Zhang R, Zuckerman J H, Iwasaki K, et al. Autonomic neural control of dynamic cerebral autoregulation in humans[J]. Circulation,2002,106(14):1814-1820.
    35. Ogawa A, Nakamura N, Yoshimoto T, et al. Cerebral blood flow in Moyamoya disease part 2:Autoregulation and CO2 response[J]. Acta neurochirurgica,1990, 105(3-4):107-111.
    36. Lee M, Zaharchuk G, Guzman R, et al. Quantitative hemodynamic studies in moyamoya disease:a review[J]. Neurosurgical focus,2009,26(4):E5.
    37. Piao R, Oku N, Kitagawa K, et al. Cerebral hemodynamics and metabolism in adult moyamoya disease:comparison of angiographic collateral circulation[J]. Annals of nuclear medicine,2004,18(2):115-121.
    38. Kang K H, Kim H S, Kim S Y. Quantitative cerebrovascular reserve measured by acetazolamide-challenged dynamic CT perfusion in ischemic adult Moyamoya disease:initial experience with angiographic correlation[J]. American Journal of Neuroradiology,2008,29(8):1487-1493.
    39. Panerai R B. Cerebral autoregulation:from models to clinical applications[J]. Cardiovascular Engineering,2008,8(1):42-59.
    40. Panerai R B. Assessment of cerebral pressure autoregulation in humans-a review of measurement methods [J]. Physiological measurement,1998,19(3):305.
    41. Aaslid R, Lindegaard K F, Sorteberg W, et al. Cerebral autoregulation dynamics in humans[J]. Stroke,1989,20(1):45-52.
    42. Tiecks F P, Lam A M, Aaslid R, et al. Comparison of static and dynamic cerebral autoregulation measurements[J]. Stroke,1995,26(6):1014-1019.
    43. Diehl R R, Linden D, Liicke D, et al. Phase Relationship Between Cerebral Blood Flow Velocity and Blood Pressure A Clinical Test of Autoregulation[J]. Stroke,1995, 26(10):1801-1804.
    44. Blaber A P, Bondar R L, Stein F, et al. Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients[J]. Stroke,1997,28(9): 1686-1692.
    45. Zhang R, Zuckerman J H, Giller C A, et al. Transfer function analysis of dynamic cerebral autoregulation in humans[J]. American Journal of Physiology-Heart and Circulatory Physiology,1998,274(1):H233-H241.
    46. Hu H H, Kuo T B J, Wong W J, et al. Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis[J]. Journal of Cerebral Blood Flow & Metabolism,1999,19(4):460-465.
    47. Immink R V, van Montfrans G A, Stam J, et al. Dynamic cerebral autoregulation in acute lacunar and middle cerebral artery territory ischemic stroke[J]. Stroke,2005, 36(12):2595-2600.
    48. Reinhard M, Roth M, Guschlbauer B, et al. Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations[J]. Stroke, 2005,36(8):1684-1689.
    49. Reinhard M, Wihler C, Roth M, et al. Cerebral autoregulation dynamics in acute ischemic stroke after rtPA thrombolysis[J]. Cerebrovascular Diseases,2008,26(2): 147-155.
    50. Gommer E D, Staals J, Van Oostenbrugge R J, et al. Dynamic cerebral autoregulation and cerebrovascular reactivity:a comparative study in lacunar infarct patients[J]. Physiological measurement,2008,29(11):1293.
    51. Reinhard M, Rutsch S, Lambeck J, et al. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke[J]. Acta Neurologica Scandinavica,2012,125(3):156-162.
    52. Guo Z N, Liu J, Xing Y, et al. Dynamic Cerebral Autoregulation Is Heterogeneous in Different Subtypes of Acute Ischemic Stroke[J]. PloS one,2014,9(3):e93213.
    53. Reinhard M, Hetzel A, Lauk M, et al. Dynamic cerebral autoregulation testing as a diagnostic tool in patients with carotid artery stenosis[J]. Neurological research, 2001,23(1):55-63.
    54. Reinhard M, Roth M, Muller T, et al. Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index[J]. Stroke,2003,34(9):2138-2144.
    55. Reinhard M, Muller T, Guschlbauer B, et al. Dynamic cerebral autoregulation and collateral flow patterns in patients with severe carotid stenosis or occlusion[J]. Ultrasound in medicine & biology,2003,29(8):1105-1113.
    56. Reinhard M, Miiller T, Roth M, et al. Bilateral severe carotid artery stenosis or occlusion-cerebral autoregulation dynamics and collateral flow patterns[J]. Acta neurochirurgica,2003,145(12):1053-1060.
    57. Reinhard M, Miiller T, Guschlbauer B, et al. Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation-a comparison between spontaneous and respiratory-induced oscillations[J]. Physiological measurement,2003,24(1):27.
    58. Reinhard M, Roth M, Miiller T, et al. Effect of carotid endarterectomy or stenting on impairment of dynamic cerebral autoregulation[J]. Stroke,2004,35(6):1381-1387.
    59. Reinhard M, Gerds T A, Grabiak D, et al. Cerebral dysautoregulation and the risk of ischemic events in occlusive carotid artery disease[J]. Journal of neurology,2008, 255(8):1182-1189.
    60. Chen J, Liu J, Xu W H, et al. Impaired Dynamic Cerebral Autoregulation and Cerebrovascular Reactivity in Middle Cerebral Artery Stenosis[J]. PloS one,2014, 9(2):e88232.
    61. Haubrich C, Kruska W, Diehl R R, et al. Dynamic autoregulation testing in patients with middle cerebral artery stenosis[J]. Stroke,2003,34(8):1881-1885.
    62. Liu J, Simpson D M, Allen R. High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation[J]. Physiological measurement,2005,26(5):725.
    63. Aries M J H, Elting J W, De Keyser J, et al. Cerebral autoregulation in stroke a review of transcranial Doppler studies[J]. Stroke,2010,41(11):2697-2704.
    64. Sloan M A, Alexandrov A V, Tegeler C H, et al. Assessment:transcranial Doppler ultrasonography report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology[J]. Neurology,2004,62(9): 1468-1481.
    65. Mugikura S, Takahashi S, Higano S, et al. Predominant involvement of ipsilateral anterior and posterior circulations in moyamoya disease[J]. Stroke,2002,33(6): 1497-1500.
    66. Mugikura S, Takahashi S, Higano S, et al. The relationship between cerebral infarction and angiographic characteristics in childhood moyamoya disease[J]. American journal of neuroradiology,1999,20(2):336-343.
