高模碳纤维/环氧复合材料空间损伤效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了揭示高模碳纤维/环氧复合材料在空间环境因素作用下的损伤效应和机理,分别研究了在-100℃~+100℃真空热循环和160keV电子、质子综合辐照条件下,M55J/AG-80复合材料力学性能、质量损失率、热膨胀系数等性能的变化规律,并采用FT-IR、XPS、SEM等现代分析测试手段对空间环境作用前后材料的微观结构进行了分析和表征。
     研究结果表明,在前100次热循环内,随真空热循环次数的增加,M55J/AG-80复合材料的拉伸强度提高;100次之后,随真空热循环次数继续增加,拉伸强度下降。在前50次内,随真空热循环次数的增加,复合材料的层间剪切和弯曲强度提高;50次真空热循环之后,随真空热循环次数继续增加,层间剪切和弯曲强度下降。经过200次真空热循环前后复合材料的0°热膨胀系数曲线几乎没有变化;90°热膨胀系数略有下降,但变化不大,这说明M55J/AG-80复合材料具有良好的尺寸稳定性。
     在160keV能量真空电子、质子综合辐照条件下,M55J/AG-80复合材料在经过0.5×1016/cm~2剂量辐照后,材料的拉伸、弯曲强度和层间剪切强度均有所提高;辐照剂量超过0.5×1016/cm~2,随辐照剂量的继续增加,材料的材料的拉伸、弯曲强度和层间剪切强度逐渐降低;在1.0×1016/cm~2剂量之后,随辐照剂量的增加,强度基本不变。质量损失随辐照剂量的增加而增加,在2.0×1016/cm2辐照剂量后趋于平缓。质量损失一方面由所吸附的气体、溶剂和小分子助剂挥发所致;另外同时发生主链化学键破坏,形成小分子产物从试样表面逸出。
     经过真空热循环后,性能变化主要由于交联密度的变化及界面脱粘程度变化所引起的,没有发生新的化学反应;在电子质子综合辐照作用下,复合材料性能的变化与树脂基体交联密度的变化密切相关。
In order to reveal the damage effects and mechanisms of space environments on high modulus carbon fiber/epoxy composites, the changes in mechanical properties and mass loss ratio of M55J/AG-80 were investigated under vacuum thermo-cycling at the interval of -100℃~+ 100℃and irradiations of proton and electrons with 160keV. FT-IR、XPS and SEM were used to characterize the microscopic structure of composite before and after irradiation.
     Experimental results show that in the period of 100 times thermo-cycling, with increasing the cycles of vacuum thermo- cycling, tensile strength increased obviously. Then after 100 times thermo-cycling, with the thermo-cycling times increases continully, the tensile strength of the composites descends. In the period of 50 times thermo-cycling, the bend strength and interlayer shear strength increased. After 50 times thermo-cycling, with the increases of thermo-cycling times, the bend strength and interlayer shear strength descend. After 200 times of thermo-cycling, the 0°thermal expansion modulus is almost constant, the 90°thermal expansion modulus reduces a little, which indicates that the composites has good size stability.
     Under the irradiation flux of 0.5×1016/cm~2, the tensile strength, bend strength and interlayer shear strength increase. Then after the 0.5×1016/cm~2 irradiation flux, the tensile strength、bend strength and interlayer shear strength descend with the irradiation flux increases. While above the 1.0×1016/cm~2 irradiation flux, with the irradiation flux increases more, the strength is almost constant. With the irradiation flux increases more, the mass loss ratio accordingly increases . After the 2.0×1016/cm~2 irradiation flux, the mass loss ratio become steady. The reason of the mass loss is attributing to the volatilization of gas adsorbed in material、solvent and small molecule come from the breakage of chemical bond.
     After vacuum thermo- cycling, the change of properties are mainly owing to the change of the coupling density of chemical bond and interface linking intensity, and there is not new chemic reaction. Under the effect of proton and electron irradiation, the properties is mostly correlative to the coupling density of the resin.
