几类微分包含周期解的存在性及可控性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微分包含是非线性分析理论的重要分支,它与微分方程、最优控制及最优化等其它数学分支有着紧密的联系。微分包含周期解的存在性和可控性是微分包含理论的基本内容。本文主要研究了周期问题,给出了几类微分包含周期解的存在性定理,并对几类微分包含的可控性进行了研究。
     1.在有限维空间讨论了半线性发展包含的周期问题。当满足单边Lipschtz条件时,借助于集值分析理论和不动点定理,获得了凸和非凸两种情况下周期解的存在性定理。对于非凸情形,使用单值的Leray-Schauder替换定理获得周期解的存在的充分条件。对于凸情形,利用集值的Leray-Schauder替换定理获得所要的结论。利用Tolstonogov端点连续选择定理,证明了端点周期解的存在性,并证明了端点周期解的稠密性(强松驰定理)。F (t , x)
     2.在可分的Banach空间讨论了一类积分微分包含的周期问题。借助于解的积分表示和不动点定理,分别获得了凸和非凸两种情形下周期解存在的充分条件。对于凸情形,利用Kakutani不动点定理,对于非凸情形,利用连续选择的方法和Tychonoff不动点定理。
     3.讨论了一类非自治微分包含的周期问题。当向量场满足单边Lipschitz条件时,以Leray-Schauder替换定理(单值形式和集值形式)为工具,获得了凸和非凸两种情形周期解存在的充分条件。利用端点连续选择定理获得端点周期解的存在性,并证明了强松驰定理。F (t , x)
     4.讨论了一类发展包含的可控性。处理方法是将所讨论的问题转化为集值积分算子的不动点问题,利用凝聚映射的不动点定理,获得了可控性的充分条件。
     5.利用不动点定理讨论了一类积分微分包含的可控性问题。在凸和非凸两种情形下建立了可控性的充分条件。对于凸情形,处理方法是将所讨论的问题转化为集值积分算子的不动点问题,利用Kakutani不动点定理获得可控性。对于非凸情形,是将所讨论的问题转化为单值的积分算子的不动点问题,利用Schauder不动点定理获得所要的结论。
     6.利用Galerkin逼近方法,将有限维结果推广到无穷维,在发展三元组框架下,证明了在无穷维空间半线性发展包含周期解的存在性定理。并把得到的结果应用于偏微分包含,给出了一类偏微分包含的周期解存在的充分条件。
Differential inclusion is an important branch of nonlinear analysis, which has close relationships with other branches of mathematics such as differential equation, optimal control and optimization. The existence of periodic solutions and controllability are basic contents of differential inclusions. The main content of this paper is the periodic problems. Particularly, we give the existence theorems of the periodic solutions for several types of differential inclusions. Moreover we study the controllability several classes of differential inclusions.
     1. In finite dimensional spaces, we discuss the periodic problems for semi-linear evolution inclusions. WhenF (t , x) satisfies one-side Lipschitz condition, using techniques from multivalued analysis and fixed point theory, we establish the existence theorems for convex and nonconvex cases. In the nonconvex case, we obtain the sufficient conditions for the existence of periodic solutions by using single-valued Leray-Schauder alternative theorem. In the convex case, the desirable resut has been obtained by using set-valued Leray-Schauder alternative theorem. On the basis of Tolstonogov extremal continuous selection theorem, we prove the existence of extermal periodic solutions and the density of extermal periodic solutions (the strong relaxation theorem).
     2. In separable Banach Space, we study the periodic problems for a class of integrodifferential inclusions. By applying integral expression of solutions and fixed point theorems, we obtain the sufficient conditions for the existence of periodic solutions both convex and nonconvex case. For convex case, we use Kakutani fixed point theorem. For nonconvex case, the method of continuous selections and Tychonoff fixed point theorem are used.
     3. Periodic problems for a class of non-autonomous differential inclusions are debated. Utilizing Leray-Schauder alternative theorem we give the sufficient conditions for the existence of periodic solusions for both convex and nonconvex problems when orientor field F (t , x) satisfy one-side Lipschitz continuous. By the theorem of the continuous selection on extremal points, we give the sufficient conditions for existence of extremal solusions and prove the strong relaxation theorem.
     4. The controllability of a class of evolution inclusions has been debated. Our method is based on the transition from the problems discussed to the fixed point problems of set-valued integral operators. By applying a fixed point theorem for condesing maps, the sufficient conditions of controllability are obtained.
