多变量时滞过程解耦控制系统定量分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进过程控制系统的研究一直受到国内外学者的广泛关注,而解耦控制系统则是先进过程控制系统的重要分支。虽然在解耦控制系统设计方面已经取得了许多成果,但是有关多变量时滞过程解耦控制系统设计问题的研究还很不完善。多变量时滞过程继承了无时滞多变量过程的复杂性,且包含的时滞因子使得这种复杂性变得更加难以控制。已有多变量控制方法和单变量时滞过程控制方法大都无法对这类对象实现有效控制。如何针对多变量时滞过程设计先进的解耦控制系统,使其既具有优越的解耦控制性能,又便于被实施应用是一个具有重大理论价值和实际意义的课题。
     本文在已有的频域解耦技术基础上,利用多变量控制理论和鲁棒控制理论研究了多变量时滞过程解耦控制系统的定量设计问题。通过对已知被控过程模型和控制结构信息进行分析,定量展示出了被控过程包含的耦合和时滞因子对系统性能的不利影响,并进一步解析设计了几类先进的解耦控制系统。这类方法的优点是设计过程简单,控制器参数整定方便。为使系统能够被有效实施,本文还分别为获的的系统推导了稳定性判定条件,发展了控制器参数整定的具体方法。
     本文的主要创新和贡献如下:
     1.针对多变量时滞单位反馈控制系统,利用耦合矩阵概念清晰的展示出系统内部耦合特征及过程包含的时滞因子对系统输出性能的影响,并基于该结论发展了一种解耦PID控制器解析设计方法。此外,推导了解耦系统保持稳定性的直观判定条件,根据系统解析设计的特点为获得的解耦PID控制器发展了参数定量整定策略。
     2.针对多变量时滞单位反馈控制系统,利用有效相对互联分析方法所定量描述的过程内部耦合对过程主对角系统的影响信息,建立了一般多变量时滞过程的有效等价对角传递函数矩阵模型,并在此基础上根据PID控制的频率依赖特性推导了分散PID控制器的解析设计公式。此外,推导了系统保持稳定性的判定条件,发展了控制器参数的整定策略。
     3.针对多变量时滞过程,通过在典型解耦内模结构中引入一个分散型扰动控制器,建立了一种简单的双自由度解耦内模控制结构,实现了系统设定点跟踪响应和扰动抑制输出响应间的解耦。提出的扰动控制器解析设计新方法,在保证系统输出解耦的前提下,能够明显改善系统的扰动抑制性能。此外,分析并推导了控制系统保持稳定性的判定条件。
     4.针对积分双输入双输出时滞过程,提出了一种双自由度解耦控制结构。首先提出了一种解析设计解耦器的新方法,实现了对积分双输入双输出时滞过程的完全解耦;其次针对解耦后的积分过程,给出了设定点跟踪控制器和扰动控制器解析设计方法,分析了系统保持稳定性的条件。提出的控制系统有效克服了过程包含的积分项给系统输出带来的不利影响,不但实现了系统设定点跟踪响应和扰动抑制输出响应间的有效解耦,而且能够有效抑制斜坡类型过程输入和输出扰动。
     5.针对一般非自衡多变量时滞过程,提出一种多自由度解耦控制结构。首先利用多变量时滞过程稳定控制器参数化公式,分别为系统中的多个控制器建立了一般表达式;然后从系统性能优化角度出发推导了各个控制器的具体设计公式。提出的控制系统不但实现了系统设定点跟踪响应和扰动抑制输出响应间的完全解耦,而且实现了对扰动抑制输出响应动态特性的有效调节。
The research on advanced process control system continuously receives the domestic and foreign scholars’widespread attention, and decoupling control system is an important branch of advanced process control system. Although a lot of achievements in the development of decoupling control system have been achieved, the research on the decoupling control system design for multivariable processes with multiple time delays is still not perfect. Multivariable processes with multiple time delays inherit the complexities of delay-free multivariable processes, and furthermore, the time delays in processes made these complexities more challenging. The decoupling control methods developed for delay-free multivariable processes and the control methods developed for delayed single-input single-output (SISO) processes can not obtain satisfactory system performance when they are applied directly to multivariable processes with multiple time delays. It has significant theory value and practical significance to develop decoupling control schemes for multivariable processes with multiple time delays, which not only can provide excellent decoupling performance but also can be conveniently applied to practical application.