引文
1肖少伯.碳纤维及其复合材料在卫星上的应用.高科技纤维与应用. 1999, 24(2):1~4
    2沃西源,周宏志.卫星结构先进复合材料应用发展.航天返回与遥感. 2002, 23(3):52~56
    3 V. Vasiliev, A. F. Razin. Anisogrid Composite Lattice Structures for Spacecraft and Aircraft Applications. Composite Structrues. 2006, 76:182~189
    4 J. K. Baird. Low~earth~orbit Atomic Oxynen Erosion of Polymer Surfaces. Journal of Spacecraft and Rockets. 1998, 35(1):62~65
    5湛永钟,张国定.低地球轨道环境对材料的影响.宇航材料工艺. 2003, (1):1~3
    6何东晓.先进复合材料在航空航天的应用综述.高科技纤维与应用. 2006, 31(2):9~11
    7陈烈民,沃西源.航天器结构材料的应用和发展.航天返回与遥感. 2007, 28(1):58~61
    8房海军,涂彬.碳纤维复合材料卫星天线反射面型面精度稳定性分析.航天返回与遥感. 2007, 28(1):67~71
    9 R. M. Carthy, G. Haines, R. Newley. Polymer Composite Applications to Aerospace Equipment. Composites Manufacturing. 1994, 5(2):83~93
    10杜善义.先进复合材料与航空航天.复合材料学报. 2007, 24(1):1~5
    11余训章.高性能树脂基体在航空航天复合材料上的应用.玻璃钢/复合材料. 2006, (4):2616~2621
    12 W. Hufenbach, M. Andrich, A. Langkamp. Fabrication Technology and Material Characterization of Carbon Fiber. Journal of Materials Processing Technology. 2006, 175 (1): 218~224
    13姜利祥,何世禹,杨士勤等.碳(石墨)/环氧复合材料及其在航天器上应用研究进展.材料工程. 2001, (9):39~46
    14高建军,狄西岩.俄罗斯增强纤维材料.高科技纤维与应用. 2003, 28(1):205~29
    15赵稼祥.日本GRAFIL公司碳纤维现况与发展.高科技纤维与应用. 2001,(2):17~22
    16赵稼祥.东丽公司碳纤维及其复合材料的进展.宇航材料工艺. 2000, (6):53~56
    17 J. P. Wightman, Nursel Dilsiz. Surface Analysis of Unsized and Sized Carbon Fibers. Carbon. 1999, (37):1105~1114
    18 L. Aig, G. Mihan. Arc Sprayed Erosion-resistant Coating for Carbon Fiber. Surface and Coatings Technology. 2006. 200 (9): 3073~3077
    19 W. M. Qiao, S. H. Yoon, I. Mochida. Waste Polyvinylchloride Derived Pitch as a Precursor to Develop Carbon Fibers and Activated Carbon Fibers. Journal of Power Sources. 2006, 163(1): 113~118
    20 A. Bismarck, M. J. Kumru, J. Sprinner, J. Simitzis. Surface Properties of PAN~based Carbon Fibers Tuned by Anodic Oxidation in Different Alkaline Electrolyte Systems. Applied Surface Science. 1999, (2):45~55
    21 H. J. Dudek, K. Weber. Voids formation in TMC Processed by Fibre Coating. Composites. 2002, 33 (12):1705~1708
    22 A. Fukunaga, T. Komami, S. Ueda. Plasma Treatment of Pitch~based Ultra High Modulus Carbon Fibers. Carbon. 1999, (37):1087~1091
    23汪多仁.环氧树脂的合成与应用.热固性树脂. 2001, 16(1):42~45
    24 J. Dauphin. Master Bond Offers New Epoxy Adhesive. Glass Science and Technology. 2005, 78(1):140
    25李丽娟. 2005~2006年国外环氧树脂工业动态.热固性树脂. 2007, 22(2):41~45
    26 H. Nikishin. Specialty Chemicals Hikes Epoxy Resin Prices in Asia. Chemical Weekly. 2006, 51(38):152
    27 R. C. Tennyson. Reichhold Introduces Waterborne Epoxy Curing Agent for Industrial Maintenance Applications. European Paint and Resin News. 2006, 44(8):13~15
    28 A. G. Miller. Epoxy Performs an Alternative to the Use of Liquid Epoxy. Wire Journal International. 2006, 39(2):34~37
