泛函微分系统的定性分析及其在神经网络中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了几类泛函微分系统的耗散性,周期解,稳定性,不变集和吸引性等定性问题及其在神经网络上的应用。
     第一章,主要介绍了几类泛函微分系统的研究背景,同时简单介绍了关于确定型泛函微分系统和随机泛函微分系统定性分析中已有的相关结果。
     第二章,首先,利用转移函数的性质和马尔可夫不等式,建立了一个周期马尔可夫过程的存在性定理。然后,利用此定理,得到了It(?)型随机泛函微分系统周期解存在的充分条件。最后,利用It(?)公式和随机分析技巧,获得了一类随机时滞神经网络存在不变集,吸引集以及周期吸引子的充分条件。
     第三章,利用Leray-Schauder原理,算术几何平均不等式和向量型时滞微分不等式,研究了一类具有混合时滞的神经网络系统,获得了此系统存在唯一全局渐近稳定平衡点的充分条件。
     第四章,研究了一类非自治变时滞神经网络系统的耗散性和周期吸引子。首先利用建立的时滞微分不等式和M-矩阵的性质,讨论了该系统的一致耗散性。进而,利用Banach不动点定理得到了一类非线性泛函微分系统存在全局稳定周期解的充分条件。最后,获得了非自治变时滞神经网络存在周期吸引子的充分条件,并对周期吸引子的范围作出了估计,改进和推广了已有的一些结果。
     第五章,利用M-矩阵的性质和不等式分析技巧对一类变时滞模糊神经网络进行了研究,得到了系统的耗散性,不变集和吸引集。
This paper is concerned with the qualitative analysis of functional differentialsystems and stochastic functional differential systems, such as dissipativity, periodicsolutions, invariant set and attractivity, and its Applications in neural networks.
     Chapter 1 offers the research background for this paper, and some known re-suits for the qualitative analysis of deterministic functional differential equations andstochastic functional differential equations are introduced.
     In Chapter 2, the existence theorem for periodic Markov process is firstly de-veloped by employing the properties of transition functions and Markov inequality.Furthermore, the existence theorem for periodic solution of It(?) stochastic functionaldifferential equations is given. Lastly, by using stochastic analysis technique and It(?)formula, sufficient conditions for the existence of invariant set, attracting set and peri-odic attractor for stochastic neural networks with delays are obtained.
     In Chapter 3, a class of neural networks with mixed delays is considered. Theexistence, uniqueness and global asymptotic stability of the equilibrium for the neuralnetworks are established by means of Leray-Schauder principle, Arithmetic-mean-geometric-mean inequality and a vector delay differential inequality.
     In Chapter 4, the dissipativity and periodic attractor of a class of non-autonomousneural networks with time-varying delays are investigated. Firstly, by employing theproperties of M-matrix and a delayed differential inequality, the uniformly dissipativ-ity of the neural networks is obtained. Then, by using the Banach fixed point theory, the sufficient conditions for the existence and uniqueness of the periodic solutions ofa class of nonlinear functional differential equations are given. Lastly, some sufficientconditions for the existence range of the periodic attractor are obtained by using theabove results.
     In Chapter 5, a class of fuzzy neural networks with delays is considered. Byemploying the properties of M-matrix and the techniques of inequality, dissipativity,invariant sets and attracting sets of the system are obtained.
引文
[1] V. Volterra, Sur la theorie mathematique des phenomenes hereditaires, J. Math. Pures Appl, 1928, 7: 249-298.
    [2] V. Volterra, Theorie Mathematique de la Lutte pournla Vie. Paris: Cauthier-Villars, 1931, 23-46.
    [3] R. Bellman, J. M. Danskin, A survey of the mathematical theory of time lag, retarded control and hereditary process, Princeton: The Rand Corporation, 1954.
    [4] R. Bellman, K. Cooke, Differential Difference Equations. New York: Academic Press, 1963.
    [5] V. Kolmanovskii, Myshkis, Applied Theory Of Functional Differential Equations. Dordrecht/Boston/London, Kluwer Academic Publishers, 1992.
    [6] V. Kolmanovskii, Myshkis, Introduction to the Theory and Applications of Functional Differential Equations. Dordrecht/Boston/London:Kluwer Academic Publishers, 1999, 285-288.
    [7] T. Yoshizawa, Stability by Liapunov second method, Math, Soc. Japan, Tokyo, 1966.
    [8] T. A. Burton, Construction of Liapunov functionals for Volterra equations, J. Math. Anal. Appl., 1982, 85(1): 90-105.