     Based on frequency-domain decoupling technology, and using multivariable control theory and robust control theory, this dissertation studied the problem of quantitatively designing the decoupling control systems for multivariable processes with multiple time delays. By analyzing the known information about controlled process and control structure, the negative effects of process interaction and time delays on the system performance are quantitatively depicted, and subsequently, several advanced decoupling control schemes are developed. The dominant merits of the proposed methods are that the design procedure is simple and the tuning of the controller is convenient. In order to achieve the effective implementation of the proposed control schemes, this dissertation also developed the conditions for evaluating the proposed systems’stabilities and the rules for tuning the adjustable parameters of the proposed controllers.
     The main contributions of this dissertation are as follows:
     1. For the unity feedback control system of multivariable processes with multiple time delays, the effects of the process’s interaction and time delays on the system outputs are clearly depicted by using the concept of coupling matrix, then a new analytical decoupling PID controller design method is proposed. Besides, the intuitive conditions for evaluating the nominal system stability and the system robust stability are developed, and the rules for tuning the controller’s adjustable parameters are proposed based on the analytical controller design procedure.
     2. For the unity feedback control system of multivariable processes with multiple time delays, the effective equivalent diagonal transfer matrices are developed for the controlled process by using the quantitative depiction of the interaction effects on the dominant diagonal subsystem of the controlled process that is formed based on the effective relative interaction analysis method, then the analytical design procedure of the decentralized PID controller are given, in which the frequency-dependent property of the interaction are utilized. Besides, this dissertation developed the conditions for evaluating the system stability and the rules for tuning the controller’s adjustable parameters.
     3. Through adding an additional decentralized disturbance controller into conventional decoupling internal model control structure, a new two-degree-of-freedom decoupling internal model control structure is developed for multivariable processes with multiple time delays. The new structure realized the decoupling between the nominal system set-point tracking responses and the system disturbance rejection responses. The proposed novel disturbance controller design method can achieve remarkable improvement on the performance of disturbance rejection other than the decoupling system outputs. Besides, this dissertation analyzed and developed the conditions for evaluating the system stability.
     4. A new two-degree-of-freedom decoupling control scheme is proposed for integrating two-by-two systems with multiple time delays. Firstly, a novel inverse-model based decoupler is proposed. This decoupler can realize the effective decoupling between the set-point tracking responses of the nominal system and the system disturbance rejection responses. Subsequently, the analytical design procedures of the set-point tracking controller and the disturbance controller are provided based on the decoupled process. Moreover, the nominal system stability and the robust system stability are analyzed. The new structure can effectively overcome the negative effects of the integrating terms on system outputs, can realize the effective decoupling between the nominal system set-point tracking responses and the system disturbance rejection responses and can effective reject ramp-type disturbances.
     5. A new multi-degree-of-freedom decoupling control scheme is proposed for general non-self-regulating multivariable processes with multiple time delays. Firstly, the general design formulas of the controllers in this control structure are developed based on the parameterized formulas of the controller that can stabilize general multivariable processes with multiple time delays. Secondly, the detailed analytical design formulas of these controllers are derived from the point of view of optimizing the system performance. This control structure not only can realize the complete decoupling between the nominal system set-point tracking responses and the system disturbance rejection responses but also can tuning the dynamic performance of the disturbance rejection responses.
引文
[1] Waller,K.V. Impressions of chemical process control education and research in the USA. Chem. Eng. Educ., 1981, 15(1): 30-34.
    [2] 刘晨晖。多变量过程控制系统解耦理论。北京:水利电力出版社,1984。
    [3] McAvoy T. J., Jounela S. L. J., Patton R. et al. Milestone report for area 7 industrial applications. Control Engineering Practice, 2004, 12 (1): 113-119.
    [4] Ohshima M. Control and design problems in material processing—How can process systems engineers contribute to material processing? Journal of Process Control, 2003, 13 (5): 599-605.
    [5] Craig I. K., Koch I. Experimental design for the economic performance evaluation of industrial controllers. Control Engineering Practice, 2003, 11 (1): 57-66.
    [6] Ziegler,J.G., Nichols, N.B. Optimum settings for automatic controllers, Trans. ASME, 1942,64,759-768.
