脂肪因子VASPIN血清水平、表达调控及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     近年研究表明,脂肪组织不仅仅是一个能量储存器官,也是一个重要的内分泌器官,可分泌多种细胞因子,包括瘦素、抵抗素、脂联素、内脂素、肿瘤坏死因子、纤溶酶原激活物抑制因子和白介素-6等。新发现的脂肪因子正在不断被报道。脂肪因子的发现使得脂肪组织已由过去单纯作为能量储存的器官成为一个极其重要的内分泌系统。脂肪因子的表达或功能紊乱参与肥胖、胰岛素抵抗、糖尿病及动脉粥样硬化等多种代谢性疾病的发生发展过程。
     内脏脂肪聚集是腹型肥胖的重要特征。与皮下脂肪组织相比,内脏脂肪组织具有更活跃的内分泌功能,其分泌的脂肪因子直接影响胰岛素敏感性,损伤内皮细胞功能,参与炎症反应及纤溶活动,与胰岛素抵抗、2型糖尿病及心血管疾病密切相关。因此深入研究内脏脂肪因子的功能及调控有助于揭示肥胖及相关代谢异常的发生机制,为代谢性疾病的诊断和治疗提供新的靶点。
     腹腔脂肪型丝氨酸蛋白酶抑制剂(Vaspin)是新发现的一种内脏脂肪因子,由腹腔脂肪组织合成和分泌,属于丝氨酸蛋白酶抑制剂超家族,研究显示该蛋白具有增加胰岛素敏感性,调节脂代谢,参与体内炎症反应等多种生物学活性,是代谢综合征治疗的新靶点。尽管目前研究表明Vaspin水平变化可能是代谢紊乱性疾病病情变化的敏感指标,但研究结果仍存在争议,肥胖和2型糖尿病患者血清Vaspin水平变化及影响因素尚不清楚,其变化与糖尿病大血管并发症的发生发展的关系及脂肪细胞Vaspin表达调控的分子机制有待于进一步研究。因此本课题主要研究血清Vaspin水平与2型糖尿病及其并发症的关系,并初步探讨脂肪细胞Vaspin表达调控的影响因素及其潜在生理功能,从而为肥胖及相关代谢性疾病提供新的分子机制,为代谢综合征的治疗干预奠定理论基础。
     第一部分
     血清VASPIN水平与2型糖尿病患者颈动脉粥样硬化的关系研究
     目的:应用ELISA方法检测2型糖尿病(T2DM)患者血清vaspin水平,探讨:(1)血清vaspin水平与2型糖尿病合并早期颈动脉粥样硬化的关系。(2)血清vaspin水平与空腹血糖(FPG)、餐后2h血糖(2HPG)、糖化血红蛋白(HbAlc)血脂及胰岛素抵抗等代谢因素的关系。
     方法:
     1.病例选择选择2007年1月至2009年8月3日自愿参加山东大学齐鲁医院内分泌科“2型糖尿病大血管并发症干预措施与控制模式研究”项目的2型糖尿病患者61例,根据有无颈动脉斑块分为糖尿病非斑块组(男性15例,女性13例)和糖尿病合并斑块组(男性18例,女性15例),另外选择年龄、性别相匹配的健康查体者为对照组(男性15例,女性11例)。
     2.标本留取所有研究对象均进行人体测量,体格检查及颈动脉超声检查。空腹12h后次晨抽取抗凝血3ml用于HbAlc等测定,同时抽取自凝血5ml,分离血清用于生化指标及vaspin水平的测定。
     3.血清vaspin水平的测定采用ELISA方法测定血清vaspin水平。
     结果:
     校正年龄、性别后,T2DM非斑块组的血清vaspin水平显著高于对照组(0.65±0.24vs 0.46±0.12 ng/ml, p< 0.01),而T2DM斑块组血清vaspin水平低于非斑块组(0.52±0.23 vs 0.65±0.24 ng/ml, p<0.05)。在对所有入选者进行的简单相关分析中,调整年龄、性别及体质指数(BMI)后偏相关分析,血清vaspin与腰围(WC)呈正相关(r=0.269,p=0.041),与胰岛素抵抗指数(HOMA-IR)负相关(r=-0.262,p=0.047)。糖尿病患者的相关分析表明,vaspin水平与WC正相关(r=0.371,p=0.003),与HOMA-IR和低密度脂蛋白(LDL)负相关(r=-0.272,p=0.034;r=-0.254,p=0.048)。以糖尿病组为整体,行Logistic回归分析,结果显示收缩压(SBP)和Vaspin水平影响糖尿病合并颈动脉硬化的发生,提示血清Vaspin水平下降可能是2型糖尿病动脉粥样硬化早期发生的标志物。
     结论:血清vaspin水平可能参与胰岛素抵抗和糖尿病的发生,在以胰岛素抵抗为特征的代谢综合征的发病中发挥重要作用。同时血清Vaspin水平下降可能是2型糖尿病动脉粥样硬化早期发生的标志物,尽早检测血清Vaspin水平,可以预测糖尿病动脉粥样硬化等大血管并发症的发生与发展。
     第二部分
     血清VASPIN水平与2型糖尿病视网膜病变的关系研究
     目的:应用ELISA方法检测2型糖尿病患者血清vaspin水平,探讨:(1)血清vaspin水平与2型糖尿病视网膜病变及其严重程度的关系。(2)血清vaspin水平与年龄、病程、FPG.2HPG.HbAlc、血脂、尿白蛋白排泄率(UAER)及其它脂肪因子的关系。
     方法:
     1.病例选择选择2009年2月至2009年6月间山东大学齐鲁医院内分泌科门诊和住院的2型糖尿病患者94例,根据有无视网膜病变及严重程度,分为无视网膜病变组(40例)、单纯型糖尿病视网膜病变组(38例)和增殖型糖尿病视网膜病变组(16例)。