    67. Chen J, Duan L, Xu W H, et al. Microembolic signals predict cerebral ischaemic events in patients with moyamoya disease[J]. European Journal of Neurology,2014.
    68. Wong K S, Gao S, Chan Y L, et al. Mechanisms of acute cerebral infarctions in patients with middle cerebral artery stenosis:A diffusion-weighted imaging and microemboli monitoring study [J]. Annals of neurology,2002,52(1):74-81.
    69. Caplan L R, Wong K S, Gao S, et al. Is hypoperfusion an important cause of strokes? If so, how?[J]. Cerebrovascular diseases,2006,21(3):145-153.
    70. GAO S, Wang D. Chinese ischemic stroke subclassification[J]. Frontiers in neurology,2011,2:6.
    71. Iwama T, Morimoto M, Hashimoto N, et al. Mechanism of intracranial rebleeding in moyamoya disease[J]. Clinical neurology and neurosurgery,1997,99:S187-S190.
    72. Powers W J. Cerebral hemodynamics in ischemic cerebrovascular disease[J]. Annals of neurology,1991,29(3):231-240.
    73. Gibbs J M, Leenders K L, Wise R J S, et al. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion[J]. The Lancet,1984,323(8372):310-314.
    74. Derdeyn C P, Videen T O, Yundt K D, et al. Variability of cerebral blood volume and oxygen extraction:stages of cerebral haemodynamic impairment revisited[J]. Brain, 2002,125(3):595-607.
    75. Sette G, Baron J C, Mazoyer B, et al. Local brain hemodynamics and oxygen metabolism in cerebrovascular disease:positron emission tomography[J]. Brain, 1989,112(4):931-951
    76. Ito H, Kanno I, Kato C, et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen:a multicentre study in Japan[J]. European journal of nuclear medicine and molecular imaging,2004,31(5):635-643.
    77. Horowitz M, Yonas H, Albright A L. Evaluation of cerebral blood flow and hemodynamic reserve in symptomatic moyamoya disease using stable Xenon-CT blood flow[J]. Surgical neurology,1995,44(3):251-262.
    78. McAuley D J, Poskitt K, Steinbok P. Predicting stroke risk in pediatric moyamoya disease with xenon-enhanced computed tomography[J]. Neurosurgery,2004,55(2): 327-333.
    79. Suzuki R, Nariai T, Matsushima Y, et al. Xe-CT in cerebrovascular disease and moyamoya disease[J]. Acta Neurologica Scandinavica,1996,93(s166):69-71.
    80. Takeuchi S, Tanaka R, Ishii R, et al. Cerebral hemodynamics in patients with Moyamoya disease. A study of regional cerebral blood flow by the< sup> 133 Xe inhalation method[J]. Surgical neurology,1985,23(5):468-474.
    81. Ikezaki K, Matsushima T, Kuwabara Y, et al. Cerebral circulation and oxygen metabolism in childhood moyamoya disease:a perioperative positron emission tomography study[J]. Journal of neurosurgery,1994,81(6):843-850.
    82. Nariai T, Matsushima Y, Imae S, et al. Severe haemodynamic stress in selected subtypes of patients with moyamoya disease:a positron emission tomography study[J]. Journal of Neurology, Neurosurgery & Psychiatry,2005,76(5):663-666.
    83. Saito N, Nakagawara J, Nakamura H, et al. Assessment of cerebral hemodynamics in childhood moyamoya disease using a quantitative and a semiquantitative IMP-SPECT study[J]. Annals of nuclear medicine,2004,18(4):323-331.
    84. So Y, Lee H Y, Kim S K, et al. Prediction of the clinical outcome of pediatric moyamoya disease with postoperative basal/acetazolamide stress brain perfusion SPECT after revascularization surgery[J]. Stroke,2005,36(7):1485-1489.
    85. Touho H, Karasawa J, Ohnishi H. Preoperative and postoperative evaluation of cerebral perfusion and vasodilatory capacity with 99mTc-HMPAO SPECT and acetazolamide in childhood Moyamoya disease[J]. Stroke,1996,27(2):282-289.
    86. Kuwabara Y, Ichiya Y, Sasaki M, et al. Response to Hypercapnia in Moyamoya Disease Cerebrovascular Response to Hypercapnia in Pediatric and Adult Patients With Moyamoya Disease[J]. Stroke,1997,28(4):701-707.
    87. Rim N J, Kim H S, Shin Y S, et al. Which CT perfusion parameter best reflects cerebrovascular reserve?:correlation of acetazolamide-challenged CT perfusion with single-photon emission CT in Moyamoya patients[J]. American Journal of Neuroradiology,2008,29(9):1658-1663.
    88. Sakamoto S, Ohba S, Shibukawa M, et al. CT perfusion imaging for childhood moyamoya disease before and after surgical revascularization[J]. Acta neurochirurgica,2006,148(1):77-81.
    89. Tanaka Y, Nariai T, Nagaoka T, et al. Quantitative evaluation of cerebral hemodynamics in patients with moyamoya disease by dynamic susceptibility contrast magnetic resonance imaging-comparison with positron emission tomography [J]. Journal of Cerebral Blood Flow & Metabolism,2006,26(2): 291-300.
    90. Donohue M M, Moore A, Shibata D, et al. Transcranial Doppler ultrasound CO2 challenge complicated by subarachnoid hemorrhage in patient with moyamoya syndrome[J]. Neurocritical care,2010,13(2):243-246.
    91. Giller C A, Bowman G, Dyer H, et al. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy[J]. Neurosurgery,1993,32(5): 737-742.
    92. Newell D W, Aaslid R, Lam A, et al. Comparison of flow and velocity during dynamic autoregulation testing in humans[J]. Stroke,1994,25(4):793-797.
    93. Serrador J M, Picot P A, Rutt B K, et al. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis[J]. Stroke,2000,31(7): 1672-1678.
    1. Wong L K S. Global burden of intracranial atherosclerosis[J]. International Journal of Stroke,2006,1(3):158-159.
    2. Wong K S, Huang Y N, Gao S, et al. Intracranial stenosis in Chinese patients with acute stroke[J]. Neurology,1998,50(3):812-813.
    3. Huang Y N, Gao S, Li S W, et al. Vascular lesions in Chinese patients with transient ischemic attacks[J]. Neurology,1997,48(2):524-525.
    4. Bang O Y, Kim J W, Lee J H, et al. Association of the metabolic syndrome with intracranial atherosclerotic stroke[J]. Neurology,2005,65(2):296-298.