    [7] 王永初。解耦控制系统。 成都:四川科学技术出版社,1985。
    [8] Ho, W.K., Lim, K.W., Xu, W. Optimal gain and phase margin tuning for PID controllers, Automatica, 1998, 34(8): 1009-1014.
    [9] Wang, Y.G., Shao, H.H. PID autotuner based on gain- and phase-margin specifications,Ind. Eng Chem Res, 1999, 38(8): 3007-3012.
    [10] Ho, M.T., Wang, H. S., PID controller design with guaranteed gain and phase margins. Asian Journal of Control, 2003, 5(3): 374-381.
    [11] Lee, C. T., Ching, C., Tuning of PID controllers for unstable processes based on gain and phase margin specifications: A fuzzy neural approach. Fuzzy Sets and Systems, 2002, 128(1): 95-106.
    [12] Astrom, K. J., Hagglund, T. Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica, 1984, 20(5): 645-651
    [13] Tang, W., Shi, S. J., Wang, M. X. Relay feedback based autotuning PID control of paper basis weight in paper making process. Journal of Systems Engineering and Electronics, 2003, 14(1):63-69.
    [14] Tang, W., Shi, S. J., Wang, M. X. Autotuning PID control for large time-delay processes and its application to paper basis weight control.Ind. Eng Chem Res, 2002, 41(17): 4318-4327.
    [15] Gu, D. Y., Ou, L.L., Wang, P., Zhang, W.D., Relay feedback autotuning method for integrating processes with inverse response and time delay.Ind. Eng.Chem. Res., 2006, 45(9): 3119-3132.
    [16] Majhi, S.,Atherton, D.P. Autotuning and controller design for processes with small time delays. IEE Proceedings: Control Theory and Applications, 1999, 146(5): 415-425.
    [17] Rad, A. B., Tsang, K.M., Chan, W.L. Autotuning positive feedback time delay controller for deadtime processes. ISA Transactions, 2002, 41(1): 51-56.
    [18] Poulin, E., Desbiens, A., Hodouin, D. Development and evaluation of an auto-tuning and adaptive PID controller. Automatica, 1996, 32(1): 71-82.
    [19] Tsang, K.M., Lo, W.L., Rad, A.B. Adaptive delay compensated PID controller by phase margin design. ISA Transactions, 1998, 37(3): 177-187.
    [20] Rad, A. B., Lo, W.L. Adaptive PID control of systems with unknown time delay. International Journal of Systems Science, 1995, 26(3): 619-638.
    [21] Kawabe, T. A robust 2DOF PID controller design for time-delay systems based on H2 optimization. Proceedings of the 24th IASTED International Conference on Modeling, Identification and Control, 2005, 251-254.
    [22] Tavakoli, S. Tavakoli, M. Optimal tuning of PID controllers for first order plus time delay models using dimensional analysis. Fourth International Conference on Control and Automation, 2003,942-946.
    [23] Zhang, W.D., Xu, X.M. H infinity PID controller design for runaway processes with time delay, ISA Transactions, 2002, 41(3): 317-322.
    [24] Toscano, R. A simple robust PI/PID controller design via numerical optimization approach. Journal of Process Control, 2005, 15(1) : 81-88.
    [25] Leu, J.F., Tsay, S.Y., Hwang, C. Optimal tuning of PID-deadtime controllers for integrating and unstable time-delayed processes. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2006, 29(2): 229-239.
    [26] Smith,O.J.M. A controller to overcome dead time. ISA, 1959, 6(2):28-33.
    [27] Palmor, Z. Stability properties of Smith dead-time compensator controllers, Int. J. Control, 1980, 32(6): 937-949.
    [28] Wong, S. K. P., Seborg, D. E. A theoretical analysis of Smith and analytical predictors. AIChE J. 1986, 32 (10): 101-107.
    [29] Huang, H. P., Chen, C. L., Chao, Y. C., Chen, P. L. A modified Smith predictor with an approximate inverse of dead time. AIChE J. 1990, 36 (7): 1025-1031.