     2.标本留取所有对象均进行人体测量及体格检查。所有个体空腹12h后次晨抽静脉血,进行生化指标的测定。采取静脉血,分离血清后-80℃保存,集中测定血清vaspin和视黄醇结合蛋白4(RBP4)水平。
     3.血清vaspin和RBP4水平的测定采用ELISA方法测定血清vaspin和RBP4水平。
     结果:
     在糖尿病患者中,调整年龄和病程后,单纯性视网膜病变的患者vaspin血清水平显著低于无视网膜病变患者(0.45±0.13 versus 0.53±0.22 ng/ml,p=0.023),有增殖性视网膜病变的患者vaspin血清水平较无视网膜病变患者更低(0.36±0.06versus 0.53±0.22 ng/ml,p=0.001),增殖性视网膜病变患者vaspin血清水平低于单纯性视网膜患者,但无显著性。简单相关分析示血清vaspin与年龄、病程、UAER及RBP4呈负相关(r=-0.259,p=0.012;r=-0.277,p=0.007;r=-0.322, p=0.002;r=-0.234,p=0.023).偏相关分析显示控制年龄和BMI后,vaspin与UAER的相关性仍然存在(r=-0.281,p=0.007).多元逐步回归分析表明年龄、UAER是血清vaspin水平的独立影响因素。
     结论:2型糖尿病患者血清vaspin水平与年龄、UAER呈明显相关。血清vaspin水平在2型糖尿病视网膜病变,尤其是合并增殖性视网膜病变者中显著降低,提示血清vaspin水平与糖尿病视网膜病变有关,可能影响糖尿病微血管病变的发生发展。
     第三部分3T3-L1脂肪细胞VASPIN表达的影响因素研究
     目的:
     Vaspin作为一种新发现的具有胰岛素增敏作用的脂肪因子,主要由内脏脂肪组织分泌。但是参与调节vaspin表达的因素尚未完全清楚。本研究旨在探讨3T3-L1脂肪细胞分化过程中vaspin表达的变化,并研究在不同代谢因素下vaspin表达的调节机制及影响因素。
     方法:
     1.体外培养3T3-L1脂肪前体细胞并诱导分化为成熟脂肪细胞,分别于85%融合(-4d)、融合(-2d)、融合后2天(0d)、5天(3d)、8天(6d)、10天(8d)提取细胞总RNA。用RT-PCR方法检测vaspin mRNA的表达,ELISA检测细胞上清液vaspin水平。
     2.分别以不同浓度地塞米松(1,100μmol/L)、胰岛素(10,100nmol/L)、葡萄糖(10,25mmol/L)、棕榈酸(100,1000μmol/L)、TNF-a(10,20ng/ml)、吡格列酮(10,100μmol/L)、非诺贝特(10,100μmol/L)和硫辛酸(50,100,500,1000μmol/L)干预分化成熟的3T3-L1细胞24h,留取细胞上清液,提取细胞总RNA,RT-PCR检测vaspin mRNA的表达水平。
     3.以对照组、TNF-α组(20ng/ml TNF-α), TNF-α(20ng/ml)+吡格列酮(10μmol/L),和TNF-a(20ng/ml)+吡格列酮(100μmol/L),分别培养48h,留取细胞上清液,收集脂肪细胞,提取总RNA,用RT-PCR检测vaspin mRNA的表达;以对照组、TNF-α组(20ng/ml)、TNF-α(20ng/ml)+非诺贝特(10μmol/L)、和TNF-a(20ng/ml)+非诺贝特(100μmol/L),分别培养48h,留取细胞上清液,收集脂肪细胞,提取总RNA并测定vaspin mRNA的表达;以对照组、TNF-α组(20ng/ml)、TNF-α(20ng/ml)+硫辛酸(100μmol/L)、和TNF-α(20ng/ml)+硫辛酸(500μmol/L),分别培养48h,留取细胞上清液,收集脂肪细胞,提取总RNA并测定vaspin mRNA的表达。
     结果:
     在3T3-L1脂肪前体细胞分化过程中,vaspin mRNA表达明显增加并呈时间依赖性。在80%融合到融合后两天,vaspin表达增加到起始的1.7倍。至分化后第8天增加至起始6倍。地塞米松(100μM,1.6倍),高糖(25mM,6.6倍),吡格列酮(100μM,1.6倍)、非诺贝特(100μM,1.5倍)和硫辛酸(500μM,1.6倍)能显著诱导3T3-L1脂肪细胞中vaspin mRNA的表达。而其它处理因素10-100nM胰岛素,1mM棕榈酸,10-20 ng/ml TNF-a则对其1mRNA表达有下调作用,较基线值分别下降(37-53)%,48%和(15-40)%。同时吡格列酮和硫辛酸可逆转TNF-a所致的vaspin mRNA表达的降低。
     同时在3T3-L1脂肪细胞诱导分化中,vaspin蛋白分泌亦逐渐增加,并呈时间依赖性。开始后的前5天vaspin蛋白水平增加迅速,6天以后增加明显变慢。地塞米松、葡萄糖显著增加vaspin的分泌,胰岛素、TNF-a明显降低vaspin的分泌,而棕榈酸无明显影响。吡格列酮和硫辛酸明显改善TNF-a所致的vaspin分泌的降低。
