视神经脊髓炎患者血清中抗水通道蛋白-4抗体的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视神经脊髓炎(neuromyelitis optica,NMO)是一种特发性中枢神经系统炎性脱髓鞘疾病,根据流行病学、临床特点、影像学、病理学及实验室检查,特别是血清NMO-IgG即抗水通道蛋白-4(aquaporin-4,AQP4)抗体等资料,国外大多数学者改变了NMO隶属于多发性硬化(multiple sclerosis,MS)的传统观点,认为它有别于MS,是一种全新的中枢神经系统自身免疫通道病。目前,尚未见中国内地NMO患者血清中存在抗AQP4抗体的报道,为了调查中国内地NMO患者血清中是否存在抗AQP4抗体,本研究建立了稳定表达AQP4蛋白的HEK293细胞株。从颞叶癫痫患者脑组织提取总RNA,使用RT-PCR扩增AQP4基因,构建AQP4-GFP融合表达重组体pEGFP-N1-AQP4,转染HEK293细胞,抗生素联合流式细胞仪筛选AQP4-GFP稳定表达细胞株。结果显示,其稳定表达率达80%~90%,RT-PCR和免疫荧光法证实该细胞株表达AQP4蛋白,激光共聚焦显微镜进一步确认AQP4-GFP融合蛋白主要表达于细胞膜上。在此基础上,我们收集了NMO、MS、神经系统其他疾病患者血清,并以健康正常人的血清作为阴性对照,利用已建立的稳定表达AQP4蛋白的HEK293细胞为“抗原”借助免疫荧光法检测了这些患者血清中的抗AQP4抗体。结果表明,中国内地NMO患者血清中也存在抗AQP4抗体,该方法对NMO诊断的灵敏度为88%,特异度为96.1%。为了建立适于临床推广的抗AQP4抗体简便有效的检测方法,我们初步探讨了以合成多肽为抗原的ELISA法检测NMO患者血清中的抗AQP4抗体,首次证明了AQP4蛋白细胞膜外的某些多肽段可作为ELISA检测抗原,用于检测患者血清中的抗AQP4抗体。总之,本研究证实了中国内地NMO患者血清中存在抗AQP4抗体,并初步建立了一个简便有效的NMO患者血清中抗AQP4抗体的检测方法,为我国NMO的诊疗提供了重要依据。
Neuromyelitis optica (NMO) is an idiopathic inflammatory demyelinating disease in the central nervous system. Based on the epidemiological, clinical, radiological, pathological and laboratory findings, especially serum NMO-IgG which had been determined as anti-aquaporin-4 autoantibodies, recently most abroad researchers have changed the concept that NMO was a subset of multiple sclerosis(MS) and considered it as a new example of autoimmunological channelopathy in the central nervous system. So far, anti-AQP4 antibody in the serum of NMO patients in the mainland of China have not been reported.. In order to confirm if there is anti-AQP4 antibody in NMO patients’serum in Chinese mainland, HEK293 cell line stably expressing human AQP4 was set up. Total RNA was extrated from brain tissue of a patient diagnosed as temporal epliepsy. Human aquaporin-4 cDNA was amplied by RT-PCR and cloned into the plasmind pEGFP-N1. The recombinant plasmid was tansfected into HEK293, the stable cell line expressing AQP4-GFP fusion protein was screened by antibiotics and flow cytometry sorting. The result show that the rate of stable expression is 80~90%. The expression of AQP4 was detected by RT-PCR and immunofluorescence. The location of AQP4-GFP fusion protein was identified at the membrance under the laser confocal microscopy. Detect serum of NMO, MS, other neurological diseases and normal healthy people as negative control in the mainland of China with the cell line as“antigen”in immunofluorescence, it corfirmed the anti-AQP4 antibody in NMO serum in Chinese mainland, the sensitivity was 88%, specificity was 96.1%. Next,in order to set up a new simple assay to detect anti-AQP4 antibody in the serum of NMO patients which is accessible to clinic practice, we explored the ELISA with synthetic polypeptides as antigen for detecting AQP4 antibody in the serum of NMO patients and firstly testfied that some outmembrane polypeptides of AQP4 protein could be used as antigen in ELISA which can be used to detect anti-AQP4 antibody in the serum of NMO patients. In conclusions, the research identitied the existence of anti-AQP4 antibody in the serum of NMO patients in the mainland of China, and set up a new simple assay for detecting anti-AQP4 antibody in the serum of NMO patients, it would be helpful for diagnosis and therapy of NMO in China.