    29 B. W. Smith. Waterborne Epoxy Dispersion. European Coatings Journal. 2006, (9):82
    30 S. W. Beckwith, R. Hyland Craig. Resin Transfer Molding, a Decade of Technology Advances. Sampe Journal. 1998, 34 (6): 3~23
    31 J. D. Lichtemhan, A. Lee. High-heat Epoxy is Extremely Flexible. Plastics Technology. 2006, 52(2):27~30
    32张建可,冀勇夫,李智华等.粒子辐照对碳纤维复合材料力学性能影响.中国空间科学技术. 1998, 18(1):56~59
    33姜利祥,刘振琦,何世禹等.全真空紫外辐照CF/EP损伤效应研究.应用激光. 2002, 22(4):409~412
    34高禹,杨德庄,何世禹.真空热循环对M40J/环氧复合材料力学性能的影响.材料研究学报. 2004, 18(5):529~536
    35 T. F. Klein, G. A. Lesieutre. Space Environment Effects on Damping of Polymer Matrix Carbon Fiber Composites. Journal of Spacecraft and Rockets. 2000, 37(4):519~525
    36 B. Lay, Brunet Metal. Modelling of Void Nucleation and Fiber Debonding in a Composite material. Journal of Materials Processing Technology. 1998, 77(3):254~259
    37 D. F. Thompson, H. W. Babel. Materials Applications on the Space Station Key Issues and the Approach to Their Solution. Sampe Quarterly. 1989, 21(1):27~30
    38 P. J. Halley, M. E. Macky. Chemorheology of Thermost-an Overview. Science and Polymer Engineering. 1996, 36(5): 593~608
    39 E. Grossman, I. Gouzman. Space Environment Effects on Polymers in Low Earth Orbit. Nuclear Instruments and Methods in Physics Research. 2003, 208:48~57
    40 M. Raja Reddy. Effect of Low Earth Orbit Atomic Oxygen on Spacecraft Materials. Composites. 1997, 30: 281~290
    41 X. F. Yang, C. Vang, D. E. Tallman. Weathering Degradation of a Polyurethane Coating. Polymer Degradation and Stability. 2001, 74: 341~351
    42 Y. Kim, S. Crasto, A. Schoeppner. Dimensional Stability of Composite in a Space Thermal Environment. Composite Science and Technology. 2000, 60: 2601~2608
    43沃西源,谭放,夏英伟.空间环境对聚合物基复合材料性能的影响分析.航天返回与遥感. 2003, 24(3):47~50
    44童靖宇.航天器可靠性与空间特殊环境试验.航天器环境工程. 2005,22(1):9~17
    45 M. H. Steven, E. M. Troy, M. Peter. Manufacturing Theory for Advanced Grid Stiffened Structures. Composites. 2002, 33(2):155~161
    46陈绍杰.先进复合材料的现状和趋势.高科技纤维与应用. 2001, 26(6):l~5
    47 H. Lee Eal. Ion-beam Modification of Polymeric Materials-Fundamental Prinples and Applications. Nuclear Instruments and Methods in Physics Rearch. 1999, (151): 29~41
    48 Jin Ho Choi, Dai Gilleee. Expert Cure System for the Carbon Fiber Epoxy Composite Materials. Journal of Composite Materials. 1995, (29):1181~1200
    49 P. Ball, L. Garwin. Aero Space Composites Market will Quadruple by 2006. High Performance Composites. 2007, 15(1):7~15
    50乌云其其格.环氧/碳纤维复合材料性能研究.高科技纤维与应用. 2004, 29(1):24~25
    51沃西源,谭放,章令辉.碳/环氧复合材料模压成型工艺特性及其影响性能主要因素.航天返回与遥感. 2000, 21(4):33~36
    52李超,丘哲明,刘建超.树脂含量对碳布/环氧复合材料力学性能的影响.纤维复合材料. 2003, (1):25~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700