KKM型定理及其在平衡问题中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在非线性分析领域中, KKM理论占据了重要的部分.在传统的KKM理论和应用中,凸性扮演了很重要的角色,但同时它也大大地限制了KKM理论的应用范围.如何削弱凸性,成为KKM理论研究的一个重要课题.基于KKM理论在平衡问题、对策论、数学规划、力学和物理、经济和金融、运筹与交通、优化和控制、变分不等式和相补问题等理论中有广阔的应用前景,近年来,有关KKM理论以及在各方面的应用还在进行广泛而深入的讨论.
     本文主要分两部分引入和研究了新的KKM型定理和向量平衡问题.
     第一部分在拓扑空间中引入了一类新的广义L-KKM映射:
     第一章主要介绍了KKM理论的历史背景.
     第二章介绍了一类新的广义L-KKM映射,同时在没有任何凸结构的拓扑空间中建立了一些新的广义L-KKM型定理.作为应用,我们在拓扑空间中建立了抽象广义向量平衡问题的平衡点定理.
     第三章作为第二章的延伸,先建立了关于广义L-KKM映射新的非空交定理,随后证明了在拓扑空间中的集值不动点定理.作为应用,在拓扑空间中建立了上下界平衡问题和拟平衡问题的存在定理.
     第二部分研究了FC-空间中KKM型定理和一些向量平衡问题:
     第四章在非紧FC-空间中建立了新的重合点定理和一些关于较好容许集值映射的KKM型定理.作为应用,在非紧FC-空间中建立了几类广义向量平衡问题解的存在定理.
     第五章在FC-空间中引入和研究了一类广义向量变分型不等式(GVVTIP),它包含了大多数向量平衡问题,向量变分不等式问题,广义向量平衡问题和广义向量变分不等式问题作为特殊情况.最后在非紧FC-空间中,建立了关于GVVTIP解的某些新的存在定理.
     在第六章中,得到一个新的非空交定理.作为应用,我们在非紧的FC-空间中建立了上下界的平衡问题和拟平衡问题的存在定理.
     第七章在乘积FC-空间中引入和研究一类新的广义混合向量拟平衡问题系统,利用极大元定理,得到了关于广义混合向量拟平衡问题系统解的一些存在性定理.
KKM theory is one of the important parts in nonlinear analysis. In most of knownKKM theorems and applications, the convexity assumptions play a crucial role whichstrictly restrict the applicable area of KKM principle. How to weaken convexity is theimportant subject of KKM principle. Since KKM theory has aroused continuous interestdue to its promising applications in many fields of applicable sciences, such as equi-librium problem, game theory, mechanics and physics, economics and finance, trans-portation and operations research, variational inequality and complementarity problem,optimization and control problem. For recent decades, the KKM theory and Its applica-tions have been extensively studied.
     In this thesis, some new KKM type theorems and vector equilibrium problems areinvestigated. The thesis is composed of two parts.
     Part I(2-3):KKM type theorems and Its applications in topological spacesChapter 1 mainly introduces the history of KKM theory.
     Chapter 2 introduces a new concept of generalized L-KKM mapping and estab-lishes some new generalized L-KKM type theorems without any convexity structure intopological space. As application, an existence theorem of equilibrium point for abstractgeneralized vector equilibrium problem is proved in topological space.
     Based on Chapter 2, Chapter 3 first establishes some new nonempty intersectiontheorems for generalized L-KKM mappings and proves some new fixed point theoremsfor set-valued mappings in topological spaces. As applications, an existence theorem foran equilibrium problem with lower and upper bounds and two existence theorems fora quasi-equilibrium problem with lower and upper bounds are obtained in topologicalspaces.
     Part II(4-7): KKM type theorems and some vector equilibrium problems in FC-space.
     A new coincidence theorem and some KKM type theorems for better admissibleset-valued mappings are established in Chapter 4. As applications, some new existencetheorems of solutions for several classes of generalized vector equilibrium problems areestablished in noncompact FC-space.