引文
[1] Cree B A, Goodin D S, Hauser S L. Neuromyelitis optica. Semin Neurol, 2002, 22(2): 105~122.
    [2] De Seze J, Lebrun C, Stojkovic T, et al. Is Devic's neuromyelitis optica a separate disease? A comparative study with multiple sclerosis. Mult Scler, 2003, 9(5): 521~525.
    [3] Fukazawa T, Yamasaki K, Ito H, et al. Both the HLA-CPB1 and -DRB1 alleles correlate with risk for multiple sclerosis in Japanese: clinical phenotypes and gender as important factors. Tissue Antigens, 2000, 55(3): 199~205.
    [4] Lau K K, Wong L K, Li L S, et al. Epidemiological study of multiple sclerosis in Hong Kong Chinese: questionnaire survey. Hong Kong Med J, 2002, 8(2): 77~80.
    [5] Kira J. Multiple sclerosis in the Japanese population. Lancet Neurol, 2003, 2(2): 117~127.
    [6] Kantarci O H, Weinshenker B G. Natural history of multiple sclerosis. Neurol Clin,2005,23(1): 17~38.
    [7] Yamakawa K, Kuroda H, Fujihara K, et al. Familial neuromyelitis optica (Devic's syndrome) with late onset in Japan. Neurology, 2000, 55(2): 318~320.
    [8] Wingerchuk D M, Weinshenker B G. Neuromyelitis optica: clinical predictors of a relapsing course and survival. Neurology, 2003, 60(5): 848~853.
    [9] Mcdonald W I, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol, 2001, 50(1): 121~127.
    [10] Ghezzi A, Bergamaschi R, Martinelli V, et al. Clinical characteristics, course and prognosis of relapsing Devic's Neuromyelitis Optica. J Neurol, 2004, 251(1): 47~52.
    [11] De Seze J, Stojkovic T, Ferriby D, et al. Devic's neuromyelitis optica: clinical, laboratory, MRI and outcome profile. J Neurol Sci, 2002, 197(1-2): 57~61.
    [12] Nakashima I, Fujihara K, Fujimori J, et al. Absence of IgG1 response in the cerebrospinal fluid of relapsing neuromyelitis optica. Neurology, 2004, 62(1): 144~146.
    [13] Pittock S J, Lennon V A, Krecke K, et al. Brain abnormalities in neuromyelitis optica. Arch Neurol, 2006, 63(3): 390~396.
    [14] Bot J C, Barkhof F, Polman C H, et al. Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination. Neurology, 2004, 62(2): 226~233.
    [15] Lucchinetti C F, Mandler R N, Mcgavern D, et al. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain, 2002, 125(Pt 7): 1450~1461.
    [16] Lennon V A, Wingerchuk D M, Kryzer T J, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet, 2004, 364(9451): 2106~2112.
    [17] Jacob A, Matiello M, Wingerchuk D M, et al. Neuromyelitis optica: changing concepts. JNeuroimmunol, 2007, 187(1-2): 126~138.
    [18] Lennon V A, Kryzer T J, Pittock S J, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med, 2005, 202(4): 473~477.
    [19] Preston G M, Carroll T P, Guggino W B, et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 1992, 256(5055): 385~387.
    [20] King L S, Yasui M, Agre P. Aquaporins in health and disease. Mol Med Today, 2000, 6(2): 60~65.
    [21] Jung J S, Preston G M, Smith B L, et al. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem, 1994, 269(20): 14648~14654.
    [22] Preston G M, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A, 1991, 88(24): 11110~11114.
    [23] Yang B, Verkman A S. Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem, 1997, 272(26): 16140~16146.
    [24] Zeidel M L, Ambudkar S V, Smith B L, et al. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry, 1992, 31(33): 7436~7440.
