通信基站用空气换热器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信基站是通信系统的重要组成部分,其内部温湿度和洁净度等环境参数不仅直接影响着通信设备的可靠运行和使用寿命,更关系到通信的顺畅与安全。通信基站内设备散热量大且集中,基站内部设备全年不间断高负荷运行,即使在冬季也可能存在散热情况,因此承担散热负荷的空调必须连续不断的高负荷运行,从而导致了通信基站高额的电费支出。
     因此在目前能源状况较为紧张的形势下,能源的有效利用和节能成为通信站设计中必须考虑的问题之一。作为通信基站空调节能的替代品——空气换热器就是在这样的背景下产生的。该设备的节能原理是在室外温度较低时,利用室内外空气的温差传热,消除基站机房内的余热量,在过渡季或冬季部分替代或完全替代基站机房内的空调设备,实现通信基站的空调节能。
     本文主要从以下三个方面进行研究:
     (1)通信基站用隔离板式空气换热器的实验研究。
     对开发研制的板式换热器的传热性能以及压力降与风量以及温差的关系进行实验研究,并对该换热器的实际降温效果进行测试。结果表明,该换热器的换热系数和压降均随着风量的加大而增大,且变化趋势较陡;而换热效率随着风量的增大而减小,但是变化趋势较平缓。
     (2)新型重力热管换热器的研究。
     分析了通信基站用热管换热器的特点,用常规计算法设计一种适用于通信基站的重力式热管换热器,用VB语言编译一个通信基站用重力式热管换热器的设计计算程序,并对其计算过程和模拟计算结果进行分析。
     (3)板式换热器与热管换热器应用于通信基站的全国经济适用性分析与比较。
     空气换热器的使用受到室内外温差的限制,且板式换热器和热管换热器的性能是不同的,这两种换热器在全国范围内的经济性如何直接影响到其适用性。用DEST软件计算了全国五个气候区主要城市的典型基站的全年逐时冷负荷,并对各个地区应用两种空气换热器进行节能分析,结果表明,通信基站用空气换热器节能效果是非常显著的,年节电率最高的是昆明(温暖地区),高达39%(板式换热器),广州(夏热冬暖地区)最差,约14%(板式换热器);板式换热器和热管换热器的节能效果相当。
Communication base station is an important part of the communication system. Its internal temperature, humidity, degree of cleanliness and other environmental parameters not only have a direct impact on the communication equipment's reliability and service life, but also relate to the smooth operation and security of the communication process.
     Communication base station's heat dissipating capacity is big and concentrated. Its internal equipment operates uninterrupted all the year with a high loading, even in the winter, there may be heat dissipating, so the air-conditioning which bears the heat dissipating capacity needs to working continuously with a high loading, thus entaking a high electricity cost on the communication base station.
     So under the current tense energy circumstance, effectively energy-using and energy-saving are necessary in the design of the communication base station. Under this background, there is the energy saving alternatives of base station's air conditioning systems—air heat exchanger. The principle of energy saving of this equipment as follows: in intermediate season and winter, when the outdoor temperature is low, using the indoor and outdoor air temperature heat transferring to eliminate communication equipment plant's excess heat so as to substitute the air-conditioning, then realizing communication base station's energy saving.
     The dissertation can be divided into three parts:
     (1) The experimental study on the isolated plate air heat exchanger used in communication base station. The aim of experiment is to find the relationship between the heat transfer performance and air velocity, and to find the relationship between the pressure drop and air velocity. The cooling effects of the heat exchanger will also be studied. The results show that the heat transfer coefficient and pressure drop increase as the air velocity increases, and the change is in tends in steep. And the heat transfer efficiency decreases as the air velocity increases, but the trend is gentle.
     (2) The study on gravity heat pipe heat exchanger.
     According to the features of the communication base station, a gravity heat pipe exchanger has been designed using conventional calculation, and based on VB, the design and calculation is made. In addition, the calculation process is introduced by a project example, and its computation results are studied.
     (3) The applicability analysis on the two types of heat exchanger used in communication base station all over china.
     Whether the heat exchanger use or not is determined by the difference between indoor and outdoor air. And the performance of two types of heat exchanger is different. How about the economy of two types of heat exchanger in the national? And that result will directly affect the application in the national. The yearly load of a typical base station is calculated by DEST, and the calculation involves five climatic regions in the national. Then analysis the energy-saving of the two types of heat exchanger in different area. The result shows that, energy saving effect by using the technology was significant; in city of Kunming(warm region) the annual power saving rate is the highest, about 39% (plate heat exchanger); in city of Guangzhou(region of hot summer and warm winter) the annual power saving rate is the lowest about 14% (plate heat exchanger); the energy saving effect of plate heat exchanger is close to the effect of gravity heat pipe heat exchanger.
引文
[1]中国移动通信企业标准QB—W-004-2006.基站节能系统技术规范—智能换热器部分[S]
    [2]李浙.浅谈程控交换基站的空调设计[J].制冷空调与电力机械:2002,23(85):51-53
    [3]刘涛.移动通信基站的综合节能[J].电信工程技术与标准化:2006,6:32-34
    [4]项生逵.移动通信基站节电的成功探索[J1.通信世界.2003(12):45
    [5]侯福平.通信基站空调系统节能技术探讨[J].通信电源与基站空调的安全节能.2006(6):20-21
    [6]杨世忠,侯福平.通信基站节能技术探讨[C].2007中国通信网络节能优秀解决方案汇编:1-5
    [7]邱相武.新风利用与热回收的动态分析与研究[D].北京:中国建筑科学研究院,2001年
    [8]王政.静止式空气—空气全热交换器性能评价研究[D].上海:同济大学,2006年
    [9]Cary J.Simonson,Dustin L.Ceipliski,Robert W.Besant.Determining the Performance of Energy Wheels:Part Ⅰ——Experimental and Numerical Methods.ASHRAE Transactions 1999(Part Ⅰ):174
    [10]魏巍,刘京,赵加宁.电信基站用新风冷却换热装置的开发应用研究[J].电信工程技术与标准化.2005(5):14-17
    [11]郑川,江亿等,移动通信基站环境控制及节能研究[C].2007中国通信网络节能优秀解决方案汇编:202-206
    [12]黄绪镜.百货商场空调设计[M].北京:中国建筑工业出版社,1992:80-890
    [13]高凤龙.热管换热器同转轮式全热交换器节能效果比较[J].制冷与空调,2003,3(1):61-62
    [14]庄骏,徐通明,石寿椿.热管与热管换热器[M].上海:上海交通大学出版社,1989
    [15]赵波.大型综合娱乐建筑空调节能设计的几点体会[J].暖通空调,2001,31(3):51-52
    [16]Said S A,Akash B A.Experimental performance of a heat pipe.Int.Com.in Heat and Mass Transfer[J],1999,26(5):679-684
    [17]Grove G M,Cotter T P,Erickson G P Structure of very high thermal conductance.J.Appl.Physics[J],1964,35(6):1990-1991
    [18]Faghri A,Harley C.Transient lumped heal pipe analysis.Heat Recovery Systems and CHP[J],1994,14(4):351-363
    [19]Hoa C,Demolder B,Alexandre A.Roadmap for developing heat pipes for ALCATEL SPACE's satellites.Applied Thermal Engineering[J],2003,23(9):1099-1108
    [20]Faghri A.Heat pipe science and technology.Washington DC:Taylor& Francis,1995,169-179
    [21] Busse C A. Theory of ultimate heat transfer limit of cylindrical hat pipes. Int. J.Heat and Mass Transfer[J], 1993, 16(1): 169-186
    