     结论:在脂肪细胞分化过程中vaspin表达水平与细胞分化程度明显相关,可能参与脂肪前体细胞向成熟脂肪细胞的分化。同时成熟脂肪细胞vaspin的分泌受多种激素和代谢因素的调节,可能与代谢紊乱的严重程度有关。但其调控的确切机制有待进一步阐明。
Background:
     Recently, increasing evidence have suggested that adipose tissue is not only an energy storage organ, but also a key endocrine organ which could secrete various adipokines such as leptin, resistin, adiponectin, visfatin, tumor necrosis factor, plasminogen activator inhibitor, and interleukin-6,etc. Epidemiological and animal studies have shown that visceral obesity is associated with increased prevalence of insulin resistance, type 2 diabetes and cardiovascular diseases. Adipokines secreted by visceral fat tissues play an important role in the occurrence and development of insulin resistance, type 2 diabetes and metabolism syndrome. Vaspin, a newly identified adipokine, is secreted by visceral adipose tissue with predominantly insulin-sensitizing effects,However, its physiological role is largely unknown. Although current studies have shown plasma vaspin level has direct effects on obesity, the result is still in debate. In the present study, we investigated 1) the relationship between serum vaspin level and macrovascular and retinopathy complications in diabetic patients,2) the regulatory mechanism of vaspin expression,3) the potential physiological function of vaspin. We first examined whether serum vaspin levels are associated with the presence of carotid plaque in early stage of type 2 diabetes. Next, we analysed the relationship between serum vaspin levels and diabetic retinopathy. Finally, we explored in vitro the effects of high glucose, insulin, dexamethasone, palmitate, TNF-a, pioglitazone, fenofibrate and lipoic acid on vaspin expression in 3T3-L1 cell and investigated the potential molecular mechanism involved.
     PartⅠ
     SERUM VASPIN LEVELS IN TYPE 2 DIABETIC PATIENTS WITH CAROTID PLAQUE
     Objective:1) To explore whether serum vaspin levels are associated with the presence of carotid plaque in early stage of type 2 diabetes; 2) To explore the association between serum vaspin levels and FPG,2HPG, HbAlc, serum lipid and insulin resistance.