     5. The controllability of a class of integrodifferential inclusions is studied by fixed point theorem. For convex and nonconvex cases, we establish sufficient conditions for controllability separately. For convex case, our method is based on the transition from the problems discussed to the fixed point problems of set-valued integral operators. By using Kakutani fixed point theorem, we give the sufficient conditions of controllability. For nonconvex case, we convert the problem into fixed point problem of single-valued integral operators and obtain the desirable result by Schauder fixed point theorem.
     6. Using Galerkin approximation, we extend the finite dimensional results to infinite dimensional space. Under the framework of evolution triple of spaces, we proved the existence theorem of semi-linear evolution inclusion. Moreover we apply the results obtained to a class of partial differential inclusion, the sufficient conditions of existence for periodic solusions are given.
引文
1 A. F. Filippov. On Some Questions of Optimal Control Theory. Vestn. Mosk. Un-ta. Ser. I, Mathem. Mehanika. 1959,2:25-32(in Russian)
    2 F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons Inc. New York, 1983
    3 J. P. Aubin, I. Ekeland. Applied Nonlinear Analysis. John Wiley & Sons Inc. New York, 1984
    4 J. P. Aubin, H. Frankowska. Set-valued Analysis, Birkl?user, Boston, Basel, Berlin 1990
    5 S. Hu, N. S. Papageogiou. Handbook of Multivalued Analysis, Volum I: Theory. Kluwer Dordrecht, Nertherlands, 1997
    6 S. Hu, N. S. Papageogiou. Handbook of Multivalued Analysis, Volum II: Application. Kluwer Dordrecht, Nertherlands, 2000
    7 J. P. Aubin, A. Cellina. Differential Inclusions. Springer-Verlag, Berlin, Hei-delberg, 1984
    8 E. Micheal. Continuous Selections. I. Ann. of Math. 1956, 63:361-381
    9 A. Bressan, G. Colombo, Existensions and Selections of Maps with Decom-posable Values. Studia Math. 1988, 90:69-86
    10 A. A. Tolstonogov. Extreme Continuous Selectors of Multivalued Maps and Their Applications. J. Differential Equations. 1995, 122:161-180
    11 A. A. Tolstonogov, D. A. Tolsonogov. L_p-Continuous Extreme Selectors of Multifunctions with Decomposable Values. I: Existence Theorems, II: Relaxation Theorems. Set-Valued Anal. 1996, 4:173-203, 237-269
    12 A.Plis. On Trajectories of Orientor Fields. Bull Acad. Polon. Sci. 1965, 13: 565-569
    13 J. Davy. Properties of the Solution Set of a Generalized Differential Equa-tion. Bull. Australian Math. Soc. 1972, 6:379-398
    14 A. F. Filippov. Differential Equations with Discontinuous Right-Hand Side.Math. Sbornik. 1950, 51:99-128 (in Russian)
    15 A. F. Filippov. Classical Solutions of Differential Equations with Multi-valued Right-Hand Side. SIAM J. Control. Optim. 1967, 6:609-621
    16 H. Kaczynski, C. Olech. Existence of Solutions of Orientor Fields with Non-Convex Right-Hand Side. Ann. Polon. Math. 1974, 29:61-66
    17 H. Antosiewicz, A. Cellina. Continuous Selections and Differential Rela-tions. J. Differential Equations. 1975, 19:386-398
    18 A. Bressan. On Differential Relations with Lower Semicontinuous Right-Hand Side. An Existence Theorem. J. Differential Equations. 1980, 37:89-97
    19 J. S. Lojasiewicz. The Existence of Solutions of for Lower Semicontinuous Orientor Fields. Bull. Acad. Polon. Sci. 1980, 28:483-487
    20 F. S. De Blasi. Existence and Stability of Solutions for Autonomous Multivalued Differential Equation in Banach Space. Atti. Accad. Naz. Lincei, Ser. VIII, 1976, 60:767-774
    21 C. Bardaro, P. Pucci. Some Contributions to the Theory of Multivalued Differential Equations. Atti. Sem. Math. Fis. Modena. 1983, 32:175-202