    [9] T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, Orlando, Florida, 1985.
    [10] 李森林,温立志,泛函微分方程,湖南科技出版社,长沙,1987.
    [11] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
    [12] J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equation, Springer Vrleg, New York, 1993.
    [13] 郑祖庥,泛函微分方程理论,安徽教育出版社,合肥,1994.
    [14] 廖晓昕,动力系统的稳定性理论和应用,北京:国防工业出版社,2000.
    [15] Ito. K. On stochastic differential equations, 1951, Mem. Amer. Math. Soc., NO. 4.
    [16] Ito K., Nisio M. On stationary solutions of a stochastic differential equation, J. Math. Kyoto University, 1964, 4(1): 1-75.
    [17] E. B. Dynkin, Markov Processes. Marcow: Fizmatgiz, 1963.
    [18] G. S. Ladde, Differential inequalities and stochastic functional differential equations, J. Math. Phys. 1974, 15(6):738-743.
    [19] L. Arnold, Stochastic Differential Equations: Theory and Applications, New York: Wiley, 1972.
    [20] L. Arnold, Random dynamical systems, Springer-Verlag, 1998.
    [21] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1976.
    [22] R. Z. Has'minskii, Stochastic Stability of Differential Equatibns, Sijthoff and Noordhoff, Maryland, 1980.
    [23] 胡宣达,随机微分方程稳定性理论,南京:南京大学出版社,1986.
    [24] X. R. Mao, Exponential Stability of Stochastic Differential Equations, Marcel Dekker, New York, 1994.
    [25] X. R. Mao, Stochastic Differential Equations and Applications, Horwood, 1997.
    [26] B. φksendal, Stochastic Differential Equations: an Introduction with Applications, Fourth Edition. New York: Springer-Verlag, 1995.
    [27] Z. K. Wang, Stochastic Programming Theory of Random Process, Press of Beijing Normal University, Beijing, 1996.
    [28] J. L. Massera, The existence of peridic solutions of systems of differential equations, Duke Math. J., 1950, 17: 457-475.
    [29] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banachspaces, 1967.
    [30] O. Lopes, Periodic solutions of perturbed neutral differential equations, J. Diff. Equ. 1974, 15: 70-76.
    [31] T. Yoshizawa, Stability theory and the existence of periodic solutions and almost periodic solutions, Berlin: Lectures in Applied Mathematics. Vol.14. Springer, 1975.
    [32] J. k. Hale, Asymptotic Behavior of Dissipative Systems, Providence, RI:AMS, 1988.
    [33] 王克,黄启昌,Ch空间与具有无穷时滞的泛函微分方程的有界性和周期解,中国科学,1987,17A(3):242-252.
    [34] 石磊,具有无穷时滞中立型泛函微分方程的有界性及周期解,科学通报,1990,35(6):409-411.
    [35] Y. Kuang, Delay Differential Equations with Application in Population Dynamics, Academic Press, Boston, 1993.
    [36] 王全义,周期解的存在性唯一性及稳定性,数学年刊,1994,15A(5):537-545.
    [37] 王全义,具有无穷时滞的积分微分方程解的存在性唯一性及稳定性,应用数学学报,1998,21(2):312-318.
    [38] 陈风德,史金麟,高维非自治系统的周期解,数学学报,2000,45(5):887-894.
    [39] 唐扬斌,中立型高维非自治系统的周期解,应用数学学报,2000,23(3):321-328.
    [40] 彭世国,朱思铭,具有无穷时滞泛函微分方程的周期解,数学年刊,2002,23A(3):371-380.
    [41] R. Y. Zhang, Periodic solution of a single species discrete population model with periodic stock, Computers and Mathematics with Application, 2000, 39(1):77-90
    [42] Z. Zhang, Z. C. Wang. Periodic solutions for nonautonomous predator-prey system with diffu- sion and time delay, J. Math. Anal. Math., 2002, 265:38-48
    [43] Zhang X. Y., Bai L., M. Fan, K. Wang, Existence of positive periodic solution for predator-prey difference system with Honing Ⅲ functional response, Math. Appl., 2002, 15(3):25-31
    [44] J. D. Cao, New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Physics Letters A, 2003, 307:136-147.
    [45] H. Zhao, Existence of periodic oscillatory solution of reaction-diffusion neural networks with delays, Physics Letters A, 2005, 343: 372-383.