     Materials and Methods:Sixty-one type 2 diabetic patients within 1 years's diabetes duration were divided into two groups by the presence or absence of carotid plaque. Twenty-six age-matched apparently healthy controls were recruited as well. Serum vaspin was measured by enzyme-linked immunosorbent assay.
     Results:After controlling age and gender, fasting serum vaspin levels were significantly higher in the diabetic patients without carotid plaque than controls (0.65±0.24 vs.0.46±0.12 ng/ml, p<0.01). However, circulating vaspin level was much lower in the diabetic subjects with carotid plaque than those without (0.52±0.23 vs. 0.65±0.24 ng/ml, p<0.05).Partial correlations demonstrated that vaspin level was positively correlated with waist circumference (WC) (r=0.269, p=0.041), negatively correlated with HOMA-IR(r=-0.262, p=0.047) in all subjects after controlling age, gender and BMI. Logistic regression analysis showed that SBP and fasting serum vaspin levels were significantly associated with the presence of carotid plaque in type 2 diabetes.
     Conclusion:Serum vaspin levels were significantly elevated in type 2 diabetic patients while its level was negatively associated with the presence of carotid plaque in type 2 diabetic patients,indicating that vaspin might play a compensative role in the early course of diabetes while exert protective effects on atherosclerosis in early stage of diabetes.
     Part II
     VASPIN SERUM CONCENTRATIONS IN TYPE 2 DIABETIC PATIENTS WITH DIABETIC RETINOPATHY
     Objective:1) To explore the relationship between serum vaspin level and type 2 diabetic retinopathy and its severity.2) To explore the association between vaspin level and age, duration, FPG,2HPG, HbAlc, serum lipid, urine albumin excretion rate (UAER) and other adipokines
     Materials and Methods:94 patients with type 2 diabetes were recruited through in-patients or clinic service from February to June 2009 at Qilu Hospital of Shandong University, Jinan, China. Based on ophthalmologic examination,94 patients with type 2 diabetes were divided into three subgroups:group 1 without diabetic retinopathy (NDR) (n=40), group 2 with simple diabetic retinopathy (SDR) (n=38) and group 3 with proliferative diabetic retinopathy (PDR) (n=16). Serum vaspin was determined by enzyme-linked immunosorbent assay.