     Chapter 5 studies a class of generalized vector variational-type inequality problems(in short, GVVTIP) in FC-space, which includes the most of vector equilibrium prob-lems, vector variational inequality problems, generalized vector equilibrium problemsand generalized vector variational inequality problem as special cases. As applications,some new existence results for GVVTIP are established in noncompact FC-space.
     Chapter 6 obtains a new nonempty intersection theorem. As application, some newtheorems of equilibrium problems and quasi-equilibrium problems with lower and upperbounds are established.
     Chapter 7 introduces and studies a new system of generalized mixed vector quasi-equilibrium problems, which includes as special cases the system of generalized vectorvariational-like inequality problems, the system of generalized quasi-equilibrium prob-lems, and the system of generalized equilibrium problems. By using the maximal ele-ment theorem, some existence results of solutions for the system of generalized mixedvector quasi-equilibrium problems are given.
引文
[1] Ansari Q.H., Chan W.K. and Yang X.Q., The system of vector quasi-equilibriumproblems with applications, J. Global Optim., (2004), 29, 45-57.
    [2] Aubin J.P. and Ekland I., Applied Nonlinear Analysis, John Willey and Sons,New York, 1984.
    [3] Ansari Q. H., Oettli W. and Schla¨ger D., A Generalization of Vector Equilibria,Math. Meth. Oper. Res., (1997), 46, 147-152.
    [4] Ansari Q.H., Siddiqi A.H. and Yao J.C., Generalized vector variational-like in-equalities and their scalarizations, Vector Variational Inequalities and VectorEqulibria, (Ed. by F. Giannessi), Kluwer Acad. Pub. London,(2000),17-37,
    [5] Ansari Q. H., Schaible S. and Yao J. C., System of vector equilibrium problemsand their applications, J. Optim. Theory Appl., (2000), 107, 547-557.
    [6] Ansari Q. H., Schaible S. and Yao J. C., The system of generalized vector equi-librium problems with applications, J. Global Optim., (2002), 22,3-16.
    [7] Ansari Q.H. and Yao J.C., An existence result for the generalized vector equilib-rium problem, Appl. Math. Lett.,(1999), 12(8),53-56,
    [8] Ben-El-Mechaivekh H., Chebbi S., Florenzano M. and Llinares J., Abstract con-vexity and fixed points. J. Math. Anal. Appl., (1998), 222, 138-151.
    [9] Blum E. and Oettli W., From optimiztion and variational inequalities to equili-birum problems Math. Student, 63 (1994), 123-145.
    [10] Chen G.Y. and Craven B.D. , Approximate dual and approximate vector varia-tional inequality for multiobjective optimization, J. Austral. Math. Soc. Ser. A,(1989), 47, 418-423.
    [11] Chadli O. , Chiang Y. and Yao T. C., Equilibrium problems with lower and upperbounds, Appl. Math. Lett,(2002), 15, 327-331.
    [12] Chen G.Y., Existence of solutions for a vector variaitonal inequality: An extensionof Hartmann-Stampacchia Theorem, J. Optim. Theory Appl., (1992), 74, 445-456.
    [13] Chen G. Y., Huang X. X. and Yang X. Q., Vector Optimization: Set-valuedand Variational Analysis, Lecture Notes in Economics and Mathematical Systems541, Springer-Verlag, Berlin, 2005.
    [14] Chen M.P., Lin L.J. and Park S., Remarks on generalized quasi-equilibrium prob-lems, Nonlinear Anal. TMA, (2003), 52, 433-444.
    [15] Chang S. S. and Ma Y. H., Generalized KKM theorem on H-space with applica-tions, J. Math. Anal. Appl., (1992), 163, 406-421.
    [16] Chang S.S., Thompson H.B. and Yuan G.X.Z., Existence of solutions for gen-eralized vector variational-like inequalities, Vector Variational Inequalities andVector Equilibria, (Ed. by F. Giannessi), Kluwer Acad. Pub. London, (2000) 39-53.