    5. Nam H S, Han S W, Lee J Y, et al. Association of aortic plaque with intracranial atherosclerosis in patients with stroke[J]. Neurology,2006,67(7):1184-1188.
    6. Suh D C, Lee S H, Kim K R, et al. Pattern of atherosclerotic carotid stenosis in Korean patients with stroke:different involvement of intracranial versus extracranial vessels[J]. American journal of neuroradiology,2003,24(2):239-244.
    7. Leung S Y, Ng T H, Yuen S T, et al. Pattern of cerebral atherosclerosis in Hong Kong Chinese. Severity in intracranial and extracranial vessels[J]. Stroke,1993, 24(6):779-786.
    8. Thajeb P. Large vessel disease in Chinese patients with capsular infarcts and prior ipsilateral transient ischaemia[J]. Neuroradiology,1993,35(3):190-195.
    9. Feldmann E, Daneault N, Kwan E, et al. Chinese-white differences in the distribution of occlusive cerebrovascular disease[J]. Neurology,1990,40(10): 1540-1540.
    10. Ryu S J. Angiographic features in Chinese patients with occlusive cerebro vascular disease[J]. Stroke,1987,18(3):686-686.
    11. Li H, Wong K S, Kay R. Relationship between the Oxfordshire Community Stroke Project classification and vascular abnormalities in patients with predominantly intracranial atherosclerosis[J]. Journal of the neurological sciences,2003,207(1): 65-69.
    12. Li H, Wong K S. Racial distribution of intracranial and extracranial atherosclerosis [J]. Journal of clinical neuroscience,2003,10(1):30-34.
    13. Liu H M, Tu Y K, Yip P K, et al. Evaluation of intracranial and extracranial carotid steno-occlusive diseases in Taiwan Chinese patients with MR angiography preliminary experience[J]. Stroke,1996,27(4):650-653.
    14. Diehl R R, Linden D, Lucke D, et al. Phase Relationship Between Cerebral Blood Flow Velocity and Blood Pressure A Clinical Test of Autoregulation[J]. Stroke,1995, 26(10):1801-1804.
    15. Hu H H, Kuo T B J, Wong W J, et al. Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis[J]. Journal of Cerebral Blood Flow & Metabolism,1999,19(4):460-465.
    16. Reinhard M, Hetzel A, Lauk M, et al. Dynamic cerebral autoregulation testing as a diagnostic tool in patients with carotid artery stenosis[J]. Neurological research, 2001,23(1):55-63.
    17. Reinhard M, Roth M, Miiller T, et al. Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index[J]. Stroke,2003,34(9):2138-2144.
    18. Reinhard M, Miiller T, Guschlbauer B, et al. Dynamic cerebral autoregulation and collateral flow patterns in patients with severe carotid stenosis or occlusion[J]. Ultrasound in medicine & biology,2003,29(8):1105-1113.
    19. Reinhard M, Miiller T, Roth M, et al. Bilateral severe carotid artery stenosis or occlusion-cerebral autoregulation dynamics and collateral flow patterns [J]. Acta neurochirurgica,2003,145(12):1053-1060.
    20. Reinhard M, Miiller T, Guschlbauer B, et al. Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation-a comparison between spontaneous and respiratory-induced oscillations[J]. Physiological measurement,2003,24(1):27.
    21. Reinhard M, Roth M, Muller T, et al. Effect of carotid endarterectomy or stenting on impairment of dynamic cerebral autoregulation[J]. Stroke,2004,35(6):1381-1387.
    22. Reinhard M, Gerds T A, Grabiak D, et al. Cerebral dysautoregulation and the risk of ischemic events in occlusive carotid artery disease[J]. Journal of neurology,2008, 255(8):1182-1189.
    23. Kleiser B, Widder B. Course of carotid artery occlusions with impaired cerebrovascular reactivity[J]. Stroke; a journal of cerebral circulation,1992,23(2): 171.
    24. Ogasawara K, Ogawa A, Yoshimoto T. Cerebrovascular Reactivity to Acetazolamide and Outcome in Patients With Symptomatic Internal Carotid or Middle Cerebral Artery Occlusion A Xenon-133 Single-Photon Emission Computed Tomography Study[J]. Stroke,2002,33(7):1857-1862.
    25. Silvestrini M, Troisi E, Matteis M, et al. Transcranial Doppler assessment of cerebrovascular reactivity in symptomatic and asymptomatic severe carotid stenosis[J]. Stroke,1996,27(11):1970-1973.
    26. Smielewski P, Czosnyka M, Pickard J D, et al. Clinical evaluation of near-infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery disease[J]. Stroke,1997,28(2):331-338.
    27. Hartl W H, Janssen I, Furst H. Effect of carotid endarterectomy on patterns of cerebrovascular reactivity in patients with unilateral carotid artery stenosis[J]. Stroke,1994,25(10):1952-1957.
    28. Ziyeh S, Rick J, Reinhard M, et al. Blood Oxygen Level-Dependent MRI of Cerebral CO2 Reactivity in Severe Carotid Stenosis and Occlusion[J]. Stroke,2005, 36(4):751-756.
    29. Silvestrini M, Vernieri F, Troisi E, et al. Cerebrovascular reactivity in carotid artery occlusion:possible implications for surgical management of selected groups of patients[J]. Acta neurologica scandinavica,1999,99(3):187-191.
    30. Sfyroeras G, Karkos C D, Liasidis C, et al. The impact of carotid stenting on the hemodynamic parameters and cerebrovascular reactivity of the ipsilateral middle cerebral artery[J]. Journal of vascular surgery,2006,44(5):1016-1022.
    31. Vernieri F, Pasqualetti P, Matteis M, et al. Effect of collateral blood flow and cerebral vasomotor reactivity on the outcome of carotid artery occlusion[J]. Stroke, 2001,32(7):1552-1558.
    32. Vernieri F, Pasqualetti P, Passarelli F, et al. Outcome of carotid artery occlusion is predicted by cerebrovascular reactivity[J]. Stroke,1999,30(3):593-598.
    33. Webster M W, Makaroun M S, Steed D L, et al. Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease[J]. Journal of vascular surgery,1995,21(2):338-345.
    34. Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion[J]. Brain, 2001,124(3):457-467.
    35. Silvestrini M, Vernieri F, Pasqualetti P, et al. Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis[J]. Jama,2000, 283(16):2122-2127.
    36. Marshall R S, Rundek T, Sproule D M, et al. Monitoring of cerebral vasodilatory capacity with transcranial Doppler carbon dioxide inhalation in patients with severe carotid artery disease[J]. Stroke,2003,34(4):945-949.
