数字式明渠污水流量计数据采集处理系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以“863”计划专题项目“数字物位传感器及数字系统装备”为研究基础,是隶属于博士课题“点矩阵数字检测理论与槽体智能流量计的研究”的子课题。主要是针对博士课题中槽体智能流量计的数据采集、处理系统部分而展开的研究。设计的目标是能够实现流量计采集处理系统的数字化、智能化、通用化,为明渠污水流量计发展提供技术支持。文章介绍了以下几部分主要内容和完成的工作:
     (1)智能化、通用型数据采集处理系统分析
     明渠流量的主要检测方法是堰槽法,其原理是首先检测流量堰槽内流体的液位,再通过液位与流量之间的单值函数关系式计算求得流量。由于流量堰槽种类繁多,因此开发一种能够配合各种堰槽使用的智能化、通用型明渠流量计是此领域发展的趋势,这也是本设计的主要目的。
     (2)应用了点矩阵数字检测理论
     应用了将连续的物理量进行面内点分隔的方法,即将连续的面内液位信号进行点化分隔,分隔点反映为“0”与“1”的数字信号,对此信号进行取样,逐点加权统计,以点组面式的物理量直接数字信息采集的新思路。实现了污水流量计量装置真正数字化。
     (3)低功耗微处理器MSP430的设计及实验数据采集处理系统采用MSP430单片机作为核心处理器。完成对数字信号的采集处理、外围显示和存储部件的控制。
     (4)处理系统外围部件设计及实验
     在对污水计量检测领域做了大量的研究与试验后,我们根据流量计量要求,在系统的外设中加入了显示、时钟、存储等部件,建立了实时历史数据库,保证就地显示、上位机实时调用、分析流量数据等功能的实现。
     最后,选取了较常用的一种流量槽——巴歇尔槽进行实验。并将系统与目前污水计量领域中唯一能够应用的超声波明渠流量计进行了对照实验。结果证明:本系统的直接数字取样特点,从根本上避免了模拟信号或“准数字化”取样中存在的各类问题,如:在非数字取样电路中,变换电路漂移对信号真实性的影响很大,系统受外界的干扰较严重等问题。本系统设计有效提高了传感器的容错能力和流量计量的准确性、稳定性、可靠性,为实现远距离、无人值守、智能化、通用化明渠流量检测设备的应用提供了技术储备。
This project take one of the“863”plan topic projects“the digit position sensor and the digital system equipment”as the research foundation, and subordinates to the doctoral thesis“the matrix digital detection theory and the trough body intelligence flowmeter's research”. This paper is mainly about the data acquisition and processing system of trough body intelligence flowmeter,Aiming to achieve the goal of digital, intelligence, general for flowmeter data acquisition and processing system, and provide technical support for the development of open channel sewage flowmeter. The major content and job finished of this article is following:
     (1)The intelligent, general-purpose data acquisition and processing system analysis
     The main detection method of open channel flow is weir and trough. The principle of this method is to detect the liquid level of liquid in weir trough firstly, and then to chang liquid level to flow value through a single-valued function. As there are many kinds of weirs and troughs, we need to develop one kind of intelligent, general open channel flowmeter to be able to cope with more kinds of weirs and troughs. This is inevitable trend in this area,which is also the main purpose of this paper.
     (2) Proposing and Applying a dot matrix Detective theory
     We proposed a new method, that is making the continuous physical volume separated, in other words, separating the continuous level signal by many points. The separation points are reflected as "0" and "1" digital signal, then will be samped, and weighted point-by-point statistics. This can really achieve digital of sewage flow measurement device.
     (3) Low-power MSP430 microprocessor design and experiment
     The core processor of data acquisition and processing system was MSP430 singlechip, which is used to complete acquisition and processing of the digital signal, displaying and control of external storage components.
     (4) Design about the external components of the system
     After a lot of research and testing at the area of sewage detective, we added LCD, clock, storage componentsin and set up the real-time history database in accordance with the requirements of the peripherals in the system. These can ensure the data showed, epistatic machine called in time, flow data analysis achieved.
     Finally, we choosed one kind of commonly used flow trough-pashall trough to make experiment, and compared with Ultrasonic open channel flowmeter, which is currently only epuipment at sewage area in china. Experimental proof that: the direct digital sampling method in the system solved the problems that existed in the analog signal or "quasi-digital" sampling. For example, in a non-digital sampling circuit, the drift of the signal transform circuit had great influence on the authenticity of the system signal, and outside interference had great influence to the system and more serious problem. This system design effectively improved the fault tolerance of sensor and flow easurement accuracy, stability, reliability. provide the technical reserves for realize long-range, unmanned, intelligence, general open channel flow monitoring equipment.
引文
[1]梁国伟,蔡武昌等.流量测量技术及仪表[M].北京:机械工业出版社,2002:398-436.
    [2]李国栋.超声波明渠流量计的研制[D].大连:大连理工大学,2004.
