CNR1基因的表达对肌纤维类型的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌纤维的类型和组成是肌肉生长和肉品品质的重要生化和分子生物学基础。不同的肌纤维类型具有不同的能量代谢特点和生理生化特性。在哺乳动物骨骼肌中表达的肌纤维类型主要有MyHCⅠ、MyHCⅡa、MyHCⅡx和MyHCⅡb四型,不同的肌纤维类型之间可以相互转化。本研究在课题组前期基因芯片筛选的基础上,以在肉质优良的金华猪和肉质欠佳的长白猪中差异表达的基因--内源性大麻素受体1(CNR1)为研究对象。利用荧光定量PCR,免疫组化,VWestern Blot等技术,建立体内、体外超表达和基因沉默的细胞或动物模型,较系统的研究了CNR1在骨骼肌纤维类型转化中的调控作用及可能的机制。主要研究结果如下:
     1. CNR1在猪肌肉组织和肌卫星细胞中的表达规律研究
     本实验以金华猪、长白猪和分离的猪肌卫星细胞为研究对象,比较研究了CNR1基因在猪不同肌肉组织如背最长肌(快肌纤维为主)、腓肠肌(混合型)和比目鱼肌中(慢肌纤维)表达的组织差异,发育性变化规律和品种差异,及其在肌卫星细胞诱导分化中的表达规律。结果显示:在不同的肌肉组织中,CNR1基因在背最长肌中的表达量较高(p<0.01);发育性变化规律研究表明,CNR1基因表达存在着随日龄的增长而下降的趋势;品种差异显示,CNR1基因在长白猪背最长肌和比目鱼肌中的表达量均高于金华猪(p<0.01),而在腓肠肌中未发现显著的品种差异。在分离的猪肌卫星细胞中,CNR1在诱导前表达量较高,随着诱导呈现显著下降的趋势(p<0.05)。从以上结果可以看出CNR]基因在背最长肌中相对高表达;并有随日龄的增长而呈现显著下降的趋势;同时CNR1在长白猪中的表达量高于金华猪。在分离的肌卫星细胞中有随着诱导分化呈现显著下降的趋势。提示CNR1基因的表达可能与肌纤维的发育和类型相关。
     2. CNR1特异性激动剂和抑制剂对肌纤维类型的影响及其分子机制
     以大鼠成肌细胞L6为模型,首先研究了随着L6细胞的诱导分化,CNR1基因和肌纤维分型相关基因MyHCⅠ、MyHCⅡa、MyHCⅡx和MyHCⅡb的表达规律;进一步用CNR1的激动剂MAEA和抑制剂AM251处理L6细胞,荧光定量PCR检测CNR1基因、肌纤维类型相关基因(MyHCⅠ、MyHCⅡa、MyHCⅡx和MyHCⅡb)、能量代谢类型的关键酶基因(LDH、SDH和MDH)和肌纤维类型转化调控的关键基因(AMPKa1、PGC-1、ERK1和ERK2)的表达。研究结果显示:诱导0、1、3、5、7、9天的L6细胞中,CNR1基因的表达在诱导的第3天和第7天较高(p<0.05)。MyHCI和MyHCIIa型的表达量在第3天达到峰值,随后显著下降。MyHCIIx在诱导的前7天有随着诱导升高的趋势,第3天和第7天的表达量较高(P<0.05)。MyHCIIb基因在诱导的第2天即显著升高(P<0.05),第3天达到峰值后极显著下降(P<0.05)。不同浓度(0、5、10、15μM/L)的CNR1激动剂MAEA处理L6细胞,CNR1基因的表达在15μM的浓度下显著提高。进一步在15μM的浓度下处理不同时间,CNR1基因的表达在第1天和第3天提高。无论是MAEA不同浓度处理还是在相同浓度下MAEA处理不同时间,CNR1的激动剂MAEA均能显著降低MyHCIIb基因的表达,MyHCIIa基因的表达量有上升的趋势;对MyHCI和MyHCIIx的表达无显著影响。能量代谢关键酶基因发面,MAEA处理后,糖酵解关键酶LDH基因的表达下降(p<0.05)。有氧氧化关键酶SDH和MDH无显著变化。肌纤维类型转化调控基因ERK1的表达量显著升高。而不同浓度(0、0.1、1、10μM/L)的抑制剂AM251处理L6细胞后,10μM/L的AM251显著降低了CNR1基因的表达;进一步用10μM/L的浓度下处理不同时间(1、3、5天),CNR1基因的表达均呈现下降趋势。无论是AM251不同浓度处理还是在相同浓度下处理不同时间,肌纤维类型相关基因MyHCIIa和MyHCIIx的表达量下降(P<0.05),MyHCIIb基因的表达增加(P<0.01)。能量代谢关键酶基因LDH的表达量升高,MDH和SDH的基因表达则显著下降。肌纤维类型转化调控的关键基因(?)MPKal和ERK1的表达量降低(P<0.01)。上述述结果初步揭示CNR1激动剂可以显著降低酵解型肌纤维MyHCIIb基因的表达,增加快氧化型肌纤维基因的表达;显著降低酵解关键酶基因LDH的表达和升高氧化型酶SDH和MDH的表达,同时ERK1基因的表达也增强。而添加抑制剂后得到了与之相反的实验结果。
     3.干扰CNR1基因对肌纤维类型的影响及其分子机制
     本实验中首先设计合成三对CNR1基因的特异性发夹siRNA干扰片段,将其克隆入干扰载体pYr-1.1,构建可沉默(CNR1基因的siRNA表达载体CNR1-1、CNR1-2和CNR1-3。并采用LipofectamineTM (Lip)2000介导质粒转染L6细胞,绿色荧光蛋白的表达和流式细胞仪监测转染效率,通过实时荧光定量分析siRNA表达载体的干扰效果。并进一步用G418进行了稳定转染siRNA的L6细胞筛选。结果显示,CNR1基因的siRNA表达载体构建正确,瞬时转染L6细胞的转染效率分别为10.45%(P<0.01)、8.57%(P<0.01)和8.71%(P<0.01);干扰效率为39%(P<0.05)、64%(P<0.01)及68%(p<0.01)。稳定筛选的最佳G418浓度为800ug/ml,稳定筛选后干扰效率分别为43%(P<0.05)、78%(P<0.01)及91%(P<0.01)。干扰效率较高的CNR1-3表达载体和稳定转染CNR1-3的细胞为构建筛选成功的siRNA表达载体和阳性细胞。
     有效沉默CNR1基因后,MyHCIIa基因的表达显著下降;MyHCIIb基因的表达则显著上升。进一步对稳定干扰细胞进行诱导,在诱导后1、3、5天MyHCI和MyHCIIx基因的表达均无显著变化;MyHCIIb基因的表达在诱导1、3、5天分别显著提高(P<0.05);MyHCIIa基因的表达均呈现下降,在诱导第3天显著下降(P<0.05)。在稳定干扰的L6细胞系中,糖酵解关键酶基因LDH的表达显著升高(P<0.05);有氧氧化关键酶基因MDH和SDH基因的表达下降,但无显著差异。ERK2基因的表达量极显著的升高(P<0.05)。而AMPKa1、PGC-1和ERK1的基因表达无显著变化。这些变化趋势和CNR1基因的抑制剂作用效果基本一致。这些实验结果揭示,在L6细胞中抑制和沉默CNR1基因后可以显著升高酵解型肌纤维MyHCIIb基因的表达,显著降低快氧化型肌纤维MyHCIIa基因的表达:显著升高能量代谢关键酶基因LDH基因的表达;ERK1基因的表达显著降低而ERK2基因的表达显著升高。
     4.超表达CNR1对肌纤维类型的影响及其分子机制
     4.1体外超表达CNR1对肌纤维类型的影响及其分子机制
     质粒载体pCDNA3.0具有G418抗性,用800ug/ml的G418对转染超表达质粒的L6细胞进行稳转筛选。筛选出的稳定转染细胞系中CNR1基因和蛋白的相表达量均显著增加,稳定超表达CNR1细胞模型建立成功。稳定超表达CNR1后,MyHCIIa基因的表达显著升高(P<0.01),MyHCIIb基因的表达显著下降(P<0.01), MyHCI和MyHCIIx的表达无显著变化。进一步对稳定超表达CNR1的细胞进行诱导后,MyHCI、MyHCIIb基因的表达在诱导的1、3、5天均无显著变化。MyHCIIa基因的表达在诱导后均显著提高(P<0.05)。糖酵解关键酶基因LDH的表达显著下降(P<0.01),有氧氧化代谢的关键酶MDH (P<0.01)和SDH (P<0.05)显著升高。肌纤维转型关键基因ERK1基因的表达显著升高(P<0.05), AMPKal、PGC-1和ERK2的表达无显著差异。这些变化趋势与CNR1激动剂MAEA的作用效果基本一致。综合上述结果,CNR1激动剂和体外超表达CNR1可显著降低MyHCIIb基因的表达,显著增加快氧化型MyHCIIa的表达。同时显著升高了有氧氧化的关键酶SDH和MDH的表达而酵解关键酶LDH表达显著降低,肌纤维类型转变的关键调控因子ERK1的表达显著上升。