    37. King A, Serena J, Bornstein N M, et al. Does impaired cerebrovascular reactivity predict stroke risk in asymptomatic carotid stenosis? A prospective substudy of the asymptomatic carotid emboli study[J]. Stroke,2011,42(6):1550-1555.
    38. Haubrich C, Kruska W, Diehl R R, et al. Dynamic autoregulation testing in patients with middle cerebral artery stenosis[J]. Stroke,2003,34(8):1881-1885.
    39. Gong X, Li Y, Jiang W, et al. Impaired dynamic cerebral autoregulation in middle cerebral artery stenosis[J]. Neurological research,2006,28(1):76-81.
    40. Lee J Y, Lee Y S. Vasomotor reactivity in middle cerebral artery stenosis[J]. Journal of the neurological sciences,2011,301(1):35-37.
    41. Lassen N A. Cerebral blood flow and oxygen consumption in man[J]. Physiol. Rev., 1959,39:183-238.
    41. Paulson O B, Strandgaard S, Edvinsson L. Cerebral autoregulation[J]. Cerebrovascular and brain metabolism reviews,1989,2(2):161-192.
    42. Faraci F M, Baumbach G L, Heistad D D. Myogenic mechanisms in the cerebral circulation[J]. Journal of hypertension. Supplement:official journal of the International Society of Hypertension,1989,7(4):S61-4; discussion S65.
    43. Golding E M, Golding R M. Mathematical modelling of responses of cerebral blood vessels to changing intraluminal pressure[J]. Physiological measurement,2001, 22(4):727.
    44. Ngai A C, Winn H R. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure[J]. Circulation Research,1995,77(4):832-840.
    45. Schubert R, Mulvany M J. The myogenic response:established facts and attractive hypotheses[J]. Clinical Science,1999,96:313-326.
    46. Thorin-Trescases N, Bartolotta T, Hyman N, et al. Diameter dependence of myogenic tone of human pial arteries possible relation to distensibility[J]. Stroke, 1997,28(12):2486-2492.
    47. Buxton R B, Uludag K, Dubowitz D J, et al. Modeling the hemodynamic response to brain activation[J]. Neuroimage,2004,23:S220-S233.
    48. Faraci F M, Brian J E. Nitric oxide and the cerebral circulation[J]. Stroke,1994, 25(3):692-703.
    49. Faraci F M, Heistad D D. Regulation of the cerebral circulation:role of endothelium and potassium channels[J]. Physiological Reviews,1998,78(1):53-98.
    50. Hyder F, Shulman R G, Rothman D L. A model for the regulation of cerebral oxygen delivery[J]. Journal of applied physiology,1998,85(2):554-564.
    51. Kuschinsky W. Coupling of function, metabolism, and blood flow in the brain[J]. Neurosurgical review,1991,14(3):163-168.
    52. Moody M, Panerai R B, Eames P J, et al. Cerebral and systemic hemodynamic changes during cognitive and motor activation paradigms[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2005,288(6): R1581-R1588.
    53. Payne S J. A model of the interaction between autoregulation and neural activation in the brain[J]. Mathematical biosciences,2006,204(2):260-281.
    54. Zonta M, Angulo M C, Gobbo S, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation[J]. Nature neuroscience,2003,6(1): 43-50.
    55. MILLAR R A. Neurogenic Control of the Cerebral Circulation[J]. International anesthesiology clinics,1969,7(3):539-556.
    56. Busija D W, Heistad D D. Factors involved in the physiological regulation of the cerebral circulation[M]. Springer Berlin Heidelberg,1984.
    57. Faraci F M, Heistad D D. Regulation of large cerebral arteries and cerebral microvascular pressure[J]. Circulation Research,1990,66(1):8-17.
    58. Hamel E. Perivascular nerves and the regulation of cerebrovascular tone[J]. Journal of Applied Physiology,2006,100(3):1059-1064.
    59. Micieli G, Tassorelli C, Bosone D, et al. Intracerebral vascular changes induced by cold pressor test:a model of sympathetic activation[J]. Neurological research,1994, 16(3):163-167.
    60. Roatta S, Micieli G, Bosone D, et al. Effect of generalised sympathetic activation by cold pressor test on cerebral haemodynamics in healthy humans[J]. Journal of the autonomic nervous system,1998,71(2):159-166.
    61. Zhang R, Zuckerman J H, Iwasaki K, et al. Autonomic neural control of dynamic cerebral autoregulation in humans [J]. Circulation,2002,106(14):1814-1820.
    62. Madden J A. The effect of carbon dioxide on cerebral arteries[J]. Pharmacology & therapeutics,1993,59(2):229-250.
    63. Panerai R B. Cerebral autoregulation:from models to clinical applications[J]. Cardiovascular Engineering,2008,8(1):42-59.
    64. Panerai R B. Assessment of cerebral pressure autoregulation in humans-a review of measurement methods[J]. Physiological measurement,1998,19(3):305.
    65. Aaslid R, Lindegaard K F, Sorteberg W, et al. Cerebral autoregulation dynamics in humans[J]. Stroke,1989,20(1):45-52.
    66. Tiecks F P, Lam A M, Aaslid R, et al. Comparison of static and dynamic cerebral autoregulation measurements[J]. Stroke,1995,26(6):1014-1019.
    67. Blaber A P, Bondar R L, Stein F, et al. Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients[J]. Stroke,1997,28(9): 1686-1692.
    68. Zhang R, Zuckerman J H, Giller C A, et al. Transfer function analysis of dynamic cerebral autoregulation in humans[J]. American Journal of Physiology-Heart and Circulatory Physiology,1998,274(1):H233-H241.
    69. Immink R V, van Montfrans G A, Stam J, et al. Dynamic cerebral autoregulation in acute lacunar and middle cerebral artery territory ischemic stroke[J]. Stroke,2005, 36(12):2595-2600.
    70. Reinhard M, Roth M, Guschlbauer B, et al. Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations[J]. Stroke,2005,36(8):1684-1689.
    71. Reinhard M, Wihler C, Roth M, et al. Cerebral autoregulation dynamics in acute ischemic stroke after rtPA thrombolysis[J]. Cerebrovascular Diseases,2008,26(2): 147-155.
    72. Gommer E D, Staals J, Van Oostenbrugge R J, et al. Dynamic cerebral autoregulation and cerebrovascular reactivity:a comparative study in lacunar infarct patients[J]. Physiological measurement,2008,29(11):1293.
    73. Reinhard M, Rutsch S, Lambeck J, et al. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke[J]. Acta Neurologica Scandinavica,2012,125(3):156-162.