    [30] Astrom, K.J., Hang, C.C., Lim, B.C. A new Smith predictor for controlling a process with an integrator and long dead time, IEEE Trans. Autom. Control, 1994, 39 (2): 343–345
    [31] Tian, Y. C., Gao, F. Double-controller scheme for control of processes with dominant delay. IEE Proc. Control Theory Appl, 1998, 145(5): 479-484
    [32] Majhi, S., Atherton, D.P. Modified Smith predictor and controller for processes with time delay, IEE Proc. Control Theory Appl, 1999, 146(5): 359–366
    [33] Majhi, S., Atherton, D. P. Obtaining controller parameters for a new Smith predictor using autotuning. Automatica, 2000, 36(11): 1651-1658.
    [34] Chien, I. L., Peng, S. C., Liu, J. H. Simple control method for integrating processes with long deadtime. J. Process Control, 2002, 12(3): 391-404.
    [35] Kaya I. Improving performance using cascade control and a Smith predictor. ISA Transactions, 2001, 40 (4): 223-234.
    [36] Kaya, I. Obtaining controller parameters for a new PI-PD Smith predictor using autotuning. J. Process Control, 2003, 13(5): 465-472.
    [37] Liu T., Cai Y. Z., Gu D. Y., Zhang W. D. A new modified Smith predictor scheme for controlling integrating and unstable processes. IEE Proc. Control Theory Appl, 2005, 152 (2): 238-246.
    [38] Zhang W. D., Gu D. Y., Wang W., Xu X. M. Quantitative performance design of a modified Smith Predictor for unstable processes with time delay. Ind. Eng. Chem. Res., 2004, 43 (1): 56-62.
    [39] Morari M., Zafiriou E. Robust Process Control. Englewood Cliffs, New York: Prentice Hall,1989.
    [40] Zhong, Q.C., Normey-Rico, J.E. Control of integral processes with dead-time. Part 1: Disturbance observer-based 2DOF control scheme, IEE Proc., Control Theory Appl., 2002, 149(4): 285–290.
    [41] Tan W., Horacio J. M., Chen T. W. IMC design for unstable processes with time delays.Journal of Process Control, 2003, 13 (3): 203-213.
    [42] Yang X. P., Wang Q. G., Hang C. C., Lin C. IMC-Based control system design for unstable processes. Ind.Eng.Chem.Res. 2002, 41(17): 4288-4294.
    [43] Liu T., Zhang W. D., Gu D. Y. IMC-based control strategy for open-loop unstable cascade processes. Ind. Eng. Chem. Res., 2005, 44 (4),:900-90.
    [44] 华建兴,席裕庚。基于多模型分解的内模极点配置控制, 控制理论与应用, 1999, 16(1):113-116。
    [45] 朱宏栋,邵惠鹤。基于改进 IMC 的开环不稳定时滞过程控制,控制与决策, 2005, 20 (7):727-731。
    [46] 张井岗,刘志远,裴润。一类非自衡对象的二自由度 PID 控制,控制与决策, 2005, 17 (6):886-889。
    [47] 邓刚毅,张卫东,顾诞英。 不稳定时滞过程的两自由度控制,上海交通大学学报,2004, 38(2): 255-258。
    [48] Landau, I.D. , Karimi, A. Robust digital control using pole placement with sensitivity function shaping method. Int. J. Robust Nonlinear Control., 1998, 8(2): 191-210.
    [49] Whidborne, J.F. , Postlethwaite, I., Gu, D.-W. Robust controller design using H infinity loop-shaping and the method of inequalities. IEEE Transactions on Control Systems Technology, 1994, 2(4): 455-461.
    [50] Tan, W., Liu, J., Tam, P.K.S. PID tuning based on loop-shaping H infinity control. IEE Proc. Control Theory Appl,1998, Nov, 145(6): 485-490.