     4.2大鼠体内超表达CNR1对肌纤维类型的影响及其调控机制
     利用课题组前期建立的大鼠活体肌肉电击转化实验平台,将CNR1超表达质粒导入大鼠腓肠肌和比目鱼肌中,CNR1的基因和蛋白表达量均显著提高,CNR1超表达体内模型建立成功。肌肉中超表达CNR1后肌纤维类型的变化,腓肠肌和比目鱼肌中MyHCIIa的基因表达均显著上调,MyHCIIa的蛋白表达量升高,但在比目鱼肌中差异不显著。肌肉中超表达CNR1后能量代谢关键酶基因和酶活性的变化,腓肠肌中和比目鱼肌中糖酵解关键酶LDH的活性降低(p<0.05),有氧代谢的关键酶MDH的基因表达和酶活性显著升高(p<0.05),SDH的基因表达和酶活升高,仅在比目鱼肌中达到显著水平。肌肉中超表达CNR1后肌纤维转化关键基因表达的变化,腓肠肌中和比目鱼肌中ERK1和PGC-1基因的表达量均显著升高。从以上结果可以看出,体内超表达CNR1后升高了MyHCIIa的基因和蛋白表达;显著降低了酵解关键酶LDH酶活,显著增加了有氧氧化关键酶MDH和SDH的基因表达和酶活。同时调控肌纤维类型转化的关键基因PGC和ERK1的表达均显著升高。
     综合体外和体内的实验结果,CNR1可以增加肌肉细胞和肌肉组织中MyHCII a的表达,促使肌纤维向快氧化型转化。上调有氧氧化关键酶MDH和SDH,下调酵解代谢的关键酶LDH,影响肌肉细胞和肌肉组织中的能量代谢,在这个过程中ERK1/2可能发挥着重要作用。另外,(CNR1对肌纤维类型的调控及机制存在体内和体外差异。
One of the biochemical and molecular basis factors determing muscle growth and meat quality is the muscle fiber types.Different muscle fiber types have showed different characteristics of energy metabolism and biochemical characteristics. There are four main muscle fiber types (MyHCI, MyHCIIa, MyHCIIx and MyHCIIb) in mammalian skeletal muscle.Furthermore, different muscle fiber types can be transformed into each other.Taking advantages of the global microarray technology, cannabinoid receptor1(CNR1) have identified as fifferently expression between Jinhua with superior meat quality and Landrace pigs with lower meat quality.In order to inverstgate the effects and mechanism of CNR1on muscle fiber types, Quantitative PCR, immunohistochemistry, Western Blot and other technologies were used to establish the in vitro and in vivo overexpression and gene silencing in cells or animal models. The findings are as follows:
     1. Expression patterns of the cannabinoid receptor1gene in pig skeletal muscle and skeletal satellite muscle cells
     Up to now, detailed analysis of CNR1gene expression in pig muscles and muscle cells has not been reported. Here, quantitative PCR were used to characterize the CNR1in different muscles of pig and isolation of porcine myogenic satellite cells. Results showed that the expression of CNR1mRNA was greatest in longissimus dorsi muscle (p<0.01)among that in the gastrocnemius (mix), soleus muscle (slow-type) and longissimus doris muscle (fast-type). As to age-related changes of CNR1gene in different pig muscles, the higher expression was found at the30th day, then declined (p<0.05) in all three kinds of muscles to the90th day. At the150th day, the expression of CNR1steadily decreased (p<0.05) in the gastrocnemius compared to the90th day, but not in longissimus doris muscle and soleus. Meanwhile the breed differences in the expression of CNR1mRNA between Jinhua pig and Landrace were also identified. The mRNA abundance of CNR1in Landrace was higher compared with that of Jinhua pigs and strong differences were observed in longissimus doris muscle (p<0.05) and soleus (p<0.01). In vitro, with the differentiation of the satellite cells, the mRNA expression of the CNR1was down-regulated (p<0.05). The lowest mRNA expression was observed at the9th day. These data provide a framework of CNR1gene expression patterns and implicate a novel gene for regulating muscle fiber types.