    74. Guo Z N, Liu J, Xing Y, et al. Dynamic Cerebral Autoregulation Is Heterogeneous in Different Subtypes of Acute Ischemic Stroke[J]. PloS one,2014,9(3):e93213.
    75. Matsushita K, Kuriyama Y, Nagatsuka K, et al. Periventricular white matter lucency and cerebral blood flow autoregulation in hypertensive patients[J]. Hypertension, 1994,23(5):565-568.
    76. Kozera G M, Dubaniewicz M, Zdrojewski T, et al. Cerebral vasomotor reactivity and extent of white matter lesions in middle-aged men with arterial hypertension:a pilot study[J]. American journal of hypertension,2010,23(11):1198-1203.
    77. Purkayastha S, Fadar O, Mehregan A, et al. Impaired cerebrovascular hemodynamics are associated with cerebral white matter damage[J]. Journal of Cerebral Blood Flow & Metabolism,2013.
    78. Liu J, Simpson D M, Allen R. High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation[J]. Physiological measurement,2005,26(5):725.
    79. Aries M J H, Elting J W, De Keyser J, et al. Cerebral autoregulation in stroke a review of transcranial Doppler studies[J]. Stroke,2010,41(11):2697-2704.
    80. Kwan J, Lunt M, Jenkinson D. Assessing dynamic cerebral autoregulation after stroke using a novel technique of combining transcranial Doppler ultrasonography and rhythmic handgrip[J]. Blood pressure monitoring,2004,9(1):3-8.
    81. Scheltens P, Erkinjunti T, Leys D, et al. White matter changes on CT and MRI:an overview of visual rating scales[J]. European neurology,1998,39(2):80-89.
    82. Sloan M A, Alexandrov A V, Tegeler C H, et al. Assessment:transcranial Doppler ultrasonography report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology[J]. Neurology,2004,62(9): 1468-1481.
    83. Wong K S, Lam W W M, Liang E, et al. Variability of magnetic resonance angiography and computed tomography angiography in grading middle cerebral artery stenosis[J]. Stroke,1996,27(6):1084-1087.
    84. Chen J, Liu J, Duan L, et al. Impaired Dynamic Cerebral Autoregulation in Moyamoya Disease[J]. CNS neuroscience & therapeutics,2013,19(8):638-640.
    85. Birns J, Jarosz J, Markus H S, et al. Cerebrovascular reactivity and dynamic autoregulation in ischaemic subcortical white matter disease[J]. Journal of Neurology, Neurosurgery & Psychiatry,2009,80(10):1093-1098.
    86. van Lieshout J J, Wieling W. Perfusion of the human brain:a matter of interactions[J]. The Journal of physiology,2003,551(2):402-402.
    87. Marmarelis V Z, Shin D C, Orme M E, et al. Closed-loop dynamic modeling of cerebral hemodynamics[J]. Annals of biomedical engineering,2013,41(5): 1029-1048.
    88. Kostoglou K, Debert C T, Poulin M J, et al. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia[J]. Medical engineering & physics, 2013.
    89. Peng T, Rowley A B, Ainslie P N, et al. Multivariate system identification for cerebral autoregulation[J]. Annals of biomedical engineering,2008,36(2):308-320.
    90. Liu J, Koochakpour H, Panerai R B, et al. Tracking instantaneous pressure-to-flow dynamics of cerebral autoregulation induced by CO2 reactivity[C]//Engineering in Medicine and Biology Society (EMBC),2013 35th Annual International Conference of the IEEE. IEEE,2013:3929-3932.
    91. Wong K S, Gao S, Chan Y L, et al. Mechanisms of acute cerebral infarctions in patients with middle cerebral artery stenosis:A diffusion-weighted imaging and microemboli monitoring study[J]. Annals of neurology,2002,52(1):74-81.
    92. Caplan L R, Wong K S, Gao S, et al. Is hypoperfusion an important cause of strokes? If so, how?[J]. Cerebrovascular diseases,2006,21(3):145-153.
    93. GAO S, Wang D. Chinese ischemic stroke subclassification[J]. Frontiers in neurology,2011,2:6.
    94. Powers W J. Cerebral hemodynamics in ischemic cerebrovascular disease[J]. Annals of neurology,1991,29(3):231-240.
    95. Gibbs J M, Leenders K L, Wise R J S, et al. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion[J]. The Lancet,1984,323(8372):310-314.
    96. Derdeyn C P, Videen T O, Yundt K D, et al. Variability of cerebral blood volume and oxygen extraction:stages of cerebral haemodynamic impairment revisited[J]. Brain, 2002,125(3):595-607.
    97. Sette G, Baron J C, Mazoyer B, et al. Local brain hemodynamics and oxygen metabolism in cerebrovascular disease:positron emission tomography [J]. Brain, 1989,112(4):931-951
    98. Ito H, Kanno I, Kato C, et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 150-labelled carbon dioxide or water, carbon monoxide and oxygen:a multicentre study in Japan[J]. European journal of nuclear medicine and molecular imaging,2004,31(5): 635-643.
    99. Lau A Y L, Wong E H C, Wong A, et al. Significance of good collateral compensation in symptomatic intracranial atherosclerosis[J]. Cerebrovascular Diseases,2012,33(6):517-524.
    100. Giller C A, Bowman G, Dyer H, et al. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy[J]. Neurosurgery,1993,32(5): 737-742.
    101. Newell D W, Aaslid R, Lam A, et al. Comparison of flow and velocity during dynamic autoregulation testing in humans[J]. Stroke,1994,25(4):793-797.
    102. Serrador J M, Picot P A, Rutt B K, et al. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis[J]. Stroke,2000,31(7): 1672-1678.
    1. Panerai R B. Cerebral autoregulation:from models to clinical applications[J]. Cardiovascular Engineering,2008,8(1):42-59.
    2. Aries M J H, Elting J W, De Keyser J, et al. Cerebral autoregulation in stroke a review of transcranial Doppler studies[J]. Stroke,2010,41(11):2697-2704.
    3. Schytz H W, Hansson A, Phillip D, et al. Spontaneous low-frequency oscillations in cerebral vessels:Applications in carotid artery disease and ischemic stroke[J]. Journal of Stroke and Cerebrovascular Diseases,2010,19(6):465-474.
    4. Lassen N A. Cerebral blood flow and oxygen consumption in man[J]. Physiol. Rev., 1959,39:183-238.
    5. Paulson O B, Strandgaard S, Edvinsson L. Cerebral autoregulation[J]. Cerebrovascular and brain metabolism reviews,1989,2(2):161-192.
