黑斑蛙皮肤生物活性肽的分离纯化、结构鉴定及生物活性检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两栖动物是最原始的陆生脊椎动物,既有适应陆地生活的新的性状,又有从鱼类祖先继承下来的适应水生生活的性状。两栖类动物皮肤裸露,为了适应复杂多样的生态环境并维持自身的生存,皮肤起到重要作用。两栖类皮肤可以分泌大量功能复杂、种类繁多的生物活性物质,对抵御有害环境因子侵袭有着重要作用。蛙类皮肤活性肽资源丰富包括抗菌肽、舒缓激肽样多肽、血管紧张素因子、多肽生长因子、吗啡因子、保湿因子等。生物活性多肽具有分子和功能的多样性。两栖类皮肤资源丰富,可用于生物活性多肽的发现、纯化和功能研究。黑斑蛙(Rana nigromaculata)属于蛙科、蛙属,广泛分布在我国各地,资源丰富。
     本论文选取辽宁省大连市金州登沙河镇的黑斑蛙为实验材料,运用反相高效液相色谱技术对黑斑蛙皮肤分泌物中生物活性多肽进行提取和纯化,获得6种皮肤生物活性肽。利用MS和Q-TOF MS/MS对6种多肽的分子量和氨基酸序列进行了测定。首先利用电刺激诱导方法取得黑斑蛙的皮肤分泌液。采用VydacTP510反相高效液相色谱,对皮肤分泌液采用线性梯度洗脱,分离纯化得到6个多肽。6条多肽分子量从1060.2到3245.9道尔顿,由9个到32个氨基酸组成。其一级结构分别为RPPGFSPFR、RPPGFSDSSPLAPGT、LKNVGKEVGFDVENELRLAGHARPLGK、KSPGVGALAGKK PHGLLLSGLKNVGGAEAGFD、LGLGKVLGVGQRALAHSPPK、和LVPLVSYHLPVL。通过比对NCBI蛋白质数据库,由9个氨基酸组成的多肽RPPGFSPFR是典型缓激肽(Bradykinin),命名为Bradykinin-RN;RPPGFSDSSPLAPGT具有缓激肽的结构域保守序列RPPGFS-,属于缓激肽相关肽BRPs(Bradykinin-related peptides),命名为Ranakinin-RN1。LVPLVSYHLPVL虽然不含有缓激肽的保守序列,但具有较高的缓激肽活性,所以命名为Ranakinin-RN2,而其余多肽同已知其它两栖类皮肤多肽相似度很低,属于新的多肽,分别命名为:Nigromin-1,Nigromin-2和Nigromin-3。抗菌活性测定结果显示,这3个新肽对2种细菌均没有抑制作用。对3个缓激肽和缓激肽相关肽进行豚鼠离体回肠实验测定对肠肌收缩性的影响。实验结果显示Bradykinin-RN和Ranakinin-RN1豚鼠回肠的收缩强度呈现一个正的线性关系,Bradykinin-RN的缓激肽活性比缓激肽Ranakinin-RN1强。Ranakinin-RN2随着浓度提高,其缓激肽活性达到最高后活性受到抑制。
Amphibians is the most primitive terrestrial vertebrates adapt to both terrestrial and aquatic life. Amphibians skin is uncovered and without hair, feathers and shells. Amphibians skin play an important role in the complex and diverse environment to maintain its own living. Amphibians skin contains biological vivid substances with various comploicated biofunctions, and these substances play an important role in resisting the invasion of harmful environmental factors. Meanwhile, the skin of different Amphibians species consists of different bioactive substances. Amphibian’s skin is rich in natural resources and used in new bioactive peptides’discovery, refiner and function research. Rana nigromaculata of China is one of animal resource, which has medical value in northeast regionof china. Researches have shown that Rana nigromaculata skin contains various active peptides, such as bradykinin-like peptide, bombesin peptide, growth factor, morphine and moisturizing factors.