    22 F. S. De Blasi, J. Myjak. The Generic Property of Existence of Solutions for a Class of Multivalued Differential Equations in Hilbert Spaces. Funkc. Ekvacioj. 1978, 21: 271-278
    23 F. S. De Blasi, G. Pianigiani. Non Convexvalued Differential Inclusions in Banach Space. J. Math. Anal. Appl. 1991, 157:469-494
    24 A. A. Tolstonogov, I. A. Finogenko. On Solutions of the Differential Inclu-sion with Lower Semicontinuous Right-Hand Side in Banach Space. Sb. Mathem. 1984, 125:199-230 (in Russian)
    25 N. S. Papageorgiou, F. Papalini, N. Yannakakis. Nonmonotone, Nonlinear Evolution Inclusions. Math. Comp. Modelling. 2000, 32:1345-1365
    26 N. U. Ahmed. An Existence Theorem for Differential Inclusion on Banach Space. J. Appl. Math. Stoch. Anal. 1992, 5:123-130
    27 N. S. Papageorgiou. On the Set of Solutions of a Class of NonlinearEvolution Inclusions, Kodai Math. J. 1992, 15:387-402
    28 N. S. Papageorgiou. A Coutinuous Version of the Relaxation Theorem for Nonlinear Evolution Inclusions, Houston J. Math. 1994, 20: 85-704
    29 N. S. Papageorgiou, N. Shahzad. Properties of the Solution Set of Nonlinear Evolution Inclusions. Appl. Math. Optim. 1997, 36:1-20
    30 W. Bian. Existence Results for Second Order Nonlinear Evolution Inclu-sions. Indian J. Pure Appl. Math. 1998, 11:1177-1193
    31 S. Migorski. Existence, Variational and Optimal Control Problems for Nonlinear Second Order Evolution Inclusions. Dynam. Syst. Appl. 1995, 4: 513-528
    32 N. S. Papageorgiou, N. Yannakakis. Second Order Nonlinear Evolution Inclusions I: Existence and Relaxation Results. Acta Math. Sinica, English Ser. Oct., 2005, 20:977-996
    33 R. Gaines, A. Peterson. Periodic Solutions to Differential Inclusions. Non-linear Anal. 1981, 5: 1109-1131
    34 F. H. Clarke. Periodic Solutions of Hamiltonian Inclusion. J. Differential Equations. 1981, 40:52-67
    35 G. Haddad, J. M.Lasry. Periodic Solution of Functional Differential Inclu-sions and Fixed Point of σ -Selectionable Correspondences. J. Math. Anal. Appl. 1983, 96:295-312
    36 S. Plaskacz. Periodic Solutions of Differential Inclusions on Compact Subsets of R N. J. Math. Anal. Appl. 1990, 148:202-212
    37 F. S. De Blasi, L. Górniewicz, G. Pianigiani. Topological Degree and Perio-dic Solutions of Differential Inclusions. Nonlinear Anal. 1999, 37:217-245
    38 J. M .Lasry, R. Robert. Degré Topologique Pour Centains Couples de Functions et Applications aux Equations Differentielles Multivoques. CRAS, Paris. 1976, 283:163-166
    39 S. Hu, N. S. Papageorgiou. On the Topological Reqularity of the Solution Set of Differential Inclusions with Constraints. J. Differential Equations.1994, 107:280-289
    40 S. Hu, N. S. Papageorgiou. On the Existence of Periodic Solutions for Nonconvex Valued Differential Inclusions in R N. Proc. AMS. 1995, 123: 3043-3050
    41 S. Hu, D. Kandilakis, N. S. Papageorgiou. Periodic Solutions for Nonconvex Differential Inclusions. Proc. AMS. 1999, 127:89-94
    42 S. Kyritsi, N. Matzakos, N. S. Papageorgiou. Periodic Problems for Strongly Nonlinear Second-Order Differential Inclusions. J. Differential Equations, 2002, 183:279-302
    43 F. S. De Blasi, G. Pianigiani. Non-Convex Valued Differential Inclusions in Banach Spaces, J. Math. Anal. Appl. 1991, 157:469-494
    44 G. Li, X. Xue. On the Existence of Periodic Solutions for Differential Inclusion. J. Math. Anal. Appl. 2002, 276:168-183
    45 X. Xue, G. Li. On the Periodic Solutions of Differential Inclusions and Applications. Nonlinear Funct. Anal. Appl. 2003, 8:165-180
    46 M. I. Kamenski, V. V. Obukhovski. Condensing Multioperators and Periodic Solutions of Parabolic Functional-Differential Inclusion in Banach Space. Nonlinear Anal. 1993, 20:781-792
    47 E. P. Avgerinos. On Periodic Solutions of Multivalued Nonlinear Evolution Equations. J. Math. Anal. Appl. 1996, 198:643-656