    6. Aaslid R, Lindegaard K F, Sorteberg W, et al. Cerebral autoregulation dynamics in humans[J]. Stroke,1989,20(1):45-52.
    7. Faraci F M, Baumbach G L, Heistad D D. Myogenic mechanisms in the cerebral circulation[J]. Journal of hypertension. Supplement:official journal of the International Society of Hypertension,1989,7(4):S61-4; discussion S65.
    8. Golding E M, Golding R M. Mathematical modelling of responses of cerebral blood vessels to changing intraluminal pressure[J]. Physiological measurement,2001, 22(4):727.
    9. Ngai A C, Winn H R. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure[J]. Circulation Research,1995,77(4):832-840.
    10. Schubert R, Mulvany M J. The myogenic response:established facts and attractive hypotheses[J]. Clinical Science,1999,96:313-326.
    11. Thorin-Trescases N, Bartolotta T, Hyman N, et al. Diameter dependence of myogenic tone of human pial arteries possible relation to distensibility[J]. Stroke, 1997,28(12):2486-2492.
    12. Buxton R B, Uludag K, Dubowitz D J, et al. Modeling the hemodynamic response to brain activation[J]. Neuroimage,2004,23:S220-S233.
    13. Faraci F M, Brian J E. Nitric oxide and the cerebral circulation[J]. Stroke,1994, 25(3):692-703.
    14. Faraci F M, Heistad D D. Regulation of the cerebral circulation:role of endothelium and potassium channels[J]. Physiological Reviews,1998,78(1):53-98.
    15. Hyder F, Shulman R G, Rothman D L. A model for the regulation of cerebral oxygen delivery[J]. Journal of applied physiology,1998,85(2):554-564.
    16. Kuschinsky W. Coupling of function, metabolism, and blood flow in the brain[J]. Neurosurgical review,1991,14(3):163-168.
    17. Moody M, Panerai R B, Eames P J, et al. Cerebral and systemic hemodynamic changes during cognitive and motor activation paradigms[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2005,288(6): R1581-R1588.
    18. Payne S J. A model of the interaction between autoregulation and neural activation in the brain[J]. Mathematical biosciences,2006,204(2):260-281.
    19. Zonta M, Angulo M C, Gobbo S, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation[J]. Nature neuroscience,2003,6(1): 43-50.
    20. MILLAR R A. Neurogenic Control of the Cerebral CirculationfJ]. International anesthesiology clinics,1969,7(3):539-556.
    21. Busija D W, Heistad D D. Factors involved in the physiological regulation of the cerebral circulation[M]. Springer Berlin Heidelberg,1984.
    22. Faraci F M, Heistad D D. Regulation of large cerebral arteries and cerebral microvascular pressure[J]. Circulation Research,1990,66(1):8-17.
    23. Hamel E. Perivascular nerves and the regulation of cerebrovascular tone[J]. Journal of Applied Physiology,2006,100(3):1059-1064.
    24. Micieli G, Tassorelli C, Bosone D, et al. Intracerebral vascular changes induced by cold pressor test:a model of sympathetic activation[J]. Neurological research,1994, 16(3):163-167.
    25. Roatta S, Micieli G, Bosone D, et al. Effect of generalised sympathetic activation by cold pressor test on cerebral haemodynamics in healthy humans[J]. Journal of the autonomic nervous system,1998,71(2):159-166.
    26. Zhang R, Zuckerman J H, Iwasaki K, et al. Autonomic neural control of dynamic cerebral autoregulation in humans[J]. Circulation,2002,106(14):1814-1820.
    27. Aaslid R. Cerebral autoregulation and vasomotor reactivity[J].2006.
    28. Panerai R B. Assessment of cerebral pressure autoregulation in humans-a review of measurement methods[J]. Physiological measurement,1998,19(3):305.
    29. Paulson O B, Strandgaard S, Edvinsson L. Cerebral autoregulation[J]. Cerebrovascular and brain metabolism reviews,1989,2(2):161-192.
    30. Rosenblum W I. Autoregulatory plateau:does it exist?[J]. Journal of Cerebral Blood Flow & Metabolism,1995,15(1):174-174.
    31. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension[J]. Circulation,1976,53(4):720-727.
    32. Hu H H, Kuo T B J, Wong W J, et al. Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis[J]. Journal of Cerebral Blood Flow & Metabolism,1999,19(4):460-465.
    33. Blaber A P, Bondar R L, Stein F, et al. Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients[J]. Stroke,1997,28(9): 1686-1692.
    34. Zhang R, Zuckerman J H, Giller C A, et al. Transfer function analysis of dynamic cerebral autoregulation in humans[J]. American Journal of Physiology-Heart and Circulatory Physiology,1998,274(1):H233-H241.
    35. Liu J, Simpson D M, Allen R. High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation[J]. Physiological measurement,2005,26(5):725.
    36. Tiecks F P, Lam A M, Aaslid R, et al. Comparison of static and dynamic cerebral autoregulation measurements[J]. Stroke,1995,26(6):1014-1019.
    37. Cencetti S, Fattorini L, Bacalli S, et al. Potential pitfalls in cerebral autoregulation testing[J]. Cerebrovascular Diseases,1997,7:312.
    38. White R P, Markus H S. Impaired dynamic cerebral autoregulation in carotid artery stenosis[J]. Stroke,1997,28(7):1340-1344.
    39. Strebel S, Lam A, Matta B, et al. Dynamic and static cerebral autoregulation during isofiurane, desflurane, and propofol anesthesia[J]. Anesthesiology,1995,83(1): 66-76.
    40. Tiecks F P, Lam A M, Matta B F, et al. Effects of the Valsalva Maneuver on Cerebral Circulation in Healthy Adults A Transcranial Doppler Study[J]. Stroke,1995,26(8): 1386-1392.
    41. Junger E C, Newell D W, Grant G A, et al. Cerebral autoregulation following minor head injury[J]. Journal of neurosurgery,1997,86(3):425-432.
    42. Tiecks F P, Douville C, Byrd S, et al. Evaluation of impaired cerebral autoregulation by the Valsalva maneuver[J]. Stroke,1996,27(7):1177-1182.
    43. Schmidt B, Czosnyka M, Raabe A, et al. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation[J]. Stroke,2003,34(1):84-89.
    44. Giller C A. A bedside test for cerebral autoregulation using transcranial Doppler ultrasound[J]. Acta neurochirurgica,1991,108(1-2):7-14.
