肖特基二极管抗辐照能力表征技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足航天电子系统对SBD抗辐照能力进行评估的要求,本论文课题通过理论研究和~(60)Coγ射线辐照实验数据分析,研究了器件辐照损伤效应及其抗辐照能力的表征方法。文中设计了SBD器件~(60)Coγ射线辐照实验,测试器件电特性和1/f噪声特性,详细分析器件损伤微观机制,深入研究辐照损伤对SBD器件正反向I-V特性和1/f噪声的影响,并确定反向漏电流、击穿电压和1/f噪声功率谱强度拟合参数B为器件抗辐照能力表征参量。
     研究结果表明,辐照主要产生电离效应,在器件表面的钝化层中引人界面态,使器件性能退化,反向击穿电压减小、漏电流变大、1/f噪声参数B急剧增加;但是没有明显引起正向特性变化。辐照诱生新的界面态,改变界面态密度分布,进而调制了肖特基势垒高度,增大表面复合速度,是引起器件性能退化主要原因,也是1/f噪声剧烈增加的主要原因。
     基于SBD辐照损伤机理及1/f噪声的总剂量效应、产生机制及1/f噪声的迁移率涨落和载流子数涨落模型的研究,建立SBD器件1/f噪声抗辐照能力表征模型。提出基于1/f噪声的SBD器件抗辐照能力表征技术,并依据SBD器件抗辐照能力表征参量及国军标,实现器件无损筛选。依据实验结果验证,参数B越大,偏离标准值越多,器件可靠性越差,抗辐照能力越低,在辐照环境下工作越容易失效。
To meet the demand of spaceflight electronic system for measurement of SBD radiation-proof competence, a research is performed in this paper on SBD’s radiation damage effect and the relevant characterization technique of radiation-proof competence, by means of theoretical research and experiment data analyses in a ~(60)Coγ-ray radiation experiment. A ~(60)Coγ-ray radiation experiment is undertaken, in which both the electrical characteristics and the 1/f noise characteristics of the device under test are measured so as to launch a detailed analysis into the micro-scope damage mechanism of the device and perform a in-depth research into the effect of radiation caused damage on SBD’s positive and reverse I-V characteristics, as well as its 1/f noise characteristics, and choosing the leakage current, breakdown voltage, and the fitting parameter B of 1/f noise power spectrum intensity to characterize SBD’s radiation-proof competence.
     It’s showed that: the ionizing effect caused by radiation, which involves the rising of interface states in the passivation layer of the device’s surface, could lead to the degradation of the device, the decrease of the reverse breakdown Voltage, the increase of the drain current, as well as the significant increase of the 1/f noise level, however, little changes is caused to the positive electrical characteristics. The radiation induced interface states which change the distribution of interface state density, and moreover modulate the Schottky barrier height and increase the velocity of recombination in surface, lead to the degradation of device performance as well as the significant increasing of 1/f noise level.
     Based on the research of the mechanism of radiation damage and total dose effect and the generating mechanism on Schottky barrier diodes(SBD) , and model of the mechanisms of carrier mobility fluctuation and carrier number fluctuation of 1/f noise, the effect of radiation damage on 1/f noise of SBD was studied in this paper. Then, a 1/f noise based characterization technique for SBD’s radiation-proof competence is proposed in this paper, by which the device’s non-destruction screening could be realized through the character parameter and National Standards of Device Quality for Military Utility. The experiment result validated that: the higher noise level and the larger deviation from the standard value do indicate the worse reliability and poorer radiation-proof competence, which implies a higher probability of failure for the device to work in irradiation environment.
引文
[1] J.Gasiot. Radiation effects on device: Total Ionizing Dose, Displacement Effect, Single Event Effect [R]. niversitéde MontpellierⅡ, France: Cern Training, 2003
    [2]林辉,王辉.电力电子技术[M].武汉:武汉理工大学出版社, 2002
    [3]赖祖武,等编著.抗辐照电子学—辐照效应及加固原理[M].国防工业出版社,1998
    [4] E.G. Satassinopoulos, James P. Raymond, The Space Radiation Environment for Electronics [J], Proceedings of the IEEE, Vol. 76, No. 11, 1988:1423-1442
    [5] G.A.Umana-Membreno,J.M.Dell,B.D.Nener,et al. 60Co Gamma Irradiation Effects on n-GaN Schottky Diodes[J], IEEE Transactions on Electron Devices, Vol. 50, No. 12, 2003:2326-2333
    [6] S.Karatas, A.Turut. Electrical Properties of Sn-p-Si(MS) Schottky Barrier Diodes to be Exposed to 60Coγ-ray Source [J], Nuclear Instruments and Methods in Physics Research A566, 2006: 584–589