    [46] H. Zhao, Global exponential stability and periodicity of cellular neural networks with variable delays, Physics Letters A, 2005, 336: 331-341.
    [47] H. Zhao, Exponential stability and periodic oscillatory of bi-directional associative memory neural network involving delays, Neurocomputing 2006, 69: 424-448.
    [48] 刘衍胜,抽象空间中徽分系统弱解的局部存在性(J7.工程数学学报,1998,15(1):79-83.
    [49] 刘飞,苏宏业,褚健,线性离散时滞系统奋棒严格耗散控制.自动化学报,2002,28(6):888-903.
    [50] 刘俊,王铎,一类四阶非线性徽分方程解的局部耗散性,数学研究与评论,2003,23(4):597-603.
    [51] X. Liao, Mathematical theory of cellular neural networks, Sci. China (Ser. A), 1994, 24: 902-910.
    [52] J. L. Liang, J. D. Cao, Boundedness and stability for recurrent neural networks with variable coefficients and time-varying delays, Physics Letters A, 2003, 318: 53-64.
    [53] H. J. Jiang, Zh. M. Li, Z. D. Teng, Boundedness and stability for nonautonomous cellular neural networks, with delay, Physics Letters A, 2003, 306:313-325.
    [54] X. X. Liao, J. Wang, Global dissipativity of continu-ous—time recurrent neural networks with time delay, Phys. Rev. E, 2003, 68:1-7.
    [55] M. Rehim, H. J. Jiang, Z. D. Teng, Boundedness and stability for nonautonomous cellular neural networks with delay, Neural Networks, 2004, 17:1017-1025.
    [56] 高洪俊.樊继山,发展超导间题的局部耗散性和吸引子,数学学报,2003,46(3):523-528.
    [57] Q. K. Song, Z. J. Zhao, Global dissipativity of neutral networks with both variable and unbounded delays, Chaos, Solutions and Fractals, 2005, 25(2): 393-401.
    [58] J. D. Cao, K. Yuan, D. W. C. Ho, and J. Lam, Global point dissipativity of neural networks with mixed time-varying delays, Chaos, 2006, (16) art. no. 0131 05.
    [59] J. Chen, D. Xu, B. Shafai, On sufficient conditions for stability independent of delay. IEEE Trans. Automat. Contr., 1995, 40(9): 1675-1680.
    [60] J. N. Chiasson, S. D. Brierfley, E. B. Lee, A simplified derivation of the Zeheb-Walach 2-D stability test with applications to time-delay systems. IEEE Trans. Automat. Contr., 1985, AC-30(4):411-414.
    [61] J. N. Chiasson, S. D. Brierfley, E. B. Lee, Correction to "a simplified derivation of the Zeheb- Walach 2-D stability test with applications to time-delay systems". IEEE Trans. Automat. Contr., 1986, AC-31(1):91.
    [62] E. W. Kamen, Linear systems with commensurate time delays: stability and stabilization independent of delay. IEEE Trans. Automat. Contr., 1982, AC-27(2):367-375.
    [63] E. W. Kamen, Correction to "linear systems with commensurate time delays: stability and stabilization independent of delay". IEEE Trans. Automat. Contr., 1983, AC-28(2):248-249:
    [64] 廖晓昕,细胞神经网络的数学理论(Ⅰ)(Ⅱ),中国科学(A辑),1994,24(9):902-910;24(10):1037-1046.
    [65] S. Guo, L. Huang, Stability analysis of a delayed Hopfield neural network, Phys. Rev. E 2003, 67(061902): 1-7.
    [66] X. X. Liao, X. R. Mao, J. Wang, Z. G. Zeng, Algebraic conditions of stability for Hopfield neural network, Science in China-F, 2004, 47:113-125.
    [67] B. S. Razumikhin, Application of Lyapunov's method to problems in the stability of systems with a delay, Automat and Remote Control, 1960, 21: 515-520.
    [68] J. Kato, Liapunov-Razumikhin type theoems for functional differential equations, Funkcial Ekvac, 1973, 16: 225-239.
    [69] K. Gopalsamy, X. He, Stability in asymmetric Hopfield nets with transmission delays, Physica D, 1994,76: 344-358.
    [70] P. Van DenDriessche, X. F. Zou, Global attractivity in delayed Hopfield neural networks models, SIAM J. Appl. Math, 1998,58: 1878-1890.
    [71] S. Mohamad, Global exponential stability of continuous-time and discrete-time delayed bidirectional neural networks, Physica D, 2001, 159: 233-251.