    45. Czosnyka M, Pickard J, Whitehouse H. The hyperaemic response to a transient reduction in cerebral perfusion pressure[J]. Acta neurochirurgica,1992,115(3-4): 90-97.
    46. Smielewski P, Czosnyka M, Kirkpatrick P, et al. Assessment of cerebral autoregulation using carotid artery compression[J]. Stroke,1996,27(12): 2197-2203.
    47. Diehl R R, Linden D, Lucke D, et al. Phase Relationship Between Cerebral Blood Flow Velocity and Blood Pressure A Clinical Test of Autoregulation[J]. Stroke,1995, 26(10):1801-1804.
    48. Birch A, Dirnhuber M, Hartley-Davies R, et al. Assessment of autoregulation by means of periodic changes in blood pressure. Stroke.1995; 26:834-837.
    49. De Boer R W, Karemaker J M, Strackee J. Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects I:a spectral analysis approach[J]. Medical and Biological Engineering and Computing,1985, 23(4):352-358.
    50. Malliani A, Pagani M, Lombardi F, et al. Cardiovascular neural regulation explored in the frequency domain[J]. Circulation,1991,84(2):482-492.
    51. Panerai R B, James M A, Potter J F. Impulse response analysis of baroreceptor sensitivity[J], American Journal of Physiology-Heart and Circulatory Physiology, 1997,272(4):H1866-H1875.
    52. Czosnyka M, Brady K, Reinhard M, et al. Monitoring of cerebrovascular autoregulation:facts, myths, and missing links[J]. Neurocritical care,2009,10(3): 373-386.
    53. Kwan J, Lunt M, Jenkinson D. Assessing dynamic cerebral autoregulation after stroke using a novel technique of combining transcranial Doppler ultrasonography and rhythmic handgrip[J]. Blood pressure monitoring,2004,9(1):3-8.
    54. Immink R V, van Montfrans G A, Stam J, et al. Dynamic cerebral autoregulation in acute lacunar and middle cerebral artery territory ischemic stroke[J]. Stroke,2005, 36(12):2595-2600.
    55. Reinhard M, Wihler C, Roth M, et al. Cerebral autoregulation dynamics in acute ischemic stroke after rtPA thrombolysis[J]. Cerebrovascular Diseases,2008,26(2): 147-155.
    56. Reinhard M, Rutsch S, Lambeck J, et al. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke[J]. Acta Neurologica Scandinavica,2012,125(3):156-162.
    57. Guo Z N, Liu J, Xing Y, et al. Dynamic Cerebral Autoregulation Is Heterogeneous in Different Subtypes of Acute Ischemic Stroke[J]. PloS one,2014,9(3):e93213.
    58. Dawson S L, Blake M J, Panerai R B, et al. Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke[J]. Cerebrovascular Diseases, 2000,10(2):126-132.
    59. Dawson S L, Panerai R B, Potter J F. Serial changes in static and dynamic cerebral autoregulation after acute ischaemic stroke[J]. Cerebrovascular Diseases,2003, 16(1):69-75.
    60. Saeed N, Horsefield M, Panerai R B, et al. Can we substitute classical TCD with MRI for focal estimation of dynamic cerebral autoregulation (CA) performance[J]. Cerebrovasc Dis,2010,29(Suppl 1):25.
    61. Eames P J, Blake M J, Dawson S L, et al. Dynamic cerebral autoregulation and beat to beat blood pressure control are impaired in acute ischaemic stroke[J]. Journal of Neurology, Neurosurgery & Psychiatry,2002,72(4):467-472.
    62. Atkins E R, Brodie F G, Rafelt S E, et al. Dynamic cerebral autoregulation is compromised acutely following mild ischaemic stroke but not transient ischaemic attack[J]. Cerebrovascular Diseases,2009,29(3):228-235.
    63. Gommer E D, Staals J, Van Oostenbrugge R J, et al. Dynamic cerebral autoregulation and cerebrovascular reactivity:a comparative study in lacunar infarct patients[J]. Physiological measurement,2008,29(11):1293.
    64. Reinhard M, Roth M, Guschlbauer B, et al. Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations[J]. Stroke,2005,36(8):1684-1689.
    65. European Stroke Organisation (ESO) Executive Committee, ESO Writing Committee. Guidelines for management of ischaemic stroke and transient ischaemic attack 2008[J]. Cerebrovascular diseases,2008,25(5):457-507.
    66. Wallace J D, Levy L L. Blood pressure after stroke[J]. Jama,1981,246(19): 2177-2180.
    67. Britton M, Carlsson A, De Faire U. Blood pressure course in patients with acute stroke and matched controls[J]. Stroke,1986,17(5):861-864.
    68. Qureshi A I, Ezzeddine M A, Nasar A, et al. Prevalence of elevated blood pressure in 563704 adult patients with stroke presenting to the ED in the United States[J]. The American journal of emergency medicine,2007,25(1):32-38.
    69. Leonardi-Bee J, Bath P M W, Phillips S J, et al. Blood pressure and clinical outcomes in the International Stroke Trial[J]. Stroke,2002,33(5):1315-1320.
    70. Willmot M, Leonardi-Bee J, Bath P M W. High blood pressure in acute stroke and subsequent outcome a systematic review[J]. Hypertension,2004,43(1):18-24.
    71. He J, Zhang Y, Xu T, et al. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke-The CATIS Randomized Clinical Trial[J]. JAMA,2014,311(5):479-489.
    72. Reinhard M, Hetzel A, Lauk M, et al. Dynamic cerebral autoregulation testing as a diagnostic tool in patients with carotid artery stenosis[J]. Neurological research, 2001,23(1):55-63.
    73. Haubrich C, Klemm A, Diehl R R, et al. M-wave analysis and passive tilt in patients with different degrees of carotid artery disease[J]. Acta neurologica scandinavica,2004,109(3):210-216.
    74. Reinhard M, Muller T, Roth M, et al. Bilateral severe carotid artery stenosis or occlusion-cerebral autoregulation dynamics and collateral flow patterns[J]. Acta neurochirurgica,2003,145(12):1053-1060.
    75. Reinhard M, Muller T, Guschlbauer B, et al. Dynamic cerebral autoregulation and collateral flow patterns in patients with severe carotid stenosis or occlusion[J]. Ultrasound in medicine & biology,2003,29(8):1105-1113.
    76. Reinhard M, Roth M, Muller T, et al. Effect of carotid endarterectomy or stenting on impairment of dynamic cerebral autoregulation[J]. Stroke,2004,35(6):1381-1387.