    [7] A.Tataroglu, S.Alt?ndal, M.M.Bulbul .60CoγIrradiation Effects on the Current–Voltage (I–V) Characteristics of Al-SiO2-p-Si (MIS) Schottky Diodes [J], Nuclear Instruments and Methods in Physics Research A568, 2006: 863–868
    [8] S. Karatas, A. Turu ,S. Alt?ndal. Effects of 60Coγ-ray Irradiation on the Electrical Characteristics of Au-n-GaAs (MS) Structures [J], Nuclear Instruments and Methods in Physics Research A555, 2005: 260–265
    [9] A. Tataroglu, S. Altndal. Electrical Characteristics of 60Coγ-ray Irradiated MIS Schottky Diodes [J]. Nuclear Instruments and Methods in Physics Research B252, 2006: 257–262
    [10] H. Ohyama, K. Takakura, T. Watanabe, et al. Radiation Damage of SiC Schottky Diodes by Electron Irradiation[J], Journal of Materials Science: Materials in Electronics , Vol. 16, 2005: 455– 458
    [11] R. Singh, S. K. Arora, D.Kanjilal. Swift Heavy Ion Irradiation Induced Modification of Au-n-Si Schottky Diode [J], Materials Science in Semiconductor 4, 2001: 425-432
    [12] Richard D. Harris, Albert J. Frasca .Proton Irradiation of Silicon Schottky Barrier Power Diodes [J]. IEEE Transactions on Nuclear Science, Vol. 53, No. 4, 2006:1995-2003
    [13] Richard D. Harris, Albert J. Frasca, and Martin O. Patton. Displacement Damage Effects on the Forward Bias Characteristics of SiC Schottky Barrier Power Diodes [J], IEEE Transactions on Nuclear Science, Vol. 52, No. 6, 2005:2408-2412
    [14] S. M. Khanna, J.Webb, A. J. Houdayer, C. Carlone. 2-MeV Proton Radiation Damage Studiesof Gallium Nitride Films Through Low Temperature Photoluminescence Spectroscopy Measurements [J], IEEE Transactions on Nuclear Science, Vol. 47, No. 6, 2000:2322–2328
    [15] R.D. Kulkarni, Vivek Agarwal. Reliability Analysis of a Modern Power Supply under Nuclear Radiation Effects [J], The Fifth International Conference, Vol. 1, 2003:71– 76
    [16] G.A.Umana-Membreno,J.M.Dell,B.D.Nener,et al. 60Co Gamma Irradiation Effects on n-GaN Schottky Diodes[J], IEEE Transactions on Electron Device, Vol. 50, No. 12, Dec.2003:2326-2333
    [17]徐曦,半导体器件无损筛选研究[C],第六届全国抗辐照电子学与电磁脉冲学术交流会论文集,1999
    [18] L. K. J. Vandamme. Noise as a Diagnostic Tool for Quality and Reliability of Electronic Devices[J], IEEE Transactions on Electron Devices, Vol. 41, No. 11, 1994:2176-2187
    [19] L.K.J.Vandamme. Low frequency Noise as a Diagnostic Tool for Reliability and Quality Assessment of Electronic Devices [M], TU-Wien, 2005
    [20] M.Jevti?. Low-Frequency Noise Diagnostic of Microelectronic Devices[C] .PROC. 20th International Conference on Microelectronics (MIEL'95), Vol. 1, NI?, Serbia, 1995: 219-224
    [21] C Ciofi, B Neri. Low-frequency Noise Measurements as a Characterization Tool for Degradation Phenomena in Solid-State Devices [J]. Phys. D: Application Physical. Vol. 33, 2000:199-216. Printed in the UK
    [22] Zhuang Yiqi and Lei Du, 1/f Noise as a reliability indicator for subsurface zener diodes, Microelectronics Reliability, Vol .42, No. 2 , 2002: 183-188
    [23] Zhuang Yiqi and Qun Song,1/f Noise as a prediction of log-term instability in integrated operational amplifiers, Microelectron. & Reliability, vol.36, No.2, 1996: 189-193
    [24]庄奕琪孙青,电子器件可靠性的噪声表征方法,电子学报,Vol. 24, No.2,1996:82-87
    [25] J.I. Lee, H.D. Nam, W.J. Choi, et al. Low Frequency Noise in GaAs Structures with Embedded In(Ga)As Quantum Dots [J]. Current Applied Physics 6 , 2006:1024–1029
    [26] Tetsu Suzuki, Takanari Yasui, Hirotomo Fujishima, et al. Reduced Low-Frequency Noise Schottky Barrier Diodes for Terahertz Applications [J]. IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1999: 1649-1655
    [27] S. Me?kinis, G. Bal?aitis, J. Matukas, V. Palenskis. Reduction of Effective Barrier Height and Low-Frequency Noise of Al–GaAs Schottky Contacts by Hydrocarbon Ion Beam Irradiation [J], Solid-State Electronics 47 , 2003: 1713–1718
    [28] V.G. Bozhkov, O.V. Vasiliev. Low frequency Noise in Metal–Semiconductor Contacts with Local Barrier Height Lowering [J], Solid-State Electron 44, 2000: 1487–1494