    [72] Q.Zhang, X.P.Wei, J.Xu, Global exponential stability for nonautonomous cellular neural networks with delays, Physics Letters A, 2006,351: 153-160.
    [73] Q.Zhang, X.P.Wei, J.Xu, On global exponential stability of nonautonomous delayed neural networks, Chaos, Solitons and Fractals, 2005,26: 965-970.
    [74] X. Liao, Mathematical theory of cellular neural networks, Sci. China (Ser. A), 1994,24:902-910.
    [75] V. B. Kolmanovskii, V. R. Nosov, Stability of functional differential equations. New York, Academic Press, 1986.
    [76] D. Gale, The theory of linear economic models. University of Chicago Press, Chicago, 1960.
    [77] M. D. Intriligator, Mathematical optimization and economic theory, Englewood Cliffs, NJ: Prentice-Hall, 1971.
    [78] J D.Murray, Mathematical biology, Springer, Berlin, 1993.
    [79] A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerves, J Physiol, 1952, 117: 500-544.
    [80] R. Teman, Infinite Dimensional Dynamical Systems in Mechanics and Physics. New York:Springer-Velag, 1988.
    [81] D. Y. Xu, H. Y. Zhao, Invariant and attracting sets of Hopfield neural networks with delay, Int. J. Sys. Sci, 2001, 32(7): 863-866.
    [82] D. Y. Xu, Invariant and attracting sets of Volterra difference equations with delays, Computers and Mathematics with Applications, 2003, 45:1311-1317.
    [83] D. Y. Xu, H. Y. Zhao, Invariant sets and attractivity of nonlinear differential equations with delays, Applied Mathematics Letters, 2002, 15: 321-325.
    [84] D. Y. Xu, S. Y. Li, X. P. Zhou, etc., Invariant set and stable region of a class of partial equations with time delays, Nonlinear Analysis: Real World Applications, 2001, 2: 161-169.
    [85] H. Zhao, Invariant set and attractor of nonautonomous functional differential systems, J. Math. Anal. Appl. 2003, 282(2): 437-443.
    [86] K. Sawano, Positively invariant sets for functional differential equations with infinite delay, Tohoku Math. J., 1980, 32(2): 557-566.
    [87] G. Seifert, Positively invariant closed sets for systems of delay differential equations, J. Differential Equations, 1976, 22: 292-304.
    [88] S. E. Mohanuned, Stochastic Differential Systems with Memory: Theory, Examples and Applications, Stochastic Analysis and Related Topics, Ⅵ (Geilo, 1996), ed. Progr. Probab., 42, Birkhauser, Boston, MA, 1998.
    [89] 林元烈,应用随机过程,北京:清华大学出版社,2002.
    [90] 金治明,随机分析基础及其应用,北京:国防工业出版社,2003.
    [91] 龚光鲁,随机微分方程引论,北京:北京大学出版社,1995.
    [92] L. E. Bertram, P. E. Sarachik, Stability of Circuits with randomly time-varying parameters, IRE. Trans. Circuit Theory, CT-6, Special supplement, 1959, 260-270.
    [93] R. F. Curtain , P. L. Falb, stochastic differential equations in Hilbert space, J. Dif. Equ., 1971,10: 412-430.
    [94] X. X. Liao, X. R. Mao, Exponential stability and instability of stochastic neural networks, Stoc. Anal.Appl. 1996a, 14(2): 165-185.
    [95] X. X. Liao,X. R. Mao, Stability of stochastic neural networks, Neural Parallel Sci. Comput., 1996b, 4(2): 205-224.
    [96] S. Blythe, X. R.Mao, X.X. Liao, Stability of stochastic delay neural networks. J.Franklin Institute, 2001, 338: 481-495.
    [97] A. Bahar, X. R. Mao, Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl., 2004, 292(2): 364-380.
    [98] X. R. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process Appl, 2002, 97(1): 95-110.
    [99] X. R. Mao, Exponential stability of nonlinear differential delay equations, Systems Control Letters, 1996, 28(3): 159-165.
    [100] X. R. Mao, C. Selfridge, Stability of stochastic interval systems with time delays, Systems Control Letters, 2001,42(4): 279-290.
    [101] X. R. Mao, Some contributions to stochastic asymptotic stability and bonded-ness via multiple Liapunov functions, J. Math. Anal. Appl., 2001, 260(2): 325-340.