    [3]胡广书.数字信号处理[M].北京:清华大学出版社.2007:9-121.
    [4] Gao Peng,est. High-accuracy sampling-elestrode sensor for boiler drum water level and its application: Elestric Power, 2002, 35(10):65-69.
    [5] Gu R X.Elmasry M I.Power dissipation analysis and optimization of deep submicron CMOS digital circuits[J]. IEEE Jour-hal of Solid-State Circuits,1996,315:707-713.
    [6] (日)川田裕郎等编著,罗秦等译.流量测量手册[M].北京:计量出版社,1982:27-171.
    [7] SL24-91,堰槽测流规范[S].北京:中华人民共和国水利部.1991.
    [8]李翼祺,马素贞.流体力学基础[M].北京:科学出版社.1983:11-80.
    [9]余永权,林伟.廉价单片机原理及应用[M].北京:北京航空航天大学出版社,1998:20-154.
    [10]沈建华,杨艳琴,翟骁曙.MSP430系列16位超低功耗单片机原理与应用[M].北京:清华大学出版社,2004:39-259.
    [11]马福昌.集成电路版权登记MFC7710B:中国,BS05500063.0[p].2005-07-18.
    [12]马福昌.集成电路版权登记MFC7720B:中国,BS05500062.2[p].2005-07-18.
    [13]王辉,马福昌.检索式数字水位数据采集系统的低功耗途径探讨[J].太原理工大学学报.2008,39(2):119-122.
    [14]马福昌.数字检索式水位传感器[P].中国专利:ZL200310109631.9,2005-06-08.
    [15]马福昌.数字检索式水位传感器的制备方法[P]:中国专利:ZL200310109630.4 , 2005-08-31.
    [16]马珺 ,马福昌.新型板式流量传感器的设计[J].太原理工大学学报.2008,39(3):265-267.
    [17] Ma Fuchang. Study on Water-level Monitoring System for Mining Industry[C]. ICEM: Conference proceedings of the Fifth international conference on electronic measurement&instruments,2001: 169-172.
    [18] [前苏联]H.T.库特利,雅夫,采夫等.应用电化学[M],上海:复旦大学出版社,1992:110-218.
    [19]陈国华,王光信等.电化学方法应用[M],北京:化学工业出版社出版,2003:132-173.
    [20]胡大可. MSP430系列单片机C语言程序设计与开发[M].北京:北京航空航天大学出版社.2003:139-252.
    [21]魏小龙. MSF430系列单片机接口技术及系统设计实例[M].北京:北京航空航天大学出版社.2002:15-200.
    [22]胡大可. MSP430FIash系列超低功耗16位单片机原理与应用[M].北京:北京航空航天大学出版社,2000:1-159.
    [23]伍卫国,钱德沛.电子系统设计的低功耗技术[J].计算机工程,1999,25(12):46-48.
    [24] Sam Ben-Yaakov, Chanina, Shmuel Kessler. A Stand-Alone Ultrasonic Ranging System for Hydrological Water Stage Measurements[J]. IEEE Trans-action on Instrument and Measurement,1992, 41(5): 699-702.
    [25]蒋宇晨,赵顺刚.超声传感器在明渠流量计中的应用[J].自动化仪表.2000,7:16-18.
    [26]张戟,钱敬荣LMC型超声波明渠流量计的研制[J].自动化仪器仪表,2000,1:44-47.
    [27] W.Wimmer, D.Waller.Recent developments in level and flow measurement techniques[J]. International Journal on Hydropower & Dams, 1995, 2(2):75-79.
    [28] Denis Donlagic, Miha Zavrsnik, Irvin Sirotic. The Use of One-Dimensional Acoustical Gas Resonator for Fluid Level Measurements[C]. IEEE Transaction on Instrument and Measurement, 2000, 49(5):1095-1100.
    [29] David D McGehee. Remote automated wave and water level monitoring system deployed at Agat Harbor[J], Guam. Coastal Engineering Pratice’92, Mar9-11.1992: 898-907.
    [30] Huang S.M,etc. al.Conductivity Effects on Capacitance Measurement of Two-component Fluids Using Charge Transfer Method[J]. J Phys E Sci, 1988, 21: 548-593.
    [31] Kunawanakit,W. est. Automated monitoring system for quality of treated wastewater from a power plant by incorporating flow injestion analysis: Laboratory Robotics and Automation, 2000, 12(3):164-170.
    [32] A.G..Dekker, Z.Zamurovic-Nenad. Remote sensing, ecological water quality modellingand in situ measurements: A case study in shallow lakes[J]. Hydrological Sciences, 1996,41(4): 531-547.
    [33] Paige,A.D.,est.Annual bed-elevation regime in the alluvial channel of Squeamish River, southwestern British Columbia, Canada: Earth Surface Processes and Landforms, 2000,25( 9): 991-1009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700