    [29] Hsu S. T. Low-frequency exess noise in metal-silicon Schottky barrier diodes[J], .IEEE Transactions Electron Devices,Vol. ED-17, 1970: 496-506
    [30] Hsu S. T. Flicker noise in metal semiconductor Schottky barrier due to multistep tunneling processes[J], IEEE Transactions Electron Devices, Vol. ED-18, 1971: 882-887
    [31] Kleinpenning TGM. Low-frequency noise in Schottky barrier diodes[J], Solid-State Electron , Vol. 22, 1979: 121-128
    [32] Luo M-Y,Bosman G, Van Der Ziel A,Hench LL,Theory and experiments of 1/f noise in Schottky-barrier diodes operating in the thermionic-emission mode[J], IEEE Transactions Electron Devices, Vol. ED-35, No. 8, 1988: 1351-1356
    [33] G. Gomila, O. M. Bulashenko, and J. M. Rubi,Local noise analysis of a Schottky contact: Combined thermionic-emission–diffusion theory,Journal of Applied Physics, Vol. 83, No. 5, 1998: 2619-2630
    [34]曹建中,等编著.半导体材料的辐照效应[M].北京:科学出版社出版,1993
    [35]郭树田,半导体器件的预辐照技术,微电子学,Vol.20,No.3,1990:8-12
    [36]王蕴仪等.微波器件与电路[M].南京:江苏科学技术出版社, 1981
    [37]庄奕琪,孙青.半导体器件中的噪声及其低噪声化技术[M].北京:国防工业出版社,1993
    [38] Schoen KJ , Woodall J M, Cooper J A , et al., Design Consideration and Experimental Analysis of High Voltage SiC Schottky Barrier Rectifiers[J], IEEE Trans on Electron Devices ,Vol. 45, No. 7, 1998: 1595-1604
    [39] Rhoderick E H , Williams R H. Metal-Semiconductor Contacts[M], 2nd ed. Oxford : Clarendon , 1988
    [40] Sze S M. Physics of Semiconductor Devices[M], New York : Wiley , 1981
    [41] A.Tataroglu, S.Alt?ndal, M.M.Bulbul. 60CoγIrradiation Effects on the Current–Voltage (I–V) Characteristics of Al-SiO2-p-Si (MIS) Schottky Diodes [J], Nuclear Instruments and Methods in Physics Research A568, 2006: 863–868
    [42] S.Karatas, A.Turut. Electrical Properties of Sn-p-Si(MS) Schottky Barrier Diodes to be Exposed to 60Coγ-ray Source [J], Nuclear Instruments and Methods in Physics Research A566, 2006: 584–589
    [43]宁瑾,刘忠立,孙国胜,高见头. 4H-SiC肖特基二极管抗辐照特性的研究[C].第八届全国抗辐照电子学与电磁脉冲学术交流会论文集
    [44]刘畅,王鸥等人, n- GaN肖特基势垒光敏器件的电子辐照效应[J],光散射学报, Vol.17,No.2,2005:159-163
    [45] K. M. Van Vliet and H. Mehta, Theory of transport noise in semiconductor[J], Phys. Stat. Solid, Vol. 106, 1981: 11-30
    [46] J. I. Lee, I. K.Han, et al. Low Frequency Noise Spectroscopy for Schottky Contacts, Joural for the Korean Physical Society[J], Vol. 37, No. 6, 2000: 966-970
    [47] Crofton J , Sriram S. Reverse Leakage Current Calculations for SiC Schottky Contacts[J ],IEEE Trans on Electron Devices , Vol. 43, No. 12, 1996: 2305-2307
    [48]常远程,张义门,张玉明. 4H-SiC肖特基势垒二极管伏-安特性的解析模型[J].西安电子科技大学学报(自然科学版)第28卷,第4期, 2001年8月
    [49]胡瑾,杜磊,庄奕琪,包军林等.发光二极管可靠性的噪声表征[J],Vol. 55, No. 3, 2006:1384-1389
    [50] S.Perez and T. Gonzalez, Current noise spectra of Schottky barrier diodes with electron traps in the active layer[J], Journal of Applied Physics, Vol. 97, 2005: 073708-1-073708-7
    [51] A.Tsormpatzoglou, N. A. Hastas, D. H. Tassis , C. A. Dimitriadis, Low-frequency noise spectroscopy in Au/n-GaAs Schottky diodes with InAs Quantum Dots[J], Applied Physics Letter 87, 2005: 163109-1-163109-3
    [52] Mcwhorter A L. Semiconductor Surface Physics[M], Philadelphia: University of Pennsylrnia Press, 1957
    [53] O. Jantsch, Flicker (1/f) noise generated by a random walk of electrons in interfaces[J], IEEE Transactions on Electron Devices , Vol. ED-34, No. 5, 1987: 1100-1115.
    [54] N A Hastas, D H Tassis, C A Dimitriadis, L Dozsa, S Franchi, Electrical Transport and Low Frequency Noise Characteristics of Au/n-GaAs Schottky Diodes Containing InAs Quantum Dots[J], Semiconductor Science and Technology, Vol. 19, 2004: 461-467
    [55] Richard A. Schiebel, A Model for 1/f Noise in Diffusion Current Based on Surface Recombination Velocity Fluctuations and Insulator Trapping[J], IEEE Transactions on Electron Devices, Vol. 41, No. 5, 1994: 768-778

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700