     2. Effects and molecular mechanism of CNR1agonist and antagonist on muscle fiber types
     we analyzed the expression patterns of CNR1and MyHC isforms types includingⅠ,Ⅱa,Ⅱx Ⅱb with the cell differentiate in L6cells.After that,L6cell were coped with CNR1selective agonist MAEA and antagonist AM251.The changes of CNR1expression, MyHC isforms(MyHCⅠ, MyHCⅡa, MyHCⅡx and MyHCⅡb) and the key enzyme gene (LDH,SDH and MDH)as well as the key gene of muscle fiber types transition(AMPKal, PGC-1, ERK1and ERK2) were detected using quantitative PCR.The results show that:CNR1gene expression was higher at the3th and7th day. The levels of MyHCI, and MyHCⅡa expression peaked at the3thday, then dramatically decreased. MyHCⅡx gene expression showed the increased trend before the7th day (P<0.05). MyHClIb gene was significantly increased at the first two2days, at the3th day,reached the higest level and then significant decreased.
     Treated L6cells with different concentrations of MAEA(0,5,10,15μM/L), we found that CNR1expression was significantly increased at15μM/L. Further treated with different time at15μM/L.Under the both conditions, the MyHCⅡb gene expression was reduced (p<0.01). but MyHCIIa gene expression was increased The gege expression of MyHCl and MyHCⅡx had no significant difference. Meanwhile gene expression of glycolytic key enzyme LDH were decreased (p<0.05). Key enzyme genes of oxidation SDH and MDH had no significant change.The key gene of muscle fiber types transition ERK1expression was increased (P<0.05).
     On the contrary, treated L6cells with different concentrations of AM251(0,0.1,1,10μM/L), the results showed that CNR1expression was significantly down regulated at10μM/L. Further treated with different time at10μM/L.Under the both conditions, the gene expression MyHCⅡa, and MyHCⅡx was significantly decreased (P<0.05), MyHCⅡb gene expression significantly increased (P<0.01). The expression level of LDH was elevated (P>0.05), MDH and SDH gene expression were significantly decreased (P<0.05). AMPKal and ERK1expression was significantly down regulated (P<0.01).
     3. Effects and molecular mechanism of interference CNR1on muscle fiber types in vitro
     This study was conducted to construct and identify CNRl gene siRNA expression vectors and screen the stable CNR1-interference positive L6cell clones. Three pairs of CNR1-specific double-strand siRNAs were designed, synthesized, annealed and inserted into the pYr-1.1vector.The CNR1gene siRNA expression vectors were identified by restriction enzyme digestion and sequencing. After that siRNAs were transfected with L6cells by LipofectamineTM (Lip)2000. Then, the transfection efficiency was detected by EGFP and FCM.CNRI gene expression was determined by real-time PCR and the stable transgenic L6cell clones were screened by G418. The results revealed that the CNR1gene siRNA expression vectors have been constructed successfully. The transient transfection efficiency to L6cells were10.45%(P<0.01)、8.57%(P<0.01) and8.71%(P<0.01),and the silencing efficacy of the transient transfected L6cells was39%(P<0.05)、64%(P<0.01) and68%(p<0.01),respectively. The optimal selection concentration of G418for stable transfected L6cell clones was800ug/ml. The silencing efficacy of CNR-1-positive transgenic cell clones were43%(P<0.05).78%(P<0.01) and91%(P<0.01). The results showed that CNR1-3expression vector is the optimal silencing vector and CNR1-3stable transgenic cell clones is best silencing cell line. This study provides a successful CNR1gene silencing method by siRNA and the screening of CNR1-interference positive L6cell clones renders basic tools for further studying the functions of CNR1gene.
     After effectively silence CNR1gene by RNA interference. The gene expression of MyHCⅡa was decreased (P<0.05); the levels of MyHCⅡb was increased significantly (P<0.05), stable interference cells inducted by1,3,5days; gene expression of MyHCⅡb was significantly increased (P<0.05); Meanwhile,MyHCⅡa gene expression showed a decline trend. At the3th day, MyHCIIa gene expression decreased significantly (P<0.05). Expression of the glycolytic key enzyme gene LDH was significantly increased (P<0.05); the key enzyme genes of oxidation MDH and SDH expression was decreased, but no significant difference. ERK2gene expression was significantly increased (P<0.05). These results were consistent with treated with AM251.
     4. Effects and molecular mechanism of overexpression CNR1on muscle fiber types in vitro
     4.1. Effects and molecular mechanism of overexpression CNR1on muscle fiber types in vitro
     Stable CNR1-overexpression positive L6cell clones were screened by800ug/ml G418.The level of CNR1gene and protein both was increased(P<0.05),it means that stable CNR1overexpression cell model was eatablished successfully. In stable overexpression CNR1cells, gene expression of MyHCⅡa was increased (P<0.01), MyHCIIb gene expression was decreased (P<0.01), The expression of MyHCI and MyHCIIX had no significant changes.While differentiated stable overexpression cells differentiated, gene expression of MyHCIIa was increased (P<0.05). In addition, the expression of glycolytic key enzyme gene LDH was decreased (P<0.01), key enzyme gene of oxidative metabolism including MDH (P<0.01) and SDH (P<0.05) were significantly increased. Key genes involved in Muscle fiber transformation, gene expression of ERK1significantly increased (P<0.05), AMPKa1, PGC-1and ERK2expression had no significant difference. These results were consistent with treated with MAEA in L6cells.