    [51] Panagopoulos, H., Astrom, K. J. PID control design and H infinity loop shaping. Int. J. Robust Nonlinear Control, 2000, 10(15): 1249-1261
    [52] Nguang, S. K., Lin, C.M. Robust H infinity filtering: a model matching approach. International Journal of Systems Science,1999, 30(10): 1143-1151
    [53] Dong, F., Wang, Y., Zhou, J.Y. Robust H infinity Control Based on Model-Matching for Track-Following System of Optical Disk Drive. Proceedings of the American Control Conference, 2003, 1, 713-718
    [54] Zhang, W. D., Xu, X.M., Sun, Y.X. Quantitative performance design for integrating processes with time delay. Automatica, 1999, 35(4): 719-723
    [55] Zhang, W. D., Xu, X.M. Optimal solution, quantitative performance estimation, and robust tuning of the simplifying controller. ISA Transactions, 2002, 41(1): 31-36
    [56] Zhang, W.D., Ou, L.L., Gu, D.Y. Algebraic solution to H2 control problems. I. The scalar case Ind. Eng. Chem. Res.2006, 45(21): 7151-7162
    [57] 张卫东。过程控制解析设计方法研究,上海交通大学博士后研究工作报告,1998。
    [58] Kharitonov,V.L. Robust Stability Analysis of Time Delay Systems: A Survey. Annual Reviews in Control. 1999, 23: 185-196.
    [59] Niculescu, S.I. Delay effects on stability: A robust control approach. 2001, Springer-Verlag: Heidelberg, LNCIS.
    [60] Gu, K. Kharitonov, V., Chen, J. Stabiliy of Time-delay Systems.Birkhauser, Boston, 2003.
    [61] Thowsen, A. Delay independent asymptotic stability of linear systems. IEE Proc. Control Theory Appl,, 1982. 35(4):689-699.
    [62] Liu, X.Y., Mansour, M. Stability analysis and stability conditions in the delay intervals for second-order delay systems. International Journal of Control, 1984, 40(2): 317-327.
    [63] Hertz, D., Jury, E. I., Zeheb, E. Simplified analytic stability test for systems with commensurate time delays. IEE Proc. Control Theory Appl,. 1984, 131(1): 52-56.
    [64] Thowsen, A. The Routh-Hurwitz method for stability determination of linear differential-difference systems. International Journal of Control, 1981, 33(5): 991-995.
    [65] Mukherjee, S.K. Note on the stability of linear control system with distributed-lag. Journal of the Institution of Electronics and Telecommunication Engineers, 1975. 21(2): 75-76.
    [66] Zhong,Q.C. Robust stability analysis of simple systems controlled over communication networks. Automatica, 2003, 39(7): 1309-1312.
    [67] Ou L., Zhang W. D., Gu D.Y. Nominal and robust stability regions of optimization-based PID controllers. ISA Trans. 2006, 45(3): 361-71.
    [68] Saleh A. Al-Shamali, Baowei, J., Oscar, D. Crisalle and Haniph A. Latchman. The Nyquist robust sensitivity margin for uncertain closed-loop systems Int. J. Robust Nonlinear Control. 2005, 15: 619-634.
    [69] Skogestad, S., Postlethwaite, I. Multivariable feedback control . John Wiley and Sons,1996.
    [70] Bristol, E.On a new measure of interaction for multivariable process control. IEEE Trans Automatic Control. 1966, 11(1):133- 134.
    [71] Shinskey, F.G. Process Control System(Second Edition ). McGraw-Hill, NewYork, 1979.
    [72] McAvoy, T.J. Interacting Control Systems: Steady State Treatment of Dual Composition Control in Distillation Columns, ISA Trans.1977, 16(4): 83-90.
    [73] Hovd, M., Skogestad, S. Simple frequency dependent tools for control system analysis, structure selection and design. Automatica , 1992, 28(5): 989-996
    [74] Arkun, Y. Dynamic block relative gain and its connection with the performance and stability of decentralized control structures.International. Journal of Control, 1987, 46(4): 1187-1193.
    [75] Chen, J. Relations between block relative gain and Euclidean condition number. IEEE Trans. Automat. Contr., 1992, 37(1): p 127-129.
    [76] McAvoy, T., Arkun, Y., Chen, R., Robinson, D., Schnelle, P.D. A new approach to defining a dynamic relative gain, Control Engineering Practice.2003, 11(8): 907-914.
    [77] Witcher, M.F., McAvoy, T.J. Interacting control systems: steady state and dynamic measurement of interaction, ISA Transactions. 1977, 16(3): 35-41.
    [78] G. Stanley, M. Marino-Galarraga, and T. McAvoy. Shortcut operability analysis. 1. the relative disturbance gain. Ind.Eng.Chem.Process Des.Dev., 1985, 24(4):1181–1188 .