    [102] X. R. Mao, K. Natalia, R. Alexandra, Robust stability of uncertain stochastic differential delay equations, Systems Control Letters, 1998, 35(5): 325-336.
    [103] X. R. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stochastic Process Appl, 1996, 65(2): 233-250.
    [104] X. R. Mao, R. Alexandra, K. Natalia, Razumikhin-type theorems for stochastic functional differential equations, Functional Diff Eqns, 1998,5(1-2): 195- 211.
    [105] X. R. Mao, Asymptotic properties of neutral stochastic differential delay equations, Stochastic and Stochastic Reports, 2000, 68: 273-295.
    [106] X. R. Mao, Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations, SIAM J. Math. Anal, 1997, 28(2): 389-401.
    [107] X. R. Mao, Exponential stability of neutral stochastic functional differential equations, Systems Control Letters, 1995,26(4): 245-251.
    [108] X. R. Mao, C. Selfridge.. Stability and instability of stochastic interval systems, Dynamic Sys Appl, 1999, 8: 271-286.
    [109] X. R. Mao, LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 1999, 236(2): 350-369.
    
    [110] X. R. Mao, Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients , Stochastic Process Appl, 1995, 58(2): 281-292.
    [111] X. R. Mao, A note on LaSalle-type theorems for stochastic differential delay equations,J. Math. Anal. Appl., 2002, 268(1): 125-142.
    [112] X. R. Mao, S Sabanis, E Renshaw. Asymptotic behavior of the stochastic Lotka-Volterra model, J. Math. Anal. Appl., 2003, 287(1): 141-156.
    [113] C. G.Yuan, X. R. Mao, Asymptotic stability in distribution of stochastic differential equations with Markovian switching, Stochastic Process Appl, 2003, 103(2): 277-291.
    [114] X. R. Mao, Sjtability of stochastic differential equations with Markovian switching, Stochastic Process Appl, 1999,79(1): 45-67.
    [115] X. R. Mao, Attraction, stability and boundedness for stochastic differential delay equations, Nonlinear Anal, 2001,47(7): 4795-4806.
    [116] X. R. Mao, Stochastic versions of LaSalle theorem, J Diff Eqns, 1999,153(1): 175-195.
    [117] R. Z. Has'minskii, On the dissipativity of random processes defined by differential equations, Problems of Information Transmission, 1965,1(1): 88-104.
    [118] B. G. Zhang, On the periodic solution of n-dimensional stochastic population models, Stochastic Analysis and Applications, 2000,18(2): 323-331.
    [119] W. S. McCulloch ,W. A. Pitts , Logical Calculus of the Ideas Immanent in Nervous Activity, Bulletin of Mathematical Biophysics, 1943,5:115-133.
    [120] J. J. Hopfield , Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Natl. Acad. Sci., USA, 1982, 79:2254-2558.
    [121] J. J. Hopfield, Neurons with Graded Respone have Collective Computational Properties Like those of Twostate Neurons, Proc. Natl, Acad. Sci., 1984, 81:3088-3092.
    [122] J. J. Hopfield,D. W. Tank, Neural Computation of Decisions in Optimization Problems, Biol. Cybern. 1985,52:141-152.
    [123] J. J. Hopfield, D. W. Tank, Computing with Neural Circuits: A Model, Scien ce, 1986,233:625-633.
    [124] M. Cohen, S. Grossberg, Absolute stability and global pattern formation and parallel memory storge by competitive neural networks, IEEE Trans. Syst. Man Cybernet., 1983, SMC-13: 815-826.
    [125] L. O. Chua, L. Yang, Cellular neural networks, IEEE Trans.Circuits Syst., 1988, 35:1257-1272.
    [126] B. Kosko, Bi-directional associative memories, IEEE Trans. Syst. Man Cy- ber-net., 1988,18: 49-60.
    [127] L. O. Chua, T. Roska, Cellular neural networks with nonlinear and delay- type template elements and non-uniform grids, Int. J. Circuit Theory and Application., 1992,20: 449-451.
    [128] S. Guo, L. Huang, Exponential stability and periodic solutions of neural networks with continuously distributed delays, Phys. Rev. E, 2003, 67: 011902.
    [129] K.Gopalsamy, X.He, Delay-independent stability in bidirectional associative memory networks, IEEE Trans. Circuits Syst., 1994, 5: 998-1002.
    [130] J.Y.Zhang, Y.R.Yang, Global stability of bidirectional associative memory neural networks with dealy, Int. J. Circuit Theory Appl., 2001, 29: 185-196.