     4.2. Effects and molecular mechanism of overexpression CNR1on muscle fiber types in vivo
     In vivo, gene overexpression system of rat gastrocnemius and soleus electroporation was established successfully, the expression of both gene and protein of CNR1were increased(P<0.05).Using the CNR1gene force expression technique to explore the effect and the molecular mechanism of CNR1on the muscle fiber types and energy metabolism.The result showed that the expression of gene and protein of MyHCⅡa significantly higher (P<0.01) than that of control group (empty vector group and saline injected group) in gastrocnemius.In selous.the gene expression of MyHCⅡa and MyHCⅡx were also significantly increased (P<0.05), the protein expression of MyHCⅡa was increased,but had no significantly differences. The Glycolysis key enzyme LDH activity was significantly decresed both in gastrocnemius and soleus (p<0.05);The gene and enzyme activity of MDH in gastrocnemius and soleus were significantly increased (P<0.05); SDH activity increased but had no significandifference in gastrocnemius; But in soleus,the RNA level and activity of SDH were significantly increased (P<0.01). The key gene which involved inmuscle fiber type transition, gene expression of ERK1(p<0.01) and PGC-1(p-<0.05) gene expression were significantly increased in both gastrocnemius and soleus.
     Based on the data of vitro and vivo experimental results, we can conclude that CNR1has the function of increasing the expression of MyHCⅡa, promoting the conversion of muscle fibers to fast oxidative type. It also can effect energy metabolism with increasing the oxidation enzyme MDH and SDH and decreasing glycolysis key enzyme LDH. ERK1/2may play an important role in this process. In addition, the regulation and mechanism of CNR1in muscle fiber types exist differences between vivo and vitro.
引文
Aguirre, V., E. D. Werner, et al. (2002). "Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action." J Biol Chem 277(2):1531-1537.
    Ahluwalia, J., L. Urban, et al. (2002). "Cannabinoid 1 receptors are expressed by nerve growth factor-and glial cell-derived neurotrophic factor-responsive primary sensory neurones." Neuroscience 110(4):747-753.
    Amoros, I., A. Barana, et al. (2010). "Endocannabinoids and cannabinoid analogues block human cardiac Kv4.3 channels in a receptor-independent manner." J Mol Cell Cardiol 48(1):201-210.
    Arany, Z., H. M. He, et al. (2005). "Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle." Cell Metabolism 1(4):259-271.
    Arany, Z., N. Lebrasseur, et al. (2007). "The transcriptional coactivator PGC-1 beta drives the formation of oxidative type IIX fibers in skeletal muscle." Cell Metabolism 5(1):35-46.
    Ashmore, C. R. and L. Doerr (1971). "Comparative aspects of muscle fiber types in different species." Experimental Neurology 31(3):408-418.
    Ashmore, C. R. and D. W. Robinson (1969). "Hereditary muscular hypertrophy in the bovine. I. Histological and biochemical characterization." Proc Soc Exp Biol Med 132(2):548-554.
    Bass, B. L. (2001). "RNA interference. The short answer." Nature 411(6836): 428-429.
    Ben Bachir-Lamrini, L., B. Sempore, et al. (1990). "Evidence of a slow-to-fast fiber type transition in skeletal muscle from spontaneously hypertensive rats." Am J Physiol 258(2 Pt 2):R352-357.
    Bensaid, M., M. Gary-Bobo, et al. (2003). "The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells." Molecular Pharmacology 63(4):908-914.
    Benzinou, M., J. C. Chevre, et al. (2008). "Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations." Hum Mol Genet 17(13):1916-1921.
    Blazquez, C., A. Chiarlone, et al. (2011). "Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease." Brain 134(Pt 1): 119-136.
    Bouaboula, M., C. Poinot-Chazel, et al. (1995). "Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1." Biochem J 312 (Pt 2):637-641.
    Canto, C., Z. Gerhart-Hines, et al. (2009). "AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity." Nature 458(7241): 1056-1060.
    Casu, M. A., A. Porcella, et al. (2003). "Differential distribution of functional cannabinoid CB1 receptors in the mouse gastroenteric tract." European Journal of Pharmacology 459(1):97-105.
    Cavuoto, P., A. J. McAinch, et al. (2007). "Effects of cannabinoid receptors on skeletal muscle oxidative pathways." Molecular and Cellular Endocrinolog 267(1-2):63-69.
    Cavuoto, P., A. J. McAinch, et al. (2007). "The expression of receptors for endocannabinoids in human and rodent skeletal muscle." Biochem Biophys Res Commun 364(1):105-110.
    Chang, D. C. and T. S. Reese (1990). "Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy." Biophysical Journal 58(1):1-12.
    Chang, K. C., N. da Costa, et al. (2003). "Relationships of myosin heavy chain fibre types to meat quality traits in traditional and modern pigs." Meat Sci 64(1): 93-103.
    Chang, K. C. and K. Fernandes (1997). "Developmental expression and 5'end cDNA cloning of the porcine 2x and 2b myosin heavy chain genes." DNA Cell Biol 16(12):1429-1437.
    Childers, S. R., T. Sexton, et al. (1994). "Effects of anandamide on cannabinoid receptors in rat brain membranes." Biochem Pharmacol 47(4):711-715.
    Choi, Y. M. and B. C. Kim (2009). "Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality." Livestock Science 122(2-3):105-118.
    Choi, Y. M., Y. C. Ryu, et al. (2007). "Influence of myosin heavy- and light chain isoforms on early postmortem glycolytic rate and pork quality." Meat Sci 76(2):281-288.
    Cota, D., S. Genghini, et al. (2003). "Antagonizing the cannabinoid receptor type 1:a dual way to fight obesity." J Endocrinol Invest 26(10):1041-1044.
    Cota, D., G. Marsicano, et al. (2003). "The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis." Journal of Clinical Investigation 112(3):423-431.
    Cote, M., I. Matias, et al. (2007). "Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men." Int J Obes (Lond) 31(4):692-699.
    Czech, M. P., M. Aouadi, et al. (2011). "RNAi-based therapeutic strategies for metabolic disease." Nature Reviews Endocrinology 7(8):473-484.
    Das, R. M, N. J. Van Hateren, et al. (2006). "A robust system for RNA interference in the chicken using a modified microRNA operon." Developmental Biology 294(2):554-563.