    [25] Nagelhus E A, Horio Y, Inanobe A, et al. Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia, 1999, 26(1): 47~54.
    [26] Saadoun S, Papadopoulos M C, Watanabe H, et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci, 2005, 118(Pt 24): 5691~5698.
    [27] Manley G T, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med, 2000, 6(2): 159~163.
    [28] Amiry-Moghaddam M, Frydenlund D S, Ottersen O P. Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience, 2004, 129(4): 999~1010.
    [29] Papadopoulos M C, Verkman A S. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem, 2005, 280(14): 13906~13912.
    [30] Papadopoulos M C, Manley G T, Krishna S, et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J, 2004, 18(11): 1291~1293.
    [31] Bloch O, Auguste K I, Manley G T, et al. Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab, 2006, 26(12): 1527~1537.
    [32] Amiry-Moghaddam M, Frydenlund D S, Ottersen O P. Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology ofwater transport. Neuroscience, 2004, 129(4): 999~1010.
    [33] Binder D K, Yao X, Zador Z, et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia, 2006, 53(6): 631~636.
    [34] Binder D K, Oshio K, Ma T, et al. Increased seizure threshold in mice lacking aquaporin-4 water channels. Neuroreport, 2004, 15(2): 259~262.
    [35] Lee T S, Eid T, Mane S, et al. Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobe epilepsy. Acta Neuropathol, 2004, 108(6): 493~502.
    [36] Andrew R D. Seizure and acute osmotic change: clinical and neurophysiological aspects. J Neurol Sci, 1991, 101(1): 7~18.
    [37] Sinclair C, Kirk J, Herron B, et al. Absence of aquaporin-4 expression in lesions of neuromyelitis optica but increased expression in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol, 2007, 113(2): 187~194.
    [38] Hinson S R, Pittock S J, Lucchinetti C F, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology, 2007, 69(24): 2221~2231.
    [39] Bettelli E, Baeten D, Jager A, et al. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest, 2006, 116(9): 2393~2402.
    [40] Krishnamoorthy G, Lassmann H, Wekerle H, et al. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest, 2006, 116(9): 2385~2392.
    [41] Ransohoff R M. A mighty mouse: building a better model of multiple sclerosis. J Clin Invest, 2006, 116(9): 2313~2316.
    [42] Jacob A, Matiello M, Wingerchuk D M, et al. Neuromyelitis optica: changing concepts. J Neuroimmunol, 2007, 187(1-2): 126~138.
    [43] Bencherifa F, Bourassi A, Mellal Z, et al. [Devic's neuro-optic myelitis and pregnancy]. J Fr Ophtalmol, 2007, 30(7): 737~743.
    [44] Djemal N, Ben S M, Ben H N, et al. [Devic's neuromyelitis optica in children: a case report and review of the literature]. Arch Pediatr, 2007, 14(11): 1337~1340.
    [45] Hagiwara N, Toyoda K, Uwatoko T, et al. Successful high dose glucocorticoid treatment for subacute neuromyelitis optica with systemic lupus erythematosus. Intern Med, 2005, 44(9): 998~1001.
    [46] Watanabe S, Misu T, Miyazawa I, et al. Low-dose corticosteroids reduce relapses in neuromyelitis optica: a retrospective analysis. Mult Scler, 2007, 13(8): 968~974.
    [47] Mandler R N, Ahmed W, Dencoff J E. Devic's neuromyelitis optica: a prospective study of seven patients treated with prednisone and azathioprine. Neurology, 1998, 51(4): 1219~1220.
    [48] Mok C C, To C H, Mak A, et al. Immunoablative cyclophosphamide for refractory lupus-related neuromyelitis optica. J Rheumatol, 2008, 35(1): 172~174.
    [49] Birnbaum J, Kerr D. Devic's syndrome in a woman with systemic lupus erythematosus: diagnostic and therapeutic implications of testing for the neuromyelitis optica IgG autoantibody. Arthritis Rheum, 2007, 57(2): 347~351.
    [50] Weinstock-Guttman B, Ramanathan M, Lincoff N, et al. Study of mitoxantrone for the treatment of recurrent neuromyelitis optica (Devic disease). Arch Neurol, 2006, 63(7): 957~963.