     In this paper, Rana nigromaculata growth in Jinzhou Dengshahe of Dalian of Liaoning was choosed as the experimental material. The isolation, purification and structural characterization of bioactive peptides from the skin of Rana nigromaculata were carried out by gel chromatography and RP-HPLC. The optimized conditions of purification were screened, and seven of skin bioactive peptides were obtained. MS and Q-TOF MS/MS were used to determinate their molecular weight and amino acid sequences. Rana nigromaculata skin secretion was obtained by electrical stimulation. The secretion was purified using VydacTP510 RP-HPLC into 6 single peptides.The results of analysis of amino acid sequences showed that three of these peptides were bradykinin or bradykinin-related peptides, and the other three were antimicrobial peptides. Their molecular weights were from 1060.2 to 3285.96 Dalton, and composed of 9 to 32 amino acids. Their primary structure was RPPGFSPFR,,RPPGFSDSSPLAPGT,LKNVGKEVGFDVENELRLAGHARPLGK,KSPGV GALAGKKPHGLLLSGLKNVGGAEAGFD,LGLGKVLGVGQRALAHSPPK and LVPLV SYHLPVL. After BLAST searched in NCBI Protein Databases, we found that peptides RPPGFSPFR was typical Bradykinin composed of 9 amino acids and RPPGFSDSSPLAPGT had the motif of Bradykinin (RPPGFS-) and belonged to bradykinin-related peptides,named it Ranakinin-RN1.Although the peptide LVPLVSYHLPVL does not contain the conserved domain of bradykinin, we still named it as Ranakinin-RN2 due to its higher homology bradykinin activity. Meanwhile, the rest of peptides shared a lower homoloy with some known amphibian skin peptides. Therefore, they are the new peptides, named them as nigromin-1,nigromin-2, nigromin-3, respectively.
     The bradykinin activity of bradykinin and bradykinin-related peptides was tested by assaying the contractile activity on isolated guinea pig ileum. The results showed Bradykinin-RN and Ranakinin-RN1 contracted guinea pig ileum in a positive linear relationship, bradykinin activity of Bradykinin-RN was more potent than Ranakinin-RN1. bradykinin activity of Ranakinin-RN2 was inhibited after reaching its maximum, showing that the peptide might be the bradykinin antagonist peptide.
引文
[1]华绍烽,周凯华.天然抗菌剂—抗菌肽的研究进展.中国兽医医药杂志,1998,5:15-16.
    [2]Clarles L B,Michel Z.Peptides from frog skin.Annu.Rev Biochem,59:395-414.
    [3]徐强,华跃进,徐步进等.蛙类皮肤分泌物中的抗菌肽和抗癌肽.动物学杂志,2002,37(2):73-76.
    [4]Sparling G.M.,Fellers L L. McConnell. Pesticides andamphibian population declines in California,USA, Environ.Toxicol. Chem,2001(20):1591-1595.
    [5]袁德云,王立梅,胡耀辉.林蛙皮抗菌肽的提取及其某些特性的测定.吉林农业大学学报,2001. 23(2):113-116.
    [6]姚玉淑.秦志辉.中国基层医药.2005,第12卷第7期.
    [7]Boamn H G.Antibacterial Peptides:key Components needed in immunity.cell,1991,65:205-207.
    [8]Yasuhara T,Ishikawa O,Nakajima T et al.The studies on the active peptide on smooth muscle in the skin of Rana rugoss,Thr6-bradykinin and its analogous peptide,ranakinin-R.Chem Pharm,1979,27: 48
    [9]Simmaco M,Mignogna G,Barra D,Bossa F.Antimicrobial peptides from skin secretions of Rana esculenta.Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides.J.Biol.Chem.,1994,269(16):11956-11961.
    [10]Dennison S R,Wallace J,Harris F,Phoenix DA.Amphiphilic helical antimicrobial peptides and their structure function relationships.Protein Pept Lett 2005,12:31–9.