    Davoli, R., L. Fontanesi, et al. (2003). "Identification of SNPs, mapping and analysis of allele frequencies in two candidate genes for meat production traits:the porcine myosin heavy chain 2B (MYH4) and the skeletal muscle myosin regulatory light chain 2 (HUMMLC2B)." Animal Genetics 34(3):221-225.
    Devane, W. A., F. A. Dysarz,3rd, et al. (1988). "Determination and characterization of a cannabinoid receptor in rat brain." Molecular Pharmacology 34(5):605-613.
    Di Marzo, V. (2008). "The endocannabinoid system in obesity and type 2 diabetes." Diabetologia 51(8):1356-1367.
    Di Marzo, V, T. Bisogno, et al. (2001). "Highly selective CB(1) cannabinoid receptor ligands and novel CB(1)/VR(1) vanilloid receptor "hybrid" ligands." Biochem Biophys Res Commun 281(2):444-451.
    Eash, J., A. Olsen, et al. (2007). "FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension." BMC Musculoskelet Disord 8:32.
    Eckardt, K., H. Sell, et al. (2009). "Cannabinoid type 1 receptors in human skeletal muscle cells participate in the negative crosstalk between fat and muscle." Diabetologia 52(4):664-674.
    Elbashir, S. M., J. Harborth, et al. (2002). "Analysis of gene function in somatic mammalian cells using small interfering RNAs." Methods 26(2):199-213.
    Elbashir, S. M., W. Lendeckel, et al. (2001). "RNA interference is mediated by 21-and 22-nucleotide RNAs." Genes Dev 15(2):188-200.
    Esposito, I., M. C. Proto, et al. (2008). "The Cannabinoid CB1 Receptor Antagonist Rimonabant Stimulates 2-Deoxyglucose Uptake in Skeletal Muscle Cells by Regulating the Expression of Phosphatidylinositol-3-kinase." Molecular Pharmacology 74(6):1678-1686.
    Esposito, I., M. C. Proto, et al. (2008). "The cannabinoid CB1 receptor antagonist rimonabant stimulates 2-deoxyglucose uptake in skeletal muscle cells by regulating the expression of phosphatidylinositol-3-kinase." Molecular Pharmacology 74(6):1678-1686.
    Farquhar-Smith, W. P., M. Egertova, et al. (2000). "Cannabinoid CB(1) receptor expression in rat spinal cord." Mol Cell Neurosci 15(6):510-521.
    Fecher, L. A., R. K. Arnaravadi, et al. (2008). "The MAPK pathway in melanoma." Current Opinion in Oncology 20(2):183-189.
    Felder, C. C., E. M. Briley, et al. (1993). "Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction." Proc Natl Acad Sci U S A 90(16):7656-7660.
    Gil, M., M. A. Oliver, et al. (2003). "The relationship between pig genetics, myosin heavy chain I, biochemical traits and quality of M. longissimus thoracis." Meat Sci 65(3):1063-1070.
    Giuliani, D., A. Ottani, et al. (2000). "Effects of the cannabinoid receptor agonist, HU 210, on ingestive behaviour and body weight of rats." European Journal of Pharmacology 391(3):275-279.
    Glass, M., M. Dragunow, et al. (1997). "Cannabinoid receptors in the human brain:A detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain." Neuroscience 77(2):299-318.
    Gonzalez-Muniesa, P., F. I. Milagro, et al. (2006). "Reduction in energy efficiency induced by expression of the uncoupling protein, UCP1, in mouse liver mitochondria." Int J Mol Med 17(4):591-597.
    Guo, J., T. Shan, et al. (2011). "Comparisons of different muscle metabolic enzymes and muscle fiber types in Jinhua and Landrace pigs." J Anim Sci 89(1): 185-191.
    Gustafsson, K., X. Wang, et al. (2008). "Expression of cannabinoid receptors type 1 and type 2 in non-Hodgkin lymphoma:growth inhibition by receptor activation." Int J Cancer 123(5):1025-1033.
    Hamada, N., T. Hara, et al. (2008). "Energetic heavy ions overcome tumor radioresistance caused by overexpression of Bcl-2." Radiother Oncol 89(2): 231-236.
    Handschin, C. and B. M. Spiegelman (2006). "Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy hemeostasis, and metabolism." Endocrine Reviews 27(7):728-735.
    Hanus, L., S. Abu-Lafi, et al. (2001). "2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor." Proceedings of the National Academy of Sciences of the United States of America 98(7):3662-3665.
    Hardie, D. G. and K. Sakamoto (2006). "AMPK:a key sensor of fuel and energy status in skeletal muscle." Physiology (Bethesda) 21:48-60.
    Harrold, J. A., J. C. Elliott, et al. (2002). "Down-regulation of cannabinoid-1 (CB-1) receptors in specific extrahypothalamic regions of rats with dietary obesity:a role for endogenous cannabinoids in driving appetite for palatable food?" Brain Research 952(2):232-238.
    Hasuwa, H., K. Kaseda, et al. (2002). "Small interfering RNA and gene silencing in transgenic mice and rats." FEBS Lett 532(1-2):227-230.
    Henkel, R. D., C. M. Kammerer, et al. (1993). "Correlated expression of atrial myosin heavy chain and regulatory light chain isoforms with pressure overload hypertrophy in the non-human primate." Cardiovascular Research 27(3): 416-422.
    Herkenham, M., A. B. Lynn, et al. (1990). "Cannabinoid receptor localization in brain." Proc Natl Acad Sci U S A 87(5):1932-1936.
    Howlett, A. C. and R. M. Fleming (1984). "Cannabinoid inhibition of adenylate cyclase. Pharmacology of the response in neuroblastoma cell membranes." Molecular Pharmacology 26(3):532-538.
    Howlett, A. C., J. M. Qualy, et al. (1986). "Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs." Molecular Pharmacology 29(3): 307-313.
    Hu, H., J. Wang, et al. (2008). "Effect of myosin heavy chain composition of muscles on meat quality in Laiwu pigs and Duroc." Sci China C Life Sci 51(2): 127-132.
    Hwang, S. L., B. K. Yang, et al. (2008). "Isodihydrocapsiate stimulates plasma glucose uptake by activation of AMP-activated protein kinase." Biochem Biophys Res Commun 371(2):289-293.
    Imafidon, G. I. and A. M. Spanier (1994). "Unraveling the Secret of Meat Flavor." Trends in Food Science & Technology 5(10):315-321.