    48 N. S. Papageorgiou, N. Shahzad. Properties of the Solutions Set of Non-linear Evolutions Inclusions. Appl. Math. Optim. 1997, 36:1-20
    49 R. Barder. The Periodic Problem for Semilinear Differential Inclusions in Banach Space. Comment. Math. Univ. Carolinae. 1998, 39:671-681
    50 R. Barder. On the Semilinear Multi-Valued Flow Under Constraints and the Periodic Problem. Comment. Math. Univ. Carolinae. 2000, 41:719-734
    51 R. Barder, W. Kryszewski. On the Solution Sets of Differential Inclusions and the Periodic Problem in Banach Spaces. Nonlinear Anal. 2003, 54:707-754
    52 S. Hu, N. S. Papageorgiou. Periodic Solutions for Nonlinear Differential Equations with Maximal Monotone Terms. Nonlinear Anal. 2003, 52:1317-1330
    53 M. Filippakis, L. Gasiński, N. S. Papageorgiou. Periodic Problems with Asymmetric Nonlinearities and Nonsmoonth Potentials. Nonlinear Anal. 2004, 58:683-702
    54 S. Aizicovici, N. S. Papageorgiou, V. Staicu. Periodic Solutions for Second Order Differential Inclusions with the Scalar p ?Laplacian. J. Math. Anal. Appl. 2006, 322:913-929
    55 J. M. Lasry, R. Robert. Analyse Nonlinear Multivoque. Publication No. 7611, Centre de Recherche de Mathematique de la Decision, Universites de Paris, Dauphine, 1-190
    56 C. Himmelberg, F. Van Vleck. A Note on the Solution Sets of Differential Inclusions. Rocky Mountain J. Math. 1982, 12:621-625
    57 J. Yorke. Spaces of Solutions, Lecture Notes in Operations Research and Mathematical Economics, No.12, Springer-Verlag, Berlin, 1969
    58 D. M. Hyman. On Decreasing Sequences of Compact Absolute Retracts. Fund. Math. 1969, 64:91-97
    59 L. Górniewicz. Homological Methods in Fixed Point Theory of Multivalued Maps. Dissertations Math. 1976, 129:1-71
    60 F. S De Blasi, G. Pianigiani, V. Staicu. Topological Properties of Nonconvex Differential Inclusions of Evolution Type. Nonlinear Anal. 1995, 24:711-720
    61 S. Hu, V. Lakshmikantham, N. S. Papageorgiou. On the Properties of the Solution Set of Semilinear Evolutions. Nonlinear Anal. 1993, 24:1683-1712
    62 F. S. De Blasi, G. Pianigiani. Topological Properties of Nonconvex Differen-tial Inclusion. Nonlinear Anal. 1993, 20:871-894
    63 A. A. Tolstonogov. L_p-Continuous Selectors of Fixed Points for Multifunc-tion with Decomposable Values. II: Relaxation Theorem. J. Siberia Math. 1999, 40:1167-1181
    64 A. A. Tolstonogov. Lp-Continuous Selectors of Fixed Points for Multi-func-tion with Decomposable Values. I: Existence Theorem. J. Siberia Math. 1999, 40:696-709
    65 R. Barder, W. Kryszewski. On the Solution Sets of Constrained Differential Inclusions with Applications. Set-Valued Anal. 2001, 9:289-313
    66 A. A. Tolstonogov. Properties of Solutions to Second Order Evolution Control Systems I. J. Siberia Math. 2002, 43:731-745
    67 A. A. Tolstonogov. Properties of Solutions to Second Order Evolution Control Systems II. J. Siberia Math. 2002, 43:926-941
    68 N. S. Papageorgiou, N. Yannakakis. Second Order Nonlinear Evolution Inclusion II: Structure of the Solution Set. Acta Math. Sinca, English Series Jan. 2006,22:195-206
    69 T. C. Lim. On Fixed Point Stability for Set-Valued Contraction Mapping with Application to Generalized Differential Equations. J. Math. Anal. Appl. 1985, 110:436-411
    70 A. Constantin. Stability of Solution Sets of Differential Equations with Multivalued Right-Side. J. Differential Equations. 1994, 114:243-252
    71 N. S. Papageorgiou. A Stability Result for Differential Inclusions in Banach Spaces. J. Math. Anal. Appl. 1986, 118:232-246
    72 H. Fattorini. Some Remark on Complete Controllability. SIAM J. Control. 1966, 4:686-694