    [79] M. Hovd and S. Skogestad. Simple frequency dependent tools for control system analysis, structure selection and design. Automatica, 1992,28(5): 989-996.
    [80] Boksenbom, A.S., Hood, R. General algebraic method to control analysis of complex engine types. NACA-TR-930, Washington, D.C.1949.
    [81] Kavanagh.R.J. Multivariable control system synthesis. AIEE.Trans.Appl.Ind.1958, 11(77): 425-429.
    [82] Mesarovic, M.D. The control of Multivariable systems. John Wiley, New York, 1960.
    [83] Rosenbrock. H.H. Design of multivariable control systems using inverse nyquist arrray. 1969, IEE Proc. Control Theory Appl, 116(11): 1929-1936
    [84] MacFarlane, A.G. Belletrutti, J. J. The Characteristic locus design method. Automatica, . 1973, 9(5): 575-558
    [85] 孙优贤。 多变量解耦控制系统, 浙江大学学报,1980,3:17-19。
    [86] 孙优贤。多变量解耦控制系统,浙江大学学报,1985,3:17-49。
    [87] 高黛陵,吴麒。多变量频率域控制理论。 北京:清华大学出版社, 1998。
    [88] Luyben, W. L. Distillation decoupling. AICHE Journal, 1970, 16(7): 198-203.
    [89] Weischedel, K., McAvoy T.J. Feasibility of decoupling in conventionally controlled distillation columns.Ind. Eng. Chem. Fund.1980, 19(4): 379-384.
    [90] Corripio, A.B., Smith, C.A. Principles and Practice of Automatic Process Control. Wiley, New York, 1985.
    [91] Seborg, D.E., Edgar, T.F., Mellinchamp, D.A. Process Dynamics and Control. Wiley, New York,1965.
    [92] Ogunnataike, B.A.. Ray, W.H. Process Dynamics, Modeling and Control. Oxford University Press, Oxford, 1994.
    [93] Marlin, T.E. Process Control, Designing Process and Control Systems for Dynamic Performance. McGraw-Hill, New York,1995.
    [94] Harold L. Wade, Inverted decoupling: a neglected technique. ISA Transactions, 1997, 36(1): 3-10.
    [95] Luyben, W.L. Simple method for tuning SISO controllers in multivariable systems, Ind. Eng. Chem. Proc. Des. Dev. 1986, 25(3): 654-660.
    [96] Wang, Q.G., Lee, T.H., Zhang, Y. Multi-loop version of the modified Ziegler–Nichols method for two input two output process, Ind. Eng. Chem. Res.1998, 37(12): 4725–4733.
    [97] Chien, I.L., Huang, H.P., Yang, J.C. A simple multiloop tuning method for PID controllers with no proportional kick, Ind. Eng. Chem. Res. 1999, 38(4): 1456-1468.
    [98] Huang, H.P., Jeng, J.C., Chiang, C.H., Pan, W. A direct method for multi-loop PI/PID controller design, J. Process Control.2003, 13(8): 769-786.
    [99] Lee, J., Edgar, T.F. Continuation method for the modified Ziegler-Nichols tuning of multiloop control systems, Ind. Eng. Chem. Res.2005, 44(19): 7428-7434
    [100] Hovd, M., Skogestad, S. Sequential design of decentralized controllers. Automatica, 1994, 30(10): 1601-1607.
    [101] Shiu, S. J., Hwang, S. H. Sequential design method for multivariable decoupling and multiloop PID controllers. Ind. Eng.Chem. Res. 1998, 37(1): 107-119.
    [102] Chiu, M.S., Arkun, Y. Methodology for sequential design of robust decentralized control systems, Automatic. 1992, 28(5): 997–1001.
    [103] Bao, J., Forbes, J.F., McLellan, P.J. Robust multiloop PID controller design: a successivesemidefinite programming approach, Ind. Eng. Chem. Res.1999, 38(9): 3407–3419.
    [104] Hovd, M., Skogestad, S. Improved independent design of robust decentralized controllers, J. Process Control.1993, 3 (1): 43-51.
    [105] Shinskey, F.G., Process Control System, forth ed., McGraw-Hill, New York, 1996.
    [106] Halevi, Y., Palmor, Z.J., Efrati, T. Automatic tuning of decentralized PID controllers for MIMO processes. J. Process Control 1997, 7(2): 119-128.