    [22] Nukiyama S. Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. J. Soc. Mech. Eng. Japan, 1994, 67(3): 367-369
    
    [23] Lin S, Broadbent J, McGlen R. Numerical study of heat pipe application in heat recovery systems. Applied Thermal Engineering[J], 2005, 25(1): 127-133
    
    [24] Toedtman T, Welch R S. Rotable and slideble heat pipe apparatus for reducing heat build up in electronic devices. Applied Thermal Engineering[J], 1997, 17(8): 8-9
    
    [25] Tien CL. Fluid dynamics of heat pipes. Annual Review Fluid Mechanics, 1995, 7(1): 167-185
    
    [26] Sartre V, Zaghdoudi M C, Lallemand M. Effect of interfacial phenomena on evaporative heat transfer in micro heat pipes. Int. J. Thermal Scienc[J]e, 2000, 39(4): 498-504
    
    [27] CaoY, Faghri A. Conjugate analysis of a flat-plate type evaporator for capillary pumped loops with three-dimensional vapor flow in the groove. Int. J. Heat and Mass Transfer[J], 1994, 37(3):401-409
    
    [28] Deverall J E. Heat pipe performance in a zero-g gravity field. J. Spacecraft Rockets, 1987, 24(11): 1556-1557
    
    [29] Vafai K, Zhu N, Wang W. Analysis of asymmetric disk-shaped and flat-plateheat pipes. Previews of Heat and Mass Transfer[J], 1995, 21(3): 245
    
    [30] Riffat S B, Zhao X, Doherty P S. Analytical and numerical simulation of the thermal performance of ' mini' gravitational and 'micro' gravitational heat pipes Applied Thermal Engineering[J], 2002, 22(9): 1047-1068
    
    [31] Faghri A, Harley C. Transient lumped heat pipe analysis. Heat Recovery System and CHP[J],1994, 14(4): 351-363
    