     Results:In the diabetic patients, subjects with simple diabetic retinopathy had significantly lower vaspin levels than subjects without diabetic retinopathy (0.45+ 0.13 versus 0.53+0.22 ng/ml, p= 0.023).Moreover, subjects with proliferative diabetic retinopathy had much lower vaspin levels as compared with subjects with simple diabetic retinopathy. Age, disease duration, UAER and retinol binding protein-4 (RBP4) were negatively correlated with vaspin level in correlation analysis (r=-0.259, p= 0.012; r=-0.277, p= 0.007; r=-0.322, p=0.002; r=-0.234, p=0.023 respectively). Partial correlations demonstrated that UAER was still negatively correlated with vaspin levels (r=-0.281, p= 0.007) after controlling age and BMI, A stepwise linear multiple regression model revealed that age and UAER were significant determinants of serum vaspin levels.
     Conclusion:Tanken together, these results suggest that the reduction of vaspin level may be involved in the process of diabetic retinopathy and thereby provides a novel biomarker for evaluating its severity in diabetic patients.
     PartⅢ
     STUDY ON THE REGULATORY MECHANISM OF VASPIN EXPRESSION IN 3T3-L1 CELL
     Objective:To explore the effect of metabolic factors on vaspin expression in 3T3-L1 cell and the regulatory mechanism involved.
     Methods:
     1.3T3-L1 preadipocytes were cultured in DMEM medium supplementd with 10% FBS and differentiated into adipocytes. The total RNA was extracted in the preconfluent, confluent and 2-day,5-day,8-day,10-day confluent cells respectively. The expression of vaspin mRNA was determined by quantitative real-time polymerase chain reaction and vaspin level in cell supernatant was determined by ELISA.
     2. Mature 3T3-L1 adipocytes was treated with indicated concentrations of dexamethasone, insulin, glucose, palmitate, TNF-a, pioglitazone, fenofibrate and lipoic acid for 24 or 48 h.The cells were starved for 6 h in DMEM with 0.5% bovine serum albumin (BSA) before the study.
     3. TNF-a was added to the cell culture medium alone or with the indicated "concentrations of pioglitazone, fenofibrate or lipoic acid respectively for 48 h. During the treatment period, fresh TNF-a, pioglitazone, fenofibrate or lipoic acid was added every 24 h.
     Results:A marked increase in vaspin expression was observed during 3T3-L1 differentiation, with a 1.7-fold increase on 2-day confluent as compared with preconfluent. A further 3.8-fold increase was induced from day 0 to day 8 of differentiation (overall six fold). Overnight incubation with dexamethasone increased vaspin expression in adipocytes (100μM-1.6 fold). High glucose increased vaspin secretion by 6.6-fold at 25 mM, pioglitazone by 1.6-fold at 100μM, fenofibrate by 1.5-fold at 100μM, and lipoic acid by 1.6 fold at 500μM. While 10-100 nM insulin, 1mM palmitate and 10-20 ng/ml TNF-a decreased vaspin expression (.37-53%,48%, 15-40% respectively). Futhermore, pioglitazone and lipoic acid reversed the reduction of vaspin by TNF-α.
     Vaspin protein level in cell supernatant increased gradually during differentiation, rapidly in beginning 5 days after differentiation and slowly after 6 days. Dexamethasone and glucose promoted vaspin secretion in mature adipocytes while insulin and TNF-a inhibited vaspin level. Pioglitazone, fenofibrate and lipoic acid reversed the reduction of vaspin induced by TNF-a.
     Conclusion:Taken together, vaspin levels are associated with the extent of the differentiation and its level is regulated by multiple hormones and metabolic factors which could be associated with severity of metabolic disorders. The underlying mechanism of vaspin action remains to be elucidated futher.
引文
1. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89(6):2548-56.