    
    [131] C. Hou, J. Qian, Stability analysis for neural dynamics with time-varying delays, IEEE Trans. Neural Networks, 1998, 9: 221-223.
    
    [132] J. Cao, J. Wang, Global Asymptotic Stability of a General Class of Recurrent Neural Networks With Time-Varying Delays, IEEE Trans. Circuits Syst., 2003, 50: 34-44.
    [133] D.Y. Xu, H.Y. Zhao, H. Zhu, Global dynamics of Hopfield neural networks involving variable delays, Comput. Math. Appl., 2001,42: 39-45.
    [134] L. S. Wang, D.Y. Xu, Stability for Hopfield neural networks with time delays. J. Vibration and Control, 2002,8: 13-18.
    [135] N.Takahashi, A new sufficient condition for complete stability of celluar neural networks with delays, IEEE Trans. Circuits Syst., 2000,47: 793-799.
    [136] Zhang, Y, Yu, J.B., Wu, Y. Global stability analysis on a class of cellular neural networks, Science in China E, 2001,44:1 -11.
    [137] J. Cao, A set of stability criteria for delayed cellular neural networks, IEEE Trans. Circuits Syst. 1,2001,48: 494-498.
    [138] L.S. Wang, D.Y. Xu, Global asymptotic stability of bidirectional associative memory neural networks with S-type distributed delays, Int. J. Sys. Sci., 2002, 33: 869-877.
    [139] Zadeh L. A., Fuzzy Set, Information and Control, 1965, 8(3): 338-358.
    [140] Mamadani E. H., Application of fuzzy algorithms for simple dynamic plant, In Proc. IEE, 1974,121(12): 1585-1588.
    [141] Jang S R. ANFIS: Adaptive-network-based fuzzy inference systems, IEEE Trans. On Systems,,Man & Cybernetics, 1993,23(3): 665-685.
    [142] Cao S G, Rees N W. Analysis and design for a class of complex control systems Part I: Fuzzy modeling and identification, Automatica, 1997, 33(11): 1017-1028.
    [143] T. Yang, L. B. Yang, C. W. Wu and L. O. Chua, Fuzzy cellular neural net-works:theory, In Proc. of IEEE International Workshop on Cellular Neural Net-works and Applications, 1996,181 -186.
    [144] T. Yang, L. B. Yang, C. W. Wu and L. O. Chua, Fuzzy cellular neural networks:applications, In Proc. of IEEE International Workshop on Cellular Neural Networks and Applications, 1996, 225-230.
    [145] T. Yang, L. B. Yang, The global stability of fuzzy cellular neural network, IEEE Trans. CAS-Ⅰ, 1996, 43: 880-883.
    [146] T. Yang, L. B. Yang, Application of fuzzy cellular neural networks to Euclidean distance transformation, IEEE Trans.CAS-I, 1997, 44: 242-246.
    [147] Y. Chen, X. F. Liao, Novel exponential stability criteria for fuzzy cellular neural networks with time-varying delay, In Lecture Notes in Computer Science, 2004, 3173: 120-125.
    [148] Y. Q. Liu, W. S. Tang, Exponential stability of fuzzy cellular neural networks with constant and time-varying delays, Phys. Lett. A, 2004, 323: 224-233.
    [149] T. Huang, L. Zhang, Exponential stability of fuzzy cellular neural networks, In Lecture Notes in Computer Science, 2005, 3496: 168-173.
    [150] Lipo Wang, Wen Liu, Haixiang Shi, and Jacek M. Zurada, "Cellular neural networks with transient chaos," IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, vol.54, no.5, 2007, 440-444.
    [151] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences Academic Press, New York, 1979.
    [152] A. H. Roger, Charles R. Johnson, Topics in Matrix Analysis, Volume 2, Cambridge University Press, England, 1991.
    [153] E. F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, New York, 1961.
    [154] Y. M. Huang, D. Y. Xu, Z. C. Yang, Dissipativity and periodic attractor for nonautonomous neural networks with time-varying delays, Neurocomputing, 2007, 70: 2953-2958.
    [155] V. Kolmanovskii, A. Myshkis, Intoduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.
    [156] D. Y. Xu, Integro-differential equations and delay integral inequalities, Tohoku Math. J. 1992, 44: 365-378.
    [157] E. Zeidler, Nonlinear Functional Analysis and its Application, Ⅰ: Fixed-Point Theorems, Springer-Verlag, New York, 1986.
    [158] E. F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, New York, 1961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700