    Kahn, B. B. and O. Pedersen (1993). "Suppression of Glut4 Expression in Skeletal-Muscle of Rats That Are Obese from High-Fat Feeding but Not from High-Carbohydrate Feeding or Genetic Obesity." Endocrinology 132(1): 13-22.
    Karlsson, A., A. C. Enfalt, et al. (1993). "Muscle histochemical and biochemical properties in relation to meat quality during selection for increased lean tissue growth rate in pigs." J Anim Sci 71(4):930-938.
    Kim, J. M., B. K. Lim, et al. (2006). "TNFR-Fc fusion protein expressed by in vivo electroporation improves survival rates and myocardial injury in coxsackievirus induced murine myocarditis." Biochem Biophys Res Commun 344(3):765-771.
    Kim, K. W., Y. H. Jo, et al. (2008). "Steroidogenic factor 1 regulates expression of the cannabinoid receptor 1 in the ventromedial hypothalamic nucleus." Molecular Endocrinology 22(8):1950-1961.
    Kim, N. K., J. H. Lim, et al. (2008). "Comparisons of longissimus muscle metabolic enzymes and muscle fiber types in Korean and western pig breeds." Meat Sci 78(4):455-460.
    Kowalski, K., E. E. Gordon, et al. (1969). "Changes in enzyme activities of various muscle fiber types in rat induced by different exercises." J Histochem Cytochem 17(9):601-607.
    Larzul, C., L. Lefaucheur, et al. (1997). "Phenotypic and genetic parameters for longissimus muscle fiber Characteristics in relation to growth, carcass, and meat quality traits in large white pigs." Journal of Animal Science 75(12): 3126-3137.
    Lefaucheur, L. (2010). "A second look into fibre typing--relation to meat quality." Meat Sci 84(2):257-270.
    Lefaucheur, L., P. Ecolan, et al. (2002). "New insights into muscle fiber types in the pig." J Histochem Cytochem 50(5):719-730.
    Li, C., P. M. Jones, et al. (2011). "Role of the endocannabinoid system in food intake, energy homeostasis and regulation of the endocrine pancreas." Pharmacol Ther 129(3):307-320.
    Lin, J., H. Wu, et al. (2002). "Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres." Nature 418(6899):797-801.
    Lindborg, K. A., M. K. Teachey, et al. (2010). "Effects of in vitro antagonism of endocannabinoid-1 receptors on the glucose transport system in normal and insulin-resistant rat skeletal muscle." Diabetes Obes Metab 12(8):722-730.
    Lipina, C, C. Stretton, et al. (2010). "Regulation of MAP kinase-directed mitogenic and protein kinase B-mediated signaling by cannabinoid receptor type 1 in skeletal muscle cells." Diabetes 59(2):375-385.
    Liu, Y. L., I. P. Connoley, et al. (2005). "Effects of the cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption and soleus muscle glucose uptake in Lep(ob)/Lep(ob) mice." Int J Obes (Lond) 29(2):183-187.
    Ljubicic, V., P. Miura, et al. (2011). "Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle." Hum Mol Genet 20(17):3478-3493.
    Matias, I. and V. Di Marzo (2006). "Endocannabinoid synthesis and degradation, and their regulation in the framework of energy balance." J Endocrinol Invest 29(3 Suppl):15-26.
    Matias, I., M. P. Gonthier, et al. (2006). "Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia." J Clin Endocrinol Metab 91(8):3171-3180.
    Matias, I., S. Petrosino, et al. (2008). "Dysregulation of peripheral endocannabinoid levels in hyperglycemia and obesity:Effect of high fat diets." Molecular and Cellular Endocrinology 286(1-2 Suppl 1):S66-78.
    Matsuda, L. A., S. J. Lolait, et al. (1990). "Structure of a cannabinoid receptor and functional expression of the cloned cDNA." Nature 346(6284):561-564.
    Mendler, L., S. Pinter, et al. (2008). "Regeneration of reinnervated rat soleus muscle is accompanied by fiber transition toward a faster phenotype." J Histochem Cytochem 56(2):111-123.
    Milewicz, A., U. Tworowska-Bardzinska, et al. (2011). "Are endocannabinoid type 1 receptor gene (CNR1) polymorphisms associated with obesity and metabolic syndrome in postmenopausal Polish women?" Int J Obes (Lond) 35(3): 373-377.
    Miyazaki, M., Y. Hitomi, et al. (2004). "Contribution of the calcineurin signaling pathway to overload-induced skeletal muscle fiber-type transition." Journal of Physiology and Pharmacology 55(4):751-764.
    Mouslech, Z. and V. Valla (2009). "Endocannabinoid system:An overview of its potential in current medical practice." Neuro Endocrinol Lett 30(2):153-179.
    Muller, E., M. Rutten, et al. (2002). "Fibre structure and metabolites in M. longissimus dorsi of Wild Boar, Pietrain and Meishan pigs as well as their crossbred generations." Journal of Animal Breeding and Genetics 119(2): 125-137.
    Muramatsu, H., N. Chiba, et al. (1996). "Fluorescence imaging and spectroscopy of biomaterials in air and liquid by scanning near-field optical/atomic force microscopy." Scanning Microsc 10(4):975-982.
    Murgia, M., T. E. Jensen, et al. (2009). "Multiple signalling pathways redundantly control glucose transporter GLUT4 gene transcription in skeletal muscle." J Physiol 587(Pt 17):4319-4327.
    Murgia, M., A. L. Serrano, et al. (2000). "Ras is involved in nerve-activity-dependent regulation of muscle genes." Nature Cell Biology 2(3):142-147.
    Netzeband, J. G., S. M. Conroy, et al. (1999). "Cannabinoids enhance NMDA-elicited Ca2+ signals in cerebellar granule neurons in culture." J Neurosci 19(20): 8765-8777.
    Newcom, D. W., K. J. Stalder, et al. (2004). "Breed differences and genetic parameters of myoglobin concentration in porcine longissimus muscle." J Anim Sci 82(8):2264-2268.
    Nykanen, A., B. Haley, et al. (2001). "ATP requirements and small interfering RNA structure in the RNA interference pathway." Cell 107(3):309-321.
    Onan, M. C, J. S. Fisher, et al. (2005). "Type I diabetes affects skeletal muscle glutamine uptake in a fiber-specific manner." Exp Biol Med (Maywood) 230(9):606-611.