    [17] Chang T.H. and Yen C.L., KKM property and fixed point theorem, J. Math. Anal.Appl., (1996), 203,224-235.
    [18] Chadli O., Yang X.Q. and Yao J.C., On generalized vector pre-variational andpre-qusaivariational inequalities, J. Math. Anal. Appl., (2004), 295, 392-403.
    [19] Chang S. S. and Zhang Y., Generalized KKM theorem and variational inequalities,J. Math. Anal. Appl. (1991), 159, 208-223.
    [20] Deng L. and Xia X., Generalized R-KKM theorem in topological space and theirapplication, J. Math. Anal. Appl., (2003),285, 679-690.
    [21] Ding X. P.,Generalized G-KKM theorems in generalized convex spaces and theirapplications, J. Math. Anal. Appl., (2002), 266, 21-37.
    [22] Ding X. P., Generalized L-KKM type theorems in L-convex spaces with appli-caitons, Comput. Math. Appl. (2002), 43, 1249-1256.
    [23] Ding X. P., KKM type theorems and coincidence theorem on L-convex spaces,Acta. Math. Scientia, (2002), 22, 419-426.
    [24] Ding X. P., Generalized R-KKM type theorems in topological spaces and appli-cations, J. Sichuan Normal Univ. (2005), 28, 505-513.
    [25] Ding X. P., New H-KKM theorems and their applications to geometric propertycoincidence theorems minimax inequality and maximal elements, Indian J. PureAppl. Math. (1995), 26, 1-19.
    [26] Ding X.P., Quasi-equilibrium problems and constrained multi-objective games ingeneralized convex spaces, Appl. Math. Mech., (2001), 22, 160-172.
    [27] Ding X.P., Maximal elements theorems in pruoduct FC-space and generalizedgames, J. Math. Anal. Appl., (2005), 305, 29-42.
    [28] Ding X.P., Quasi-equilibrium problems with applications to infinite optimiza-tion and constrained games in generalized topological space, Appl. Math. Lett.,(2000), 13, 21-26.
    [29] Ding X.P., Abstract variational inequalties in topological space, J. Sichuan Nor-mal Univ., (1999), 22, 29-36.
    [30] Ding X.P., Coincidence theorems in topologcial spaces and their applications,Appl. Math. Lett., (1999), 12(7), 99-105.
    [31] Ding X.P., Coincidence theorems in product G-convex spaces, Acta Math. Scien-tia, (2005), 25(B), 401-407.
    [32] Ding X. P., Constrained multiobjective games in locally convex H-space, Appl.Math. Mech. (2003), 24(5),441-449.
    [33] Ding X. P., Equilibrium problems with lower and upper bounds in topologicalspaces. Acta Math. Sci. (2005), 25(4), 658-662.
    [34] Ding X. P., Quasi-equilibrium problems with lower and upper bound, J. SichuanNormal Univ., (2004), 27(6), 551-558.– 62 –
    [35] Ding X. P., Maximal elements of GKKM-majorized mappings in product FC-spaces and application (I), Nonli. Anal., (In press).
    [36] Ding X. P., Quasi-equilibrium problems and constrained multi-objective games ingeneralized convex spaces, Appl. Math. Mech., (2001), 22, 160-172.
    [37] Ding X. P., System of generalized equilibrium problems and applications in gen-eralized convex spaces, Indian J. Pure App. Math., 2004,36 ,711-721.
    [38] Ding X. P., Existence of solutions for quasi-equilibrium problem, J. SichuanNormal Univ.,(1998),21, 603-608.
    [39] Ding X. P., KKM type theorems and minimax inequalities and saddle point the-orems in generalized convex spaces, Acta Math. Sincia, 2004, 47(4),711-722 (inChinese).
    [40] Ding X.P., The generalized vector quasi-variational-like inequalities, ComputersMath. Appl. (1999), 37(6), 57-67.