    2. Hundal RS, Petersen KF, Mayerson AB, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 2002; 109(10):1321-6.
    3. Tataranni PA, Ortega E. A burning question:does an adipokine-induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes 2005; 54(4):917-27.
    4. Goldstein BJ, Scalia R. Adiponectin:A novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 2004; 89(6):2563-8.
    5. Lyon CJ, Law RE, Hsueh WA. Minireview:adiposity, inflammation, and atherogenesis. Endocrinology 2003; 144(6):2195-200.
    6. Rajala MW, Scherer PE. Minireview:The adipocyte--at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 2003; 144(9): 3765-73.
    7. Frayn KN. Visceral fat and insulin resistance--causative or correlative? Br J Nutr 2000; 83 Suppl 1:S71-7.
    8. Wajchenberg BL. Subcutaneous and visceral adipose tissue:their relation to the metabolic syndrome. Endocr Rev 2000; 21(6):697-738.
    9. Lefebvre AM, Laville M, Vega N, et al. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998;47(1):98-103.
    10. Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor:a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci U S A 2005; 102(30):10610-5.
    11. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med 2010; 362(12):1090-101.
    12. Col well JA. Intensive insulin therapy in type Ⅱ diabetes:rationale and collaborative clinical trial results. Diabetes 1996; 45 Suppl 3:S87-90.
    13. Qasim A, Mehta NN, Tadesse MG, et al. Adipokines, insulin resistance, and coronary artery calcification. J Am Coll Cardiol 2008; 52(3):231-6.
    14. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin N Am 2004; 88(4):787-835.
    15. Wang CC, Goalstone ML, Draznin B. Molecular mechanisms of insulin resistance that impact cardiovascular biology. Diabetes 2004; 53(11):2735-40.
    16. Healy B. Endothelial cell dysfunction:an emerging endocrinopathy linked to coronary disease. J Am Coll Cardiol 1990; 16(2):357-8.
    17. Nishio Y, Kashiwagi A. Molecular mechanisms of endothelial dysfunction in diabetes mellitus. Nippon Rinsho 2001; 59(12):2451-9.
    18. Picard F, Boivin A, Lalonde J, et al. Resistance of adipose tissue lipoprotein lipase to insulin action in rats fed an obesity-promoting diet. Am J Physiol Endocrinol Metab 2002; 282(2):E412-8.
    19. Breuer HW. Hypertriglyceridemia:a review of clinical relevance and treatment options:focus on cerivastatin. Curr Med Res Opin 2001; 17(1):60-73.
    20. Hansson G. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352(16):1685-95.
    21. Ray A, Huisman MV, Tamsma JT, et al. The role of inflammation on atherosclerosis, intermediate and clinical cardiovascular endpoints in type 2 diabetes mellitus. Eur J Intern Med 2009; 20(3):253-60.
    22. Brownlee M. The pathobiology of diabetic complications:a unifying mechanism. Diabetes 2005; 54(6):1615-25.
    23. Bjorntorp P. Metabolic implications of body fat distribution. Diabetes Care 1991; 14(12):1132-43.
    24. Wajchenberg BL. Subcutaneous and visceral adipose tissue:their relation to the metabolic syndrome. Endocr Rev 2000; 21(6):697-738.
    25. Jia W, Wu H, Bao Y, et al. Association of serum retinol-binding protein 4 and visceral adiposity in Chinese subjects with and without type 2 diabetes. J Clin Endocrinol Metab 2007; 92(8):3224-9.
    26. Park HY, Kwon HM, Lim HJ, et al. Potential role of leptin in angiogenesis:leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med 2001; 33(2):95-102.
    27. Shin HJ, Oh J, Kang SM, et al. Leptin induces hypertrophy via p38 mitogen-activated protein kinase in rat vascular smooth muscle cells. Biochem Biophys Res Commun 2005; 329(1):18-24.