    [11]Conlon J M, Sonnevend A,Jouenne T,Coquet L et al. A family of acyclic brevinin-1 peptides fromthe skin of the Ryukyu brown frog Rana okinavana. Peptides2005;26:185–90.
    [12]Chen T, Zhou M, Rao P et al.The Chinesebamboo leaf odorous frog (Rana versabilis) and N.American Rana frogs share the same families of skin antimicrobial peptides. Peptides 2006,38–44.
    [13]Rozek T,Wegener K L,Bowie J H et al.The antibiotic and anticancer active aurein pept ides from the Australian Bell Frogs Litoria aurea and Litioria raniformis. The solution structure of aurein1.2.Biochem. 2000, 267: 5330-5341.
    [14]李孝东,袁建华.抗菌肽的研究进展.山东医药工业,2003(1):27~28.
    [15]Rocha,E.S.M., Beraldo,W. T., Rosenfeld,G.Bradykinin a hypotensive and smooth Muscle stimulating factor released from plasma globulin by snake venoms and by trypsin.Physiol, 1949, 156: 261-273.
    [16]Jason Doyle Craig S,Wegener John A et al.nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide,citropin and synthetic modifica tions.Bioche m.2003,270:1141-1153.
    [17]Zhang L,Yu W et al.Contribution of human alpha-defensin 1,2and3 to the anti-HIV-1 activity of CD8 antiviral factor.Sci.,2002,298(5595):995-1000.
    [18]Andrade,S.O,RochaE.S.M.Purification of bradykinin by ion exchange chromatography Biochem,1956, 64:701-705.
    [19]Boissonnas R A,Guttmann S,Jaquenoud P A.SynthèedelaL-a rginyl-L-prolyl-L–prolyl-L-gl ycyl-L-p henylalanyl-L-seryl-L-prolyl-L-phenylalanyl-L-arginine, unnonapepti de présentant les propriétés de la bradykinine.Helv.Chim. Acta.,1960, 43: 1349-1355.
    [20]Stewart J M.Bradykinin antagonists: discovery and development. Peptides, 2004, 25:52 7-532.
    [21]Conlon,J.M.Bradykinin and its receptors in non-mammalian vertebrates.Regulatory pepti des,1999,79: 71-81.
    [22]Conlon,J.M.,Kolodziejek,J.,Nowotny,N.Antimicrobial peptides from ranid frogs:taxonomic and phylog enetic markers and a potential source of new therapeutic agents. Biochimica.etBiophysica. Acta. ,200416, 9 6(1):1-14.
    [23]Maestri R,Milia A F,Salis MB et al.Cardiac hypertrophy and microvascular deficit in kinin B2 receptor knockout micc.Hyperotension,2003,41(5):1151-1155.
    [24]Sliva JA Jr,A raujo R C,Baltsdu O et al.Reduced cardiac hypertrophy and altered blood pressure control in transgenic rats with the human tissue kallikrein gene.FASEB J,2000,14(13):1818-1860.
    [25]Rashid M H,Inoue M,Koudo S et al.Novel expression of vanilloid receptor1 on capsaicin-insensitie fibers accounts for the analgesic effect of capsaicin cream in neuropathicpain Phamacol Exp Ther,2 003,304(3):940-948.
    [26]Bell R M,Yellon D M.Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart:the role of PBK,Akt and Enos[J].J Mol Cell Cardiol,2003,35(2):185-193.
    [27]Wiedermann C J.Ruff, M. R.,Pert C. B.Bombesin-like peptides:neuropeptides with mitogenic activity. Brain Behav. Immun., 1988, 2: 301-310.
    [28]Gill L,Lopez-Fandino R,Jorba X et al.Biologically actibe peptides and enzymatic approaches to their production. Enzyme microb Technol, 1996,18:162-183
    [29]Lyengar R,Mc Evily A J.Anti-brouning agents:alternative to the use of sulfites in foods. Trends food sci Techol,1992,3:60-64.