    [41] Ding X. P., Nonempty intersection theorems and system of genralized vector equi-librium in product G-convex space, Appl. Math. Mech., 2004, 6 ,563-571.
    [42] Ding X. P., System of coincidence theorems in product topological spaces andapplications (I), Appl. Math. Mech., 2005, 26(12),1401-1408 (in Chinese).
    [43] Ding X. P., Quasi-equilibrium problems in noncompact generalized convexspaces, Appl. Math. Mech., (2000), 21, 637-644.
    [44] Ding X. P. and Park J. Y., Generalized vector equilibrium problem in generalizedconvex spaces, J. Optim. Theory Appl. (2004), 120, 327-353.
    [45] Ding X.P. and Park J.Y., Fixed points and generalized vector equilibrium problemsin generalized convex spaces, Indian J. Pure Appl. Math.,(2003),34(6), 973-990.
    [46] Ding X.P. and Tarafdar E. , Generalized vector variational-like inequalities with-out monotonicity, Vector Variational Inequalities and Vector Equilibria, (Ed. byF.Giannessi), Kluwer Acad. Pub. London, (2000),113-124.
    [47] Ding X.P. and Tarafdar E. , Generalized vector variational-like inequalities withCx-η-pseudomontone set-valued mappings, Vector Variational Inequalities andVector Equilibria, (Ed. by F. Giannessi), Kluwer Acad. Pub. London, (2000),125-140.
    [48] Ding X. P. and Wang L., Fixed points, minimax inequalities and equilibria ofnoncompact abstract economies in FC-spaces J. Opti. Theo. Appl. (In press).
    [49] Ding X. P., Yao J. C. and Lin L. J., Solution of system of generalized vector quasi-equilibrium problems in locally G-convex uniform spaces, J. Math. Anal. Appl.,2004, 298, 398-410.
    [50] Fan K., A generalized of Tychonoff’s fixed point theorem, Math. Ann.,(1961),142, 303-310.
    [51] Fang M. and Ding X. P., Generalized L-R-KKM theorem in and applications inL-convex space, J. Sichuan Normal Univ., (2003),26, 461-463.
    [52] Fang M. and Huang N. J., Generalized L-KKM type theorems in topologicalspaces with an application, Comput. Math. Appl., to appear.
    [53] Fang M., Huang N.J. KKM Type Theorems with Applications to generalized vec-tor equilibrium problems in FC-spaces. Nonli. Anal., (2007), 67, 809-817.
    [54] 方敏, 黄南京, 乘积 FC- 空间中广义混合向量拟平衡问题系统. 数学学报,2007, 50(2), 291-298.
    [55] 方敏, 丁协平, FC- 空间内的广义向量变分型不等式. 应用数学与力学, 2006,27(11), 1271-1279.
    [56] Fang M, Huang N.J, Nonempty Intersection Theorems in Topological Spaces withApplications, Indian J. Pure Appl. Math. (Submitted)
    [57] Fang M, Huang N.J, Generalization of Equilibrium Problem with Upper andLower Bound, Submitted.
    [58] Fang Y.P. and Huang N.J., Vector equilibrium type problems with (S)+-conditions, Optimization, (2004),53, 269-279.
    [59] Fang Y.P. and Huang N.J., Existence results for systems of strong implicit vectorvariational inequalities, Acta Math. Hungar., (2004),103, 265-277.
    [60] Fang Y. P. and Huang N. J., Least element problems of feasible sets for vector F-complementarity problems with pseudomonotonicity, Acta Math. Sinica, 2005,48(3),499-508 (in Chinese).
    [61] Fang Y. P. and Huang N. J., Existence of solutions to generalized vector quasi-equilibrium problems with discontinuous mappings, Acta Math. Sinica, EnglishSer. (to appear)
    [62] Fu J.Y. and Wan A.H., Generalized vector equilibrium with set-valued mapping,Math. Meth. Oper. Res., (2002),56, 259-268.