    [107] Skogestad, S.; Morari, M. Robust performance of decentralized control systems by independent designs. Automatica 1989, 25(1): 119-125.
    [108] Alevisakis, G. and Seborg, D. E. An extension of the Smith Predictor method to multivariable linear systems containing time delays. Int. J. Control, 1973, 17(3): 541- 551.
    [109] Ogunnaike, B. A. and Ray, W.H. Multivariable controller design for linear systems having multiple time delays. AIChE J, 1979, 25(6): 1043-1057.
    [110] Jerome, N. F. and Ray, W. H. High-performance multivariable control strategies for systems having time delays. AIChE J, 1986, 32(6): 914-931.
    [111] Wang, Q. G., Zou, B. and Zhang, Y. Decoupling smith predictor design for multivariable systems with multiple time delays. Trans. IChemE., Part A, 2000, 78(4): 565-572.
    [112] Huang, H. P. and Lin, F. Y. Decoupling multivariable control with two degrees of freedom. Ind. Eng. Chem. Res., 2006, 45(9): 3161-3173.
    [113] Chu, C.C., H∞-Optimization and Robust Multivariable Control, Ph.D. Thesis, University of Minnesota, Minneapolis, MN,1985.
    [114] B. A. Francis, A course in H∞ Control Theory, Springer Verlag, 1987.
    [115] T.Chen and B.A.Francis, Spectral and Inner-outer Factorization of Rational Matrices, SIAM J. Matrix Anal. Appl., 1989, 10(1): 1-17.
    [116] F. B. Yeh and l. F. Wei, Inner-outer factorizations of right-invertible real-rational matrices, Systems & Control Letters, 1990,14(1): 31-36.
    [117] M. Rakowski, Fast inner-outer factorization, Decision and Control, Proceedings of the 33rd IEEE Conference on, 1994, 2: 1913-1918.
    [118] Gu, G.X. Inner-outer factorization for strictly proper transfer matrices, IEEE Trans. Automat. Contr., 2002, 47(11): 1915-1919.
    [119] Wang, W. Robust Frequency Response Design Procedure for MultiVariable Control Systems; Shaker Verlag: Aachen, Germany, 2000.
    [120] Wang, Q. G. Decoupling Control; Springer: Berlin, 2003.
    [121] Niculescu, S.I., Gu, K.Q. Advances in Time-Delay Systems, LNCSE, Springer-Verlag: Berlin, 2004.
    [122] Wang Q. G., Zhang Y., Chiu M. S. Decoupling internal model control for multivariable systems with multiple time delays. Chemical Engineering Science, 2002, 57 (1): 115-124.
    [123] Jerome N. F., Ray W. H. Model-predictive control of linear multivariable systems having time delays and right-half-plane zeros. Chemical Engineering Science, 1992, 47 (4): 763-785.
    [124] Dong J., Brosilow C. B. Design of robust multivariable PID controllers via IMC. Proceedings of the American Control Conference, 1997, 5: 3380-3384.
    [125] Liu, T., Zhang, W. D., and Gu, D. Y.: ‘Analytical design of decoupling internal model control (IMC) scheme for Two-input-Two-output processes with time delays’, Ind. Eng. Chem. Res., 2006, 45(9): 3149-3160.
    [126] Zhang, W. D., Lin, C, Ou, L. L. Algebraic Solution to H2 Control Problems. II. The Multivariable Decoupling Case. Ind. Eng. Chem. Res. 2006, 45(21): 7163-7176.
    [127] Liu, T., Zhang, W. D., Gu, D. Y. Analytical multiloop PI/PID controller design for two-by-two processes with time delays. Ind. Eng. Chem. Res. 2005, 44(6):1832-1841.
    [128] 吴国垣,李东海,薛亚丽。 蒸馏塔分散 PID 控制器整定研究, 化工自动化及仪表,2004, 31(3):42-44。
    [129] Garcia-Sanz, M., Egan, I., Barreras, M. Design of quantitative feedback theory non-diagonal controllers for use in uncertain multiple-input multiple-output systems. IEE Proc.-Control Theory Appl. 2005, 152(2): 177-187.