    73 A. Kurzhanskii. On Controllability in Banach Spaces. J. Differential Equations. 1969, 5:1269-1271
    74 L. M. Kuperman, J. Repin. On Controllability in Infinite Dimensional Spaces. Soviet Math. Doklady. 1971, 12:1469-1472
    75 P. Fuhrmann. On Weak and Strong Reachability and Controllability of Infinite Dimensional Linear System. J. Optim. Theory Appl. 1972, 9:87-89
    76 R. Triggiani. Controllability and Observability in Banach Space with Bounded Operators. SIAM J. Control. 1972, 13:462-491
    77 N. U. Ahmed. Sufficient Conditions for Controllability of a Class of Distributed Parameter Systems. Systems and Control Letters, 1982, 2:237-242
    78 N. U. Ahmed. Properties of Relaxed Trajectories for a Class of Nonlinear Evolution Equations on Banach Space. SIAM J. Control. 1983, 2:953-967
    79 K. Naito. Controllability of Semilinear Control Systems Dominated by the Linear Part. SIAM J. Control. 1987, 25:715-722
    80 K. Naito. On Controllability for a Nonlinear Volterra Equation. Nonlinear Anal. 1992, 18:99-108
    81 H.Fattorini. The Time-Optimal Control Problem in Banach Spaces. Appl. Math. Optim. 1974, 1:163-188
    82 K. Narukawa. Admissible Controllability of Vibrating Systems with Constrained Controls. SIAM J. Control Optim. 1982, 20:770-782
    83 G. Peichl, W. Schappacher. Constrained Controllability in Banach Spaces. SIAM J. Control Optim. 1986, 24:1261-1275
    84 A. Kartsatos, C. Liang. Extending the Class of Pre-Assigned Responses in Problems of K-Controllability in General Banach Spaces. Nonlinear Anal. 1997, 28:235-245
    85 R. George. Approximate Controllability of Nonautonomous Semilinear Systems. Nonlinear Anal. 1995, 24:1377-1393
    86 S. Hu, V. Lakshmikantham N. S. Papageorgiou. On the Null-Controllability Set, Minimal Time Function and Time Optimal Control of Finite Dimensional Systems. WSSIAA3, World Scientific Publ. Comp. Singapore. 1994, 325-344
    87 K. Balachandran, P. Balasubramaniam, J. P. Dauer. Controllability of Non-linear Integrodifferential Systems in Banach Space. J. Optim. Theory Appl. 1995, 84:83-91
    88 M. Benchohra, S. K. Ntouyas. Controllability of Secord-Order Differential Inclusions in Banach Spaces with Nonlocal Conditions. J. Optim. TheoryAppl. 2000, 107:559-571
    89 M. Benchohra, E. P. Gatsori, L. Górniewicz, S. K. Ntouyas. Controllability Results for Evolutions Inclusions with Nonlocal Conditions. Z. Anal. Anwendungen. 2003, 22:411-431
    90 M. Benchohra, S. K. Ntouyas. Controllability on Infinite Time Horizon of Neutral Functional Differential and Integrodifferential Inclusions in Banach Spaces. Bull. Greek Math. Soc. 2001, 45:105-124
    91 M. Benchohra, S. K. Ntouyas. Controllability of Neutral Functional Differential and Integrodifferential Inclusions in Banach Spaces. Italian J. Pure Appl. Math. 2003, 14:95-112
    92 J. Y. Park, Y. C. Kwun, H. J. Lee. Controllability of Second-Order Neutral Functional Differential Inclusions in Banach Spaces. J. Math. Anal. Appl. 2003, 285:37-49
    93 L. Górniewicz, S. K. Ntouyas, D. O’Regan. Controllability of Semilinear Differental Equations and Inclusions via Semigroup Theory in Banach Spaces. Reports on Mathematical Physics, 2005, 56:437-470
    94 M. Benchohra, A. Ouahab. Controllability Results for Functional Semilinear Differential Inclusions in Fréchet Spaces. Nonlinear Anal. 2005, 61:405-423
    95 P. Balasubramaniam, S. K. Ntouyas. Controllability for Neutral Stochastic Functional Differential Inclusions with Infinite Delay in Abstract Space. J. Math. Anal. Appl. 2006, 324:161-176
    96 Y. K. Chang, W. T. Li, J. J. Nieto. Controllability of Evolution Differential Inclusions in Banach Spaces. Nonlinear Anal. 2007, 67:623-632
    97 K. Balachandran, P. Manimedolai. Controllability of Nonlinear Abstract Neutral Evolution Integrodifferential Systems. Nonlinear Funct. Anal. Appl. 2002, 7:85-100