    77. Reinhard M, Gerds T A, Grabiak D, et al. Cerebral dysautoregulation and the risk of ischemic events in occlusive carotid artery disease[J]. Journal of neurology,2008, 255(8):1182-1189.
    78. Haubrich C, Kruska W, Diehl R R, et al. Dynamic autoregulation testing in patients with middle cerebral artery stenosis[J]. Stroke,2003,34(8):1881-1885.
    79. Chen J, Liu J, Xu W H, et al. Impaired Dynamic Cerebral Autoregulation and Cerebrovascular Reactivity in Middle Cerebral Artery Stenosis[J]. PloS one,2014, 9(2):e88232.
    80. Gong X, Li Y, Jiang W, et al. Impaired dynamic cerebral autoregulation in middle cerebral artery stenosis[J]. Neurological research,2006,28(1):76-81.
    81. Haubrich C, Kohnke A, Diehl R R, et al. Impact of vertebral artery disease on dynamic cerebral autoregulation[J]. Acta neurologica scandinavica,2005,112(5): 309-316.
    82. Haubrich C, Kohnke A, Kloetzsch C, et al. Bilateral vertebral artery disease: transcranial Doppler assessment of the hemodynamic vulnerability to changes in posture[J]. Ultrasound in medicine & biology,2006,32(10):1485-1491.
    83. Gong X, Liu J, Dong P, et al. Assessment of Dynamic Cerebral Autoregulation in Patients with Basilar Artery Stenosis[J]. PloS one,2013,8(10):e77802.
    84. Fritzsch C, Rosengarten B, Guschlbauer B, et al. Neurovascular coupling and cerebral autoregulation in patients with stenosis of the posterior cerebral artery[J]. Journal of Neuroimaging,2010,20(4):368-372.
    85. Chen J, Liu J, Duan L, et al. Impaired Dynamic Cerebral Autoregulation in Moyamoya Disease[J]. CNS neuroscience & therapeutics,2013,19(8):638-640.
    86. Wong K S, Gao S, Chan Y L, et al. Mechanisms of acute cerebral infarctions in patients with middle cerebral artery stenosis:A diffusion-weighted imaging and microemboli monitoring study[J]. Annals of neurology,2002,52(1):74-81.
    87. Caplan L R, Wong K S, Gao S, et al. Is hypoperfusion an important cause of strokes? If so, how?[J]. Cerebrovascular diseases,2006,21(3):145-153.
    88. GAO S, Wang D. Chinese ischemic stroke subclassification[J]. Frontiers in neurology,2011,2:6.
    89. Hop J W, Rinkel G J E, Algra A, et al. Case-Fatality Rates and Functional Outcome After Subarachnoid Hemorrhage A Systematic Review[J]. Stroke,1997,28(3): 660-664.
    90. Harders A G, Gilsbach J M. Time course of blood velocity changes related to vasospasm in the circle of Willis measured by transcranial Doppler ultrasound[J]. Journal of neurosurgery,1987,66(5):718-728.
    91. Macdonald R L. Clazosentan:an endothelin receptor antagonist for treatment of vasospasm after subarachnoid hemorrhage[J].2008,17(11):1761-1767
    92. Macdonald R L, Higashida R T, Keller E, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping:a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2)[J]. The Lancet Neurology,2011,10(7):618-625.
    93. Budohoski K P, Czosnyka M, Kirkpatrick P J, et al. Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage[J]. Nature Reviews Neurology, 2013,9(3):152-163.
    94. Lam J M K, Smielewski P, Czosnyka M, et al. Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation[J]. Neurosurgery,2000,47(4):819-826.
    95. Lang E W, Diehl R R, Mehdorn H M. Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage:the phase relationship between arterial blood pressure and cerebral blood flow velocity [J]. Critical care medicine,2001,29(1): 158-163.
    96. Ratsep T, Asser T. Cerebral hemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial Doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome[J]. Journal of neurosurgery,2001,95(3):393-401.
    97. Tseng M Y, Czosnyka M, Richards H, et al. Effects of Acute Treatment With Pravastatin on Cerebral Vasospasm, Autoregulation, and Delayed Ischemic Deficits After Aneurysmal Subarachnoid Hemorrhage A Phase II Randomized Placebo-Controlled Trial[J]. Stroke,2005,36(8):1627-1632.
    98. Christ M, Noack F, Schroeder T, et al. Continuous cerebral autoregulation monitoring by improved cross-correlation analysis:comparison with the cuff deflation test[J]. Intensive care medicine,2007,33(2):246-254.
    99. Aries M J H, Czosnyka M, Budohoski K P, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury*[J]. Critical care medicine,2012,40(8):2456-2463.
    100. Steiner L A, Czosnyka M, Piechnik S K, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury[J]. Critical care medicine, 2002,30(4):733-738.
    101.Zweifel C, Castellani G, Czosnyka M, et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage[J]. Stroke,2010,41(9):1963-1968.
    102. Bijlenga P, Czosnyka M, Budohoski K P, et al. "Optimal Cerebral Perfusion Pressure" in Poor Grade Patients After Subarachnoid Hemorrhage[J]. Neurocritical care,2010,13(1):17-23
    103. Soehle M, Jaeger M, Meixensberger J. Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage[J]. Neurological research,2003,25(4):411-417.
    104. Hlatky R, Furuya Y, Valadka A B, et al. Dynamic autoregulatory response after severe head injury[J]. Journal of neurosurgery,2002,97(5):1054-1061.
    105. Panerai R B, Kerins V, Fan L, et al. Association between dynamic cerebral autoregulation and mortality in severe head injury[J]. British journal of neurosurgery, 2004,18(5):471-479.
    106. Hlatky R, Furuya Y, Valadka A B, et al. Dynamic autoregulatory response after severe head injury[J]. Journal of neurosurgery,2002,97(5):1054-1061.
    107. Eames P J, Blake M J, Panerai R B, et al. Cerebral autoregulation indicesare unimpaired by hypertensionin middle aged and older people[J]. American journal of hypertension,2003,16(9):746-753.
    108. Lipsitz L A, Mukai S, Hamner J, et al. Dynamic regulation of middle cerebral artery blood flow velocity in aging and hypertension[J]. Stroke,2000,31(8):1897-1903.
    109. Immink R V, van den Born B J H, van Montfrans G A, et al. Impaired cerebral autoregulation in patients with malignant hypertension[J]. Circulation,2004, 110(15):2241-2245.
    110. Serrador J M, Sorond F A, Vyas M, et al. Cerebral pressure-flow relations in hypertensive elderly humans:transfer gain in different frequency domains[J]. Journal of applied physiology,2005,98(1):151-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700