    [51] Falcini F, Trapani S, Ricci L, et al. Sustained improvement of a girl affected with Devic's disease over 2 years of mycophenolate mofetil treatment. Rheumatology (Oxford), 2006, 45(7): 913~915.
    [52] Weinshenker B G, O'Brien P C, Petterson T M, et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol, 1999, 46(6): 878~886.
    [53] Watanabe S, Nakashima I, Misu T, et al. Therapeutic efficacy of plasma exchange in NMO-IgG-positive patients with neuromyelitis optica. Mult Scler, 2007, 13(1): 128~132.
    [54] Bakker J, Metz L. Devic's neuromyelitis optica treated with intravenous gamma globulin (IVIG). Can J Neurol Sci, 2004, 31(2): 265~267.
    [55] Okada K, Tsuji S, Tanaka K. Intermittent intravenous immunoglobulin successfully prevents relapses of neuromyelitis optica. Intern Med, 2007, 46(19): 1671~1672.
    [56] Zivkovic S A, Heyman R, Pless M. Subacute rhombencephalitis optica responsive to intravenous immunoglobulins. Eur J Neurol, 2003, 10(1): 83~86.
    [57] Cree B A, Lamb S, Morgan K, et al. An open label study of the effects of rituximab in neuromyelitis optica. Neurology, 2005, 64(7): 1270~1272.
    [58] Capobianco M, Malucchi S, Di Sapio A, et al. Variable responses to rituximab treatment in neuromyelitis optica (Devic's disease). Neurol Sci, 2007, 28(4): 209~211.
    [59] Papeix C, Vidal J S, De Seze J, et al. Immunosuppressive therapy is more effective than interferon in neuromyelitis optica. Mult Scler, 2007, 13(2): 256~259.
    [60] Warabi Y, Matsumoto Y, Hayashi H. Interferon beta-1b exacerbates multiple sclerosis with severe optic nerve and spinal cord demyelination. J Neurol Sci, 2007, 252(1): 57~61.
    [61] Shimizu Y, Yokoyama K, Misu T, et al. Development of extensive brain lesions following interferon beta therapy in relapsing neuromyelitis optica and longitudinally extensive myelitis. J Neurol, 2008, 255(2): 305~307.
    [62] Gartzen K, Limmroth V, Putzki N. Relapsing neuromyelitis optica responsive to glatiramer acetate treatment. Eur J Neurol, 2007, 14(6): e12~e13.
    [63] Bergamaschi R. Glatiramer acetate treatment in Devic's neuromyelitis optica. Brain, 2003, 126(Pt 6): 1E, 1E.
    [64] Weinstock-Guttman B, Miller C, Yeh E, et al. Neuromyelitis optica immunoglobulins as a marker of disease activity and response to therapy in patients with neuromyelitis optica. Mult Scler, 2008, 14(8): 1061~1067.
    [65] Matiello M, Lennon V A, Jacob A, et al. NMO-IgG predicts the outcome of recurrent opticneuritis. Neurology, 2008, 70(23): 2197~2200.
    [66] Takahashi T, Fujihara K, Nakashima I, et al. Establishment of a new sensitive assay for anti-human aquaporin-4 antibody in neuromyelitis optica. Tohoku J Exp Med, 2006, 210(4): 307~313.
    [67] Wingerchuk D M, Hogancamp W F, O'Brien P C, et al. The clinical course of neuromyelitis optica (Devic's syndrome). Neurology, 1999, 53(5): 1107~1114.
    [68] Poser C M, Paty D W, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol, 1983, 13(3): 227~231.
    [69] Kurtzke J F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology, 1983, 33(11): 1444~1452.
    [70] Matsuoka T, Matsushita T, Kawano Y, et al. Heterogeneity of aquaporin-4 autoimmunity and spinal cord lesions in multiple sclerosis in Japanese. Brain, 2007, 130(Pt 5): 1206~1223.
    [71] Hayakawa S, Mori M, Okuta A, et al. Neuromyelitis optica and anti-aquaporin-4 antibodies measured by an enzyme-linked immunosorbent assay. J Neuroimmunol, 2008, 196(1-2): 181~187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700