    98 G. Li, X. Xue. Controllability of Evolution Inclusions with Nonlocal Condi-tions. Appl. Math. Comput. 2003, 141:375-384
    99 M. Guo, X. Xue, R. Li. Controllability of Impulsive Evolutions withNonlocal Conditions. J. Optim. Theory Appl. 2004, 120:355-374
    100 M. Benchohra, L. Górniewicz, S. K. Ntouyas, A. Ouahab. Controllability Results for Impulsve Functional Differential Inclusions. Reports on Mathematical Physics, 2004, 54:211-228
    101 B. Liu. Controllability of Impulsive Neutral Functional Differential Inclu-sions with Infinite Delay. Nonlinear Anal. 2005, 60:1533-1552
    102 L. Byszewski. Theorems about the Existence and Uniqueness of Solutions of a Semilinear Evolution Nonlocal Cauchy Problem. J. Math. Anal. Appl. 1991, 162:494-505
    103 E. P. Gatosri. Controllability Results for Nondensely Defined Evolution Differential Inclusions with Nonlocal Conditions. J. Math. Anal. Appl. 2004, 297:194-211
    104 J. Wu. Theory and Applications of Partial Functional Differential Equations. Springer, New York, 1996
    105 M. Kamenskii, V. Obukhovskii, P. Zecca. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter & Co. Berlin, 2001
    106 A. A. Tolstonogov. Differential Inclusions in a Banach Space. Kluwer Academic Publishers, Dordrecht, 2000
    107 K. Yosida. Functional Analysis. Springer-Verlag, Berlin, 1978
    108 E. Klein, A. Thompson. Theory of Correspondences. Wiley, New York, 1984
    109 K. Deimling. Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985
    110 E. Zeidler. Nonlinear Functional Analysis and Its Applications. Spring-Verlag, Berlin, 1984
    111 P. R. Halmos. Measure Theory. New York, Van Norstand, 1950
    112 E. Hewitt, K. R. Stromberg. Real and Abstract Analysis— A Modern Treatment of the Theory of Functions of a Real Variable. Springer-Verlag, Berlin, 1978
    113 J. Diestel, Jr. J. Uhl. Vector Measure. Math. Survey 15. Amer. Math. Soc. 1977
    114 A. A. Tolstonogov. Continuous Selectors of Multivalued Maps with Closed,Nonconvex, Decomposable Values. Sb Mathem. 1996, 185:121-142 (in Russian)
    115 J. Dugundji, A. Granas. Fixed Point Theory. Monografie Matematyczne, PWN. 1986, 123:9-31
    116 M. Martelli. A Rothe Type Theorem for Noncompact Acyclic-Valued Map. Boll. Un. Mat. Ital. 1975, 4:70-76
    117 F. Hiai, H. Umegaki. Integrals, Conditional Expectations and Martingales of Multivalued Functions J. Multivariate Anal. 1977, 7:149-182
    118 N. S. Papageorgiou. Convergence Theorems for Banach Space Valued Integrable Multifunctions. Internat. J. Math. Sci. 1987, 10:433-442
    119 M. Forti, P. Nistri. Global Convergence of Neural Networks with Dis-continuous Neuron Activations. IEEE Trans. Circuits Syst. 2003, 150:1421-1435
    120 M. Forti, P. Nistri, D. Papini. Global Exponential Stability and Goble Convergence in Finite Time of Delayed Neural Networks with Infinite Gain. IEEE Trans. Neural Networks. 2005, 16:1449-1463
    121 Z. Denkowski, S. Mig ó rski, N. S. Papageorgiou. An Introduction to Nonlinear Analysis: Theory, Kluwer/Plenum, New York, 2003
    122 Z. Donchev. Qualitative Properties of a Class of Differential Inclusion. Glas. Mat. 1996, 31:269-276
    123 N. S. Papageorgiou. Random Differential Inclusion in Banach Spaces. J. Differential Equations. 1986, 65:287-303
    124 A. Lasota, Z. Optial. An Application of the Kakutani-Ky Fan Theorem in the Theory of Ordinary Differential Equations. Bull. Acad. Polon. Sci. 1965, 13:781-786
    125 B. C. Dhage, A. Boucherif, S. K. Ntouyas. On Periodic Boundary Value Problems of First-Order Perturbed Impulsive Differential Inclusion. Rep. Math. Phys. 2004, 54:221-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700