    [63] Giannessi F., Theorem of alternative, quadratic programs, and complementarityproblems, in Variational Inequality and Complementarity Problems, (Edited byR.W. Cottle, F. Giannessi, and J.L. Lions), John Wiley and Sons, Chichester, Eng-land, 1980, 151-186.
    [64] Giannessi F.(ed.), Vector Variational Inequalities and Vector Equilibrium,Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
    [65] Go¨pfert A., Riahi H., Tammer C. and Za?linescu C., Variational Methods in Par-tially Ordered Spaces, Springer-Verlag, New York, 2003.
    [66] Huang N.J. and Fang Y.P., Strong vector F-complementary problem and leastelement problem of feasible set, Nonlinear Anal. TMA, (2005), 61, 901-918.
    [67] Huang N. J. and Fang Y. P., On vector variational inequalities in re?exive Banachspaces, J. Global Optim., 2005, 32,495-505.
    [68] Huang N.J. and Gao C.J., Some generalized vector variational inequalitiesand complementarity problems for multivalued mappings Appl. Math. Lett.,(2003),16, 1003-1010.
    [69] Huang N. J. and Gao C. J., Some generalized vector variational inequalities andcomplementarity problems for multivalued mappings Appl. Math. Lett., 2003, 16,1003-1010.
    [70] Huang N. J., Li J. and Thompson H. B., Implicit vector equilibrium problems withapplications, Math. Comput. Modelling, 2003, 37, 1343-1356.
    [71] Horvath C., Some results on multivalued mappings and inequalities without con-vexity, in “Nonlinear and Convex Analysis” (B.L. Lin and S. Simons Eds.), Lec-ture Notes in Pure and Appl. Math. Vol.106, Dekker, New York, 1987, 99-106.
    [72] Harker P. T. and Pang J. S. , Finite-dimensional variatonal inequality and nonlinearcomplementarity problem:a survey of theory, algorithms and applications, Math.Programming Ser.B, (1990), 48(2),161-220.
    [73] Huang N. J., Yang X. Q. and Chan W. K., Vector complementarity problems witha variable ordering relation, European J. Oper. Res. (in press).
    [74] Hou S.H., Yu H. and Chen G.Y., On vector quasi-equilibrium problem with set-valued maps, J. Optim. Theory Appl., (2003), 119, 465-498.
    [75] Isac G., Bulavsky V. A. and Kalashnikov V. V., Complementarity, Equilibrium,Efficiency and Economics, Kluwer Academic Publishers, Dordrecht, Boston, Lon-don, 2002.
    [76] Isae G., Sehgal V. M. and Singh S.P., An alternate version of variational inequality,Indian J Math, (1999), 41(1), 25-31.
    [77] Knaster B., Kuratowski K. and Mazurkiewicz S., Ein beweis des fixpunksates furn-dimensional simplexe, Fund. Math., (1929), 14, 132-137.
    [78] Klein E. and Thompson A.C., Theory of Correspondences,John Wiley Sons, NewYork, (1984).
    [79] Lee B.S. and Lee S.J., Vector variational-type inequalities for set-valued map-pings, Appl. Math. Lett, (2000), 13(3), 57-62.
    [80] Lee G.M. and Kum S.H., On implicit vector variaitonal ineqalities, J. Optim.Theory Appl., (2000),104(2), 409-425.
    [81] Li J., A lower and upper bounds of a variational inequality, Appl. Math. Lett,(2000), 13(5), 47-51.
    [82] Li J. and Huang N. J., Implicit vector equilibrium problems via nonlinear scalari-sation, Bull. Australian Math. Soc., 2005, 72 (1), 161-172.
    [83] Lin L.J., Fixed point theorems and equilibrium problems, Nonlinear Anal. TMA,(2001),43, 987-999.
    [84] Lin L.J., Applications of a fixed point theorem in G-convex space, NonlinearAnal. TMA, (2001),46, 601-608.