    [30]Wiedermann C J.Bombesin-like peptides as growth factors. Wien. Klin.Wochenschr.1989,101:435-440
    [31]Zetler G.Caerulein and its analogues: neuropharmacological properties.Peptides,1985,6 (l3):33-46.
    [32]Wiedermann C J,Ruff M. R.,Pert C B.Bombesin-like peptides:neuropeptides with mitogenic activity. Brain Behav. Immun.,1988,2:301-310.
    [33]Anastasi A,Erspamer V,Endean R.Isolation and amino acid sequence of caerulein,the active decapeptid e of the skin of hyla caerulea.Arch.Biochem.Biophys.,1968,125:57-68.
    [34]Anastasi A,Bertaccini G et al.Structure and pharmacological actions of phyllocaerulein,a caerulein-l ike nonapeptide:its occurrence in extracts of the skin of Phyllomedusa sauvagei and related Phyllomedusa species.Br.J.Pharmacol,1969,37:198-206.
    [35]Zetler,G.Caerulein and its analogues:neuropharmacological properties.Peptides,1985,6 Suppl 3:33-46.
    [36]Barthalmus,G.T.,Zielinski,W.J.Xenopus skin mucus induces oral dyskinesias that promote escape from snakes.Pharmacol.Biochem.Behav.,1988,30:957-959.
    [37]李天全,万昌秀,李倚剑.新一代高效特异抗凝药物水蛭素.生物医学工程学杂志,1998,15 (3);306-3 10.
    [38]韩玉珉,申同建.水蛭素的分子生物学研究.生物化学与生物物理学进展,1991,18 (2):88-90.
    [39]Fusetani N,Nakao Y,Matsunaga S et al.A thrombin-in-hibitory terapeptide,from a marine spo nge, theo nella sp J.Tetradron Lett, 1991,32(48):21808-21813.
    [40]Lai R,Zheng Y T,Sun J H,Zhang Y.Antimicrobial peptides from the skin secretion of Chinese red belly toad Bombina maxima.2002,Peptides,23:427~435.
    [41]Efron L,Dagan A,Gaidukov L et al.Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic activity in cultur e.J. Biol.Chem.,2002,277:24067~24072.
    [42]Dagan A,Efron L,Gaidukov L et al.In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimirob Agents Chemother.,2002,46:689~694.
    [43]Giacometti A,Cirioni O,Ghiselli R et al.Polycationic peptides as prophylactic agents against methi cillin-susceptible or methicillin-resistant Staphylococcus epidermidis vascular graft infection.Antimicrob Agents Chemother,2000,44(12):3306~3309.
    [44]Mystkowska E T,Niemierko A,Komar A,Sawicki W.Embry otoxicity of magainin amide and its enhancement by cyclodextrin,albumin,hydrogen peroxide and acidification.Hum.
    [45]Olson L,Soto AM,Knoop FC,Conlon JM.Pseudin22:An antimicrobial peptide with lowhemolytic activity from the skin of the paradoxical frog.Biochem.Biophys.Res.Commun.2001.288:1001-1005
    [46]Duellman,W.E.,Trueb,L.Biology of amphibians.Baltimore:Johns Hopkins Univ.Press,1994.
    [47]Clarke,B.T.The natural history of amphibian skin secretions,their normal functioning and potential medical applications.Biol.Rew.,1996,72:365-379.
    [48]O'Rourke,M.,Chen,T.,Hirst,D.G.,et al.The smooth muscle pharmacology of maximakinin,a receptor-sel ective,bradykinin-related nonadecapeptide from the venom of the Chinese toad,Bombina m axima. Regulat ory Peptides,2004,121:65-72.
    [49]Chen T,Orr D.F,Bjourson A.J et al.Bradykinins and their precursor cDNAs from the skin of the fire-bellied toad(Bombina orientalis).Peptides,2002,23:1547-1551.
    [50]Simmaco,M.,Mignogna G,Barra D.Antimicrobial peptides from amphibianskin:what do they tell us.Bio polymers(Peptide Science),1998,47:435–450.