    Osei-Hyiaman, D., M. DePetrillo, et al. (2005). "Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity." Journal of Clinical Investigation 115(5):1298-1305.
    Pagotto, U., G. Marsicano, et al. (2006). "The emerging role of the endocannabinoid system in endocrine regulation and energy balance." Endocrine Reviews 27(1): 73-100.
    Paradis, F., C. Vigneault, et al. (2005). "RNA interference as a tool to study gene function in bovine oocytes." Molecular Reproduction and Development 70(2): 111-121.
    Park, S. K., T. L. Sheffler, et al. (2009). "Chronic activation of 5'-AMP-activated protein kinase changes myosin heavy chain expression in growing pigs." J Anim Sci87(10):3124-3133.
    Partosoedarso, E. R., T. P. Abrahams, et al. (2003). "Cannabinoidl receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets." J Physiol 550(Pt 1):149-158.
    Pedersen, S. B., J. D. Borglum, et al. (1993). "Abdominal Obesity Is Associated with Insulin-Resistance and Reduced Glycogen-Synthase Activity in Skeletal-Muscle." Metabolism-Clinical and Experimental 42(8):998-1005.
    Pertwee, R. G. (2001). "Cannabinoids and the gastrointestinal tract." Gut 48(6): 859-867.
    Perwitz, N., J. Wenzel, et al. (2010). "Cannabinoid type 1 receptor blockade induces transdifferentiation towards a brown fat phenotype in white adipocytes." Diabetes Obesity & Metabolism 12(2):158-166.
    Pette, D. and R. S. Staron (2001). "Transitions of muscle fiber phenotypic profiles." Histochemistry and Cell Biology 115(5):359-372.
    Puigserver, P. and B. M. Spiegelman (2003). "Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha):Transcriptional coactivator and metabolic regulator." Endocrine Reviews 24(1):78-90.
    Rasbach, K. A., R. K. Gupta, et al. (2010). "PGC-1 alpha regulates a HIF2 alpha-dependent switch in skeletal muscle fiber types." Proceedings of the National Academy of Sciences of the United States of America 107(50): 21866-21871.
    Ravinet Trillou, C, C. Delgorge, et al. (2004). "CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity." Int J Obes Relat Metab Disord 28(4):640-648.
    Redshaw, Z., S. McOrist, et al. (2010). "Muscle origin of porcine satellite cells affects in vitro differentiation potential." Cell Biochem Funct 28(5):403-411.
    Rehfeldt, C. and G. Kuhn (2006). "Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis." J Anim Sci 84 Suppl:E113-123.
    Rieseberg, M., C. Kasper, et al. (2001). "Flow cytometry in biotechnology." Appl Microbiol Biotechnol 56(3-4):350-360.
    Roth, R. J., A. M. Le, et al. (2009). "MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice." Journal of Clinical Investigation 119(12):3817-3829.
    Russell, A. P., J. Feilchenfeldt, et al. (2003). "Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle." Diabetes 52(12):2874-2881.
    Ryu, Y. C., Y. M. Choi, et al. (2008). "Comparing the histochemical characteristics and meat quality traits of different pig breeds." Meat Science 80(2):363-369.
    Scheen, A. J. (2009). "The endocannabinoid system:a promising target for the management of type 2 diabetes." Curr Protein Pept Sci 10(1):56-74.
    Scheerlinck, J. P., J. Karlis, et al. (2004). "In vivo electroporation improves immune responses to DNA vaccination in sheep." Vaccine 22(13-14):1820-1825.
    Schiaffino, S. and C. Reggiani (1994). "Myosin isoforms in mammalian skeletal muscle." Journal of Applied Physiology 77(2):493-501.
    Schleinitz, D., S. Carmienke, et al. (2010). "Role of genetic variation in the cannabinoid type 1 receptor gene (CNR1) in the pathophysiology of human obesity." Pharmacogenomics 11(5):693-702.
    Seale, P., B. Bjork, et al. (2008). "PRDM16 controls a brown fat/skeletal muscle switch." Nature 454(7207):961-967.
    Seideman, S. C., J. D. Crouse, et al. (1986). "The effect of sex condition and growth implants on bovine muscle fiber characteristics." Meat Sci 17(2):79-95.
    Serra, X., F. Gil, et al. (1998). "A comparison of carcass, meat quality and histochemical characteristics of Iberian (Guadyerbas line) and Landrace pigs." Livestock Production Science 56(3):215-223.
    Shan, T., T. Wu, et al. (2009). "Breed difference and regulation of the porcine adipose triglyceride lipase and hormone sensitive lipase by TNFalpha." Animal Genetics 40(6):863-870.
    Shi, H., J. M. Scheffler, et al. (2008). "Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling." Faseb Journal 22(8):2990-3000.
    Shi, H., J. M. Scheffler, et al. (2009). "Mitogen-activated protein kinase signaling is necessary for the maintenance of skeletal muscle mass." American Journal of Physiology-Cell Physiology 296(5):C1040-C1048.
    Sieck, G. C., W. Z. Zhan, et al. (1995). "SDH and actomyosin ATPase activities of different fiber types in rat diaphragm muscle." Journal of Applied Physiolog 79(5):1629-1639.
    Silvestri, C., A. Ligresti, et al. (2011). "Peripheral effects of the endocannabinoid system in energy homeostasis:Adipose tissue, liver and skeletal muscle." Reviews in Endocrine & Metabolic Disorders 12(3):153-162.
    Silvestri, C., A. Ligresti, et al. (2011). "Peripheral effects of the endocannabinoid system in energy homeostasis:adipose tissue, liver and skeletal muscle." Rev Endocr Metab Disord 12(3):153-162.
    Smerdu, V, M. Strbenc, et al. (2005). "Identification of myosin heavy chain Ⅰ,Ⅱa and IIx in canine skeletal muscles by an electrophoretic and immunoblotting study." Cells Tissues Organs 180(2):106-116.
    Snow, L. M. and L. V. Thompson (2009). "Influence of insulin and muscle fiber type in nepsilon-(carboxymethyl)-lysine accumulation in soleus muscle of rats with streptozotocin-induced diabetes mellirus." Pathobiology 76(5):227-234.