    [32]NozuS. Studies related to the heat pipe. Tran. Soc. Mech. Engrs. 1989, 55(2): 392-401
    
    [33] Vasiliev, Leonard L. Heat pipes in modern heat exchangers, Applied Thermal Engineering[J], 2005, 25(1): 1-19
    
    [34]Joudi, Khalid A, Witwit A M. Improvements of gravity assisted wickless heat pipes. Energy Conversion and Management, 2000, 41(18): 2041-2061
    
    [35] Shukla K N. Transient response of a gas-controlled heat pipe. AIAAJ. 1981, 19(8): 1063-1070
    
    [36] Akyurt, M, Lamfon N J, Najjar Y S, et al. Modeling of waste heat recovery by looped water-in-steel heat pipes. Int. J. Heat and Fluid Flow[J], 1995, 16(4): 263-271
    
    [37] Saunas D, Marto P. Analysis of an internally finned rotating heat pies. Numerical Heat Transfer[J], Part A, 1991, 19(3):225-235
    
    [38] Harley C, Faghri A. Two-dimensional rotating heat pipe analysis. ASME J. Heat Transfer[J], 1995, 117(1): 169-172
    [39]Tien C L.A simple analytical model for counter-current flow limiting phenomena with vapor condensation.Letters in Heat and Mass Transfer[J],1977,4(2):231-238
    [40]Hall M L,Doster J M.A sensitivity study of the effects of evaporation condensation accommodation coefficients on transient heat pipe startup from the frozen state.ASME J.Heat Transfer[J[,1990,33(2):465-481
    [41]翁锦萍.两相闭式热虹吸管传热特性的数值模拟[D].镇江:江苏理工大学热能工程系,2000,1-25
    [42]唐志伟.工业热管关键技术及蒸发段多相流的研究[D].北京:北京科技大学,2000,1-30
    [43]刘娣,汤广发,赵福云,等.热管热回收窗式空调器的设计及性能分析[J].建筑科学,2004,20(S1):177-181
    [44]刘娣,汤广发,赵福云,等.分离型热管充液率临界值确定新办法[C].全国暖通空调制冷学术年会文集.北京:中国建筑工业出版社,2004:357-364
    [45]汤广发,刘娣,赵福云,等.分离型热管充液率运行边界探讨[J].湖南大学学报,2005,32(1):63-68
    [46]JB/T10379-2002.换热器热工性能和流体阻力特性通用测定方法[S]
    [47]GB 16409-1996.板式换热器产品热工性能和流体阻力特性的测定[S]
    [48]杨世铭,陶文栓.传热学(第三版)[M].北京:高等教育出版社,1998:328
    [49]Ephraim M.Sparrow,John P.Abraham,Gerald L.Martin,and Jimmy C.Tong,Air to Air Energy Exchanger test facility for mass and energy transfer performance,ASHRAE Transactions:Symposia,C1-01-1-5:450-456
    [50]ANSI/ASHRAE 84-1991,Method of Testing Air to Air Heat Exchangers,the American National Standards Institute,January 23,1992
    [51]ANSI/ARI Standard 1060,Rating Air to Air Heat Exchangers for Energy Recovery Ventilation Equipment,AIR-Conditioning and Refrigeration Institute,2001
    [52]BS EN 305:1997,Heat exchangers-Definitions of performance of heat exchangers and the general test procedure for establishing performance of all heat exchangers,15 July 1997
    [53]CEN PRENV 308,Heat exchangers:Test procedure for establishing performance of heat recovery devices,December 1989
    [54]张子慧.热工测量与自动控制[M].中国建筑工业出版社.1996:83-88
    [55]钟珂.板翅式空气热交换器热回收效率的实验研究[J].暖通空调,2007,37(2):62-67
    [56]A.A.茹卡乌斯卡斯(苏).换热器内的对流传热[M].科学出版社.1986:57-59
    [57]魏立万,李苏,赵亮.换热器传热准则方程式线性回归[J].石油化工设备.2005,34(3)
    [58]章熙民,任泽霖,梅飞鸣.传热学[M].中国建筑上业出版社,第三版.1993:99-150
    [59]屠传经,王鹏举,洪荣华.重力热管式换热器及其在余热利用中的应用[M].杭州:浙江大学出版社,1989:1-2
    [60]冯晓强.中温热管空气换热器的模拟优化研究[D].武汉:武汉理工大学,2002:5-6
    [61]李英娜.应用于空调系统热管换热器的研究[D].上海:东华大学,2004:14
    [62]季阿敏,孟庆海。热管在空调节能中应用探讨[J].哈尔滨工业大学学报,2005,21(5):642-643
    [63]靳明聪,陈远国.热管及热管换热器[M].重庆:重庆大学出版社,1986:57-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700