    [51]Mattos R L,Antoniazzi M M.,Haddad C et al.Structure of venom glands in the frog Physalaemus nattereri(Anura,Leptodactylidae),Acta Microscopica,2003,12:563-564.
    [52]Fox H.The skin of Amphibia.Epidermis.In The Integument.Vol.Vertebrates.Bereiter-Hahn,J,Matoltsy, A.G.and Richards,K.S,1986,78-110,Springer Verlag,Berlin..
    [53]Bevins, CL,Zasloff,M.Peptides from frog skin.Annu.Rev.Biochem,1990,
    [54]Holmes,C.,Balls,M.In vitro studies on the control of myoepithelial cell contraction in the granular glands of Xenopus laevis skin.Gen.Comp.Endocr.,1978,36:255-263.59:395-414.
    [55]Dockray D J,Hopkins C R.Caerulein secretion by dermal glands in Xenopus Laevis.The Joural of Cell Biology,1975,64:724-733.
    [56]Fox H.The skin of ichthyophis(amphibian:Caecilia):an ultrastructural study. J.Zool.Lond.,1983,199:22 3-248.
    [57]Bevins C L.,Zasloff M Peptides from frog skin.Annu.Rev.Biochem,1990,59:395-414.
    [58]Lindley B D.Nerve stimulation and electrical properties of frog skin.The Journal of General Physiolog y,1969,53:427-449.
    [59]Mangoni M L,Rinaldi A C,Giulio A D,Mignogna G, Bozzi A,Barra D, et al. Structure– function relatio nships oftemporins,small antimicrobialpeptides from amphibianskin.Eur J Biochem 2000(267):1447.
    [60]Roseghini M.,Erspamer G F,Severini C.,Biogenic amines and active peptides in the skin of fifty-two African amphibian species other than bufonids. Comp Biochem Physiol,1988(91):281-286.
    [61]Lamberty M,Zachary D,Lanot R,Bordereau C,Robert A,Hoffmann J A et al. Constitutive expression of a cysteinerichantifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 2001(276) :4085–4092.
    [62]Morikawa N.Brevibib-1 and–2,unique antimicrobial peptides from the skin of the frog,Rana brevipoda porsa.Biochem. Biophys Res.Commun. 1992 (189):184-190.
    [63]MoPark.Antimicrobial peptides from the skin of a Korean Frog, Rana rugosa.Biochemical and Biophysical Research Communications,1994(205) : 948-954.
    [64]China B C,Carver J A,Mulhern T D et.al.Maculatin an antimicrobial peptides from the Auatralian tree frog,Litoria genimaculata solution structure and biological activity.European Journal of Bioce mistry, 2000, 267:1894-1908.
    [65]赖仞,冉永禄.生命的化学,1997,17(16):33-36.
    [66]宋卫华,党爱民,刘国仗.原发性高血压相关基因研究进展.中国分子心脏病学杂志.2005(2):245-251.
    [67]汪涛,康毅,娄建石.激肽释放酶-激肽系统的心血管领域研究进展.中国药理学与毒理学杂志.2003,06:123-132.
    [68]Wegener K L,Wabnitz P A,Carver J A.Host defense peptides from the skin glands of the Australian blue mountains tree frog Litoria citropa.European Journal of Biochemistry, 1999(265):627-637.
    [69]Jadvinder Goraya, Wang,Z et al.peptides with antimicrobial activity from four-different families isolated from the skins of the north American frogs Rana luterventris,Rana berlandieri and Rana pipiens.Eur.J.Biocherm,2000,267:894-900.
    [70]Kim J B,Iwamuro S,Knoop F C,Conlon J.Antimicrobial peptides from the skin of the Japanese mountain broun frog Rana ormativentris[J].Peptide Res,2001,58:349-356
    [71]邹冈等.中国绿臭蛙皮肤活性激肤的分离纯化.1978.
    [72]赖仞,赵宇,杨东明等.六种常见两栖类动物皮肤分泌物的生物活性比较.动物学研究,2002,23(2):113 -119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700