    [130] Normey-Rico, J. E., Camacho, E. F. A unified approach to design dead-time compensators for stable and integrative processes with dead-time. IEEE Trans. Automat. Control. 2002, 47(2): 299–305.
    [131] Lee, Y., Park, S., Lee, M., Brosilow, C. PID controller tuning for desired closed-loop responses for SI/SO systems. AIChE J, 1998, 44(1): 106-115.
    [132] Lee D., Lee M., Park S., Lee Y. Mp Criterion based Multiloop PID Controllers Tuning for Desired Closed- Loop Responses, Korean J. Chem. Eng., 2003, 20(1):8-13.
    [133] 刘涛, 张卫东 ,顾诞英。多变量时滞过程的解耦控制设计,自动化学报, 31(6): 881-889。
    [134] Wang, Q. G., Zhang, Y., Chiu, M. S. Non-interacting control design for multivariable industrial processes. J. Process Control, 2003, 13(3): 253-265.
    [135] Wood, R. K. and Berry, M. W. Terminal composition control of binary distillation column. Chem. Eng. Sci., 1973, 28(9): 1707-1717.
    [136] Cha, S.; Chun, D.; Lee, J. Two-step IMC-PID method for multiloop control system design. Ind. Eng. Chem. Res. 2002. 41(12): 3037-3041.
    [137] Q. Xiong, W.J. Cai, M.J. He, A practical loop pairing criterion for multivariable processes, J. Process Control, 2005, 15(7): 741-747.
    [138] Q. Xiong, W.J. Cai, M.J. He, M. He, Decentralized control system design for multivariable processes-a novel method based on effective relative gain array, Ind. Eng. Chem. Res. 2006, 45(8): 2769-2776.
    [139] Lee, Y., Lee, J., Park, S. PID controller tuning for integrating and unstable processes with time delay, Chem. Eng. Sci.,2000, 55(17): 3481-3493.
    [140] Lee, M. Lee, K. Kim, C. Lee, J. Analytical design of multiloop PID controllers for desired closed-loop responses, AIChE J. 2004, 50(7): 1631-1635.
    [141] Yun, C.B., Kim, D.K., Kim, J,M. Analytical frequency-dependent infinite elements for soil-structure interaction analysis in two-dimensional medium. Engineering Structures, 2000, 22(3): 258-271.
    [142] Liu, T., Zhang, W.D., Gao, F. R. Analytical two-degrees of freedom(2-DOF) decoupling control scheme for multiple input multiple output(MIMO) processes with time delays, Ind. Eng. Chem. Res. 2007, 46(20): 6546-6557.
    [143] Wang, Q.G., Lu, X., Zhou, H.Q., Lee, T.H. Novel Disturbance Controller Design for a Two-Degrees-of-Freedom Smith. Journal of process control, 2007, 46(2): 540-545.
    [144] Tyreus, B. D. Multivariable control system design for an industrial distillation column, I&EC Process Des. Dev., 1979,18 (1): 177-1829.
    [145] Robinson, D., Chen, R., McAvoy, T., and Schnelle, P.D. An optimal control based approach to designing plantwide control system architectures. J. Process Control, 2001, 11(2): 223–236.
    [146] Woolverton, P. F. How to use relative gain analysis in systems with integrating variables. Instrum Tech, 1980, 27 (9): 63-65.
    [147] Guiamba, Isabel R.F., Mulholland, M. Adaptive Linear Dynamic Matrix Control applied to an integrating process. Computers and Chemical Engineering, 2004, 28(12): 2621-2633.
    [148] Huang, H. P., Lin, F. Y., Jeng, J. C. Multi-loop PID controllers Design for MIMO Processes Containing Integrator(s). J. Chem. Eng. Jap. 2005, 38(9): 742-756.
    [149] Nordfeldt, P., Hagglund, T. Decoupler and PID controller design of TITO systems. J. Process Control, 2006, 16 (9): 923-936.
    [150] Shieh, L-S. W., Ying-Jyi, P. Y., Robert, E. A Modified Direct-Decoupling Method for Multivariable Control System Designs. IEEE Trans. Industrial Electronics and Control Instrumentation, 1981, 28 (1):1-9.
    [151] Wang, Q. G., Lee, T. H., and Lin, C. Relay Feedback: Analysis, Identification, and Control. Springer-Verlag, London, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700