    Solomon, M. B. and R. L. West (1985). "Profile of fiber types in muscles from wild pigs native to the United States." Meat Sci 13(4):247-254.
    Song, E., S. K. Lee, et al. (2003). "RNA interference targeting Fas protects mice from fulminant hepatitis." Nature Medicine 9(3):347-351.
    Sonoda, J., I. R. Mehl, et al. (2007). "PGC-1 beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis." Proceedings of the National Academy of Sciences of the United States of America 104(12):5223-5228.
    Suda, T., K. Suda, et al. (2008). "Computer-assisted hydrodynamic gene delivery." Molecular Therapy 16(6):1098-1104.
    Sugito, T., F. Mineshiba, et al. (2009). "Transient TWEAK overexpression leads to a general salivary epithelial cell proliferation." Oral Diseases 15(1):76-81.
    Sugiura, T., T. Kodaka, et al. (1996). "2-Arachidonoylglycerol, a putative endogenous cannabinoid receptor ligand, induces rapid, transient elevation of intracellular free Ca2+ in neuroblastoma x glioma hybrid NG108-15 cells." Biochem Biophys Res Commun 229(1):58-64.
    Sugiura, T., T. Kodaka, et al. (1997). "Inhibition by 2-arachidonoylglycerol, a novel type of possible neuromodulator, of the depolarization-induced increase in intracellular free calcium in neuroblastoma x glioma hybrid NG108-15 cells." Biochem Biophys Res Commun 233(1):207-210.
    Suwa, M., H. Nakano, et al. (2003). "Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles." Journal of Applied Physiology 95(3):960-968.
    Tabata, H. and K. Nakajima (2001). "Efficient in utero gene transfer system to the developing mouse brain using electroporation:visualization of neuronal migration in the developing cortex." Neuroscience 103(4):865-872.
    Tedesco, L., A. Valerio, et al. (2010). "Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver:the role of eNOS, p38 MAPK, and AMPK pathways." Diabetes 59(11): 2826-2836.
    Terrazzino, S., F. Berto, et al. (2004). "Stearoylethanolamide exerts anorexic effects in mice via down-regulation of liver stearoyl-coenzyme A desaturase-1 mRNA expression." FASEB J 18(13):1580-1582.
    Valin, C, C. Touraille, et al. (1982). "Prediction of Lamb Meat Quality Traits Based on Muscle Biopsy Fiber Typing." Meat Science 6(4):257-263.
    Valjent, E., C. Pages, et al. (2001). "Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission." Eur J Neurosci 14(2):342-352.
    Wade, M. R., E. T. Tzavara, et al. (2004). "Cannabinoids reduce cAMP levels in the striatum of freely moving rats:an in vivo microdialysis study." Brain Research 1005(1-2):117-123.
    Wang, H. Y. and C. Lu (2006). "Electroporation of mammalian cells in a microfluidic channel with geometric variation." Analytical Chemistry 78(14):5158-5164.
    Wegner, J., E. Albrecht, et al. (2000). "Growth-and breed-related changes of muscle fiber characteristics in cattle." Journal of Animal Science 78(6):1485-1496.
    Whipple, G. and M. Koohmaraie (1992). "Effects of lamb age, muscle type, and 24-hour activity of endogenous proteinases on postmortem proteolysis." J Anim Sci 70(3):798-804.
    Wianny, F. and M. Zernicka-Goetz (2000). "Specific interference with gene function by double-stranded RNA in early mouse development." Nature Cell Biology 2(2):70-75.
    Wong, M. L. and J. F. Medrano (2005). "Real-time PCR for mRNA quantitation." Biotechniques39(1):75-85.
    Wu, Z. D., P. Puigserver, et al. (1999). "Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1." Cell 98(1):115-124.
    Xiang, L., A. Murai, et al. (2003). "Effects of leptin gene expression in mice in vivo by electroporation and hydrodynamics-based gene delivery." Biochem Biophys Res Commun 307(3):440-445.
    Yoshinari, K., M. Miyagishi, et al. (2004). "Effects on RNAi of the tight structure, sequence and position of the targeted region." Nucleic Acids Research 32(2): 691-699.
    Zhang, G., V. Budker, et al. (1999). "High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA." Human Gene Therapy 10(10):1735-1737.
    Zhao,D., J. Pond, et al. (2010). " Peripheral endocannabinoids regulate skeletal muscle development and maintenance. " European Journal Translational Myology 1(4):167-179.
    Zhu, J., M. L. Musco, et al. (1999). "Three-color flow cytometry analysis of tricistronic expression of eBFP, eGFP, and eYFP using EMCV-IRES linkages." Cytometry 37(1):51-59.
    Zierath, J. R. and J. A. Hawley (2004). "Skeletal muscle fiber type:Influence on contractile and metabolic properties." Plos Biology 2(10):1523-1527.
    川井博田,郁明发.猪肉肌纤维粗细与肉质的关系[J].国外畜牧学-猪与禽,1983,3:51-54.
    沈元新,徐继初.金华猪及其杂种肌肉组织学特性与肉质的关系[J].浙江农业大学学报,1984,10(3):265-271.
    王亚鸣,刘龙芳.江西玉山猪肌肉组织学特征与肉质的关系[J].江西农业大学学报,1994,16(3):284-287.
    许振英主编.中国地方猪种种质特性[M].杭州:浙江科学技术出版社,1989.
    杨晓静,赵如茜,陈杰,胥清富,韦习会.猪背最长肌肌纤维类型的发育性变化及其品种和性别特点.中国兽医学报,2005.25(1):89-94.
    陈宽维,李慧芳,张学余,陈国宏,高玉时.肉鸡肌纤维与肉质关系研究[J].中国畜牧杂志,2002.38(6):6-7.
    戴洋,朱荫昌.体内电穿孔技术及其在DNA疫苗中的应用[J].中国吸血虫病防治杂志,2008.20(2):156-160
    郑玉才,林亚秋,徐亚欧,九龙耗牛两种肌肉组织的肉质特性、酶活力和基因表达谱的比较研究[C],中国动物遗传育种研究进展——第十五次全国动物遗传育种学术讨论会论文集,北京,1999.
    袁媛Foxo1调节肌纤维类型及其转型机制研究[D].西北农林科技大学,2010
    张辉Foxo1调节肌猪纤维类型转化的初步研究[D].西北农林科技大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700