    [85] Lin L.J., Ansari Q. H. and Wu J. Y., Geomtric properties and coincidence the-orems with applications to generalized vector equilibrium problems. J. Optim.Theory Appl., (2003),117, 121-137.
    [86] Lin L.J., Chen H.L., the study of KKM theorems with applications to vector equi-librium problem and implict vector variational inequalities problems, J. GlobalOptim., (2005), 32, 135-157.
    [87] Lin L.J. and Park S., On some generalized quasi-equilibrium problem, J. Math.Anal. Appl. (1998), 224, 167-181.
    [88] Li S.J., Teo K. L. and Yang X.Q. , Generalized vector quasi-equilibrium problem,Math. Meth. Oper. Res., (2005),61, 385-397.– 67 –
    [89] Lin L.J. and Wan W.P., KKM type theorems and coincidence theorems with ap-plications to the existence of equilibrium, J. Optim. Theory Appl., (2004), 123,105-112.
    [90] Lin L. J.,Yu Z. T., On some equilibirum problems for multimaps, J. Comput. Appl.Math.,(2001),129,171-183.
    [91] Lin Z. and Yu J., The existence of solutions for the system of generalized vectorquasi-equilibrium problems,Appl. Math. Lett., (2005), 18, 415-422.
    [92] Luo Q.,Generalized vector variational-like inequalities, In Vector Variational In-equalities and Vector Equilibria, (Ed. by F. Giannessi), Kluwer Acad. Pub. Lon-don,(2000), 363-369.
    [93] Oettli W. and Schla¨ger D., Existence of equilibria for g-monotone mappings, Innonlinear analysis and convex analysis (Edited by W. Takahashi and T. Tanaka),World Scientific Pub., Singapore, (1999), 26-33.
    [94] Park S., Foundations of the KKM theory via coincidence of composities of uppersemicontinuous maps, J. Korean. Math. Soc., (1994),31, 493-520.
    [95] Park S., Fixed points of admissible maps on generalized convex space, J. Korean.Math. Soc., (2000), 37, 885-899.
    [96] Park S., Coincidence theorems for the better admissible multimaps and their ap-plications, Nonlinear Anal. TMA, (1997), 30, 4186-4191.
    [97] Park S. and Kim H., Coincidence theorems for admissible multifunctions on gen-eralized convex spaces, J. Math. Anal. Appl., (1996), 197, 173-187.
    [98] Park S. and Kim H., Foundations of the KKM theory on generalized convexspaces, J. Math. Anal. Appl.,(1997), 209, 551-571.
    [99] Peng J. W. and Yang X. M., Generalized vector quasi-variational-like inequalities,J. Inequal. Appl. (to appear)
    [100] Song W., Vector equilibrium problems with set-valued mappings, Vector Vari-ational Inequalities and Vector Equilibria, (Ed. by F. Giannessi), Kluwer Acad.Pub. London, (2000),403-422
    [101] Tian G. Generalizations of the FKKM theroem and the Ky Fan minimax inequal-ity with applications to maximal elements, price equilibrium and comjplementar-ity, J. Math. Anal. Appl., (1992), 170, 457-471.
    [102] Verma R. U., Some results on R-KKM mappings and R-KKM selections and theirapplications, J. Math. Anal. Appl. (1999), 232, 428-433.
    [103] Verma R. U., G-H-KKM type theorems and their applications to a new class ofminimax inequalities, Comput. Math. Appl., (1999),37, 45-48.
    [104] Yang M. G. and Deng L., FC-hull in FC-spaces and its applications, Appl. Math.Lett, (In press).
    [105] Yang X. Q., Vector variational inequality and vector pseudo-linear optimization,J. Optim. Theory Appl., 1997, 95, 729-734.
    [106] Yuan G. X.Z., “KKM Theory and Applications in Nonlinear Analysis,” MarcelDekker, New York, 1999.
    [107] Zhang C. T., A class of equilibrium problems with lower and upper bounds, Acta.Math. Sinica, (2005), 48(2), 293-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700