    28. Bouloumie A, Marumo T, Lafontan M, et al. Leptin induces oxidative stress in human endothelial cells. FASEB J 1999; 13(10):1231-8.
    29. Nakata M, Yada T, Soejima N, et al. Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes 1999; 48(2):426-9.
    30.刘岩,邹大进,李慧,等.低脂联素血症是冠状动脉粥样硬化严重程度的重要标志.中华内分泌代谢杂志2005;21(1):5-8.
    31. Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules:adipocyte-derived plasma protein adiponectin. Circulation 1999; 100(25):2473-6.
    32. Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50(9):2094-9.
    33. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257(1): 79-83.
    34. AritaY, Kihara S, Ouchi N, et al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation 2002; 105(24):2893-8.
    35. Yu JG, Javorschi S, Hevener AL, et al. The effect of thiazolidinedione on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 2002; 51 (10):2968-74.
    36. Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001; 98(4):2005-10.
    37. Goldstein BJ, Scalia R. Adiponectin:A novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 2004; 89(6):2563-8.
    38. Kumada M, Kihara S, Ouchi N, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 2004; 109(17):2046-9.
    39. Pang SS, Le YY. Role of resistin in inflammation and inflammation-related diseases. Cell Mol Immunol 2006; 3(1):29-34.
    40. Reilly MP, Lehrke M, Wolfe ML, et al. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005; 111(7):932-9.
    41. Pischon T, BambergerCM, Kratzsch J, et al. Association of plasma resistin levels with coronary heart disease in women. Obes Res 2005; 13(10):1764-71.
    42. Wermas S, Li SH, Wang CH, et al. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 2003; 108(6): 736-40.
    43. Burnett MS, Lee CW, Kinnaird TD, et al. The potential role of resistin in atherogenesis. Atherosclerosis 2005; 182(2):241-8.
    44. Verma S, Li SH, Wang CH, et al. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 2003; 108(6):736-40.
    45. Kawanami D, Maemura K, Takeda N, et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells:a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun 2004; 314(2):415-9.
    46. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin:a protein secreted by visceral fat that mimics the effects of insulin. Science 2005; 307(5708):426-430.
    47. van der Veer E, Nong Z, O'Neil C, et al. Pre-B-cell colony-enhancing factor regulates NAD+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res 2005; 97(1):25-34.
    48. Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis:possible role in inflammation and plaque destabilization. Circulation 2007; 115(8):972-80.
    49. Ni M, Zhang XH, Jiang SL, Zhang Y. Homocysteinemia as an independent risk factor in the Chinese population at a high risk of coronary artery disease. Am J Cardiol2007;100(3):455-8.
    50. Fiotti N, Altamura N, Fisicaro M, et al. MMP-9 microsatellite polymorphism and susceptibility to carotid arteries atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26(6):1330-6.
    51. Chambless LE, Folsom AR, Davis V, et al. Risk factors for progression of common carotid atherosclerosis:the Atherosclerosis Risk in Communities Study, 1987-1998. Am J Epidemiol 2002; 155(1):38-47.
    52. Crouse JR, CravenTE, Hagaman AP, et al. Association of coronary disease segment-specific intima-media thickening of the extracranial carotid artery. Circulation 1995; 92(5):1141-7.
    53. Geroulakos G, O'Gorman DJ, Kalodiki E, et al. Carotid intima-media thickness as a marker of the presence of severe tomatic coronary artery disease. Eur Heart J 1994; 15(6):781-5.
    54. Adams MR, Nakagomi A, Keech A, et al. Carotid intima-media thickness is only weakly correlated with the extent and severity of coronary artery disease. Circulation 1995; 92(8):2127-34.
    55. Ebrahim S, Papacosta O, Whincup P, et al. Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women:the British Regional Heart Study. Stroke 1999; 30(4):841-50.
    56. Garber AJ. Vascular disease and lipids in diabetes. Med Clin North Am 1998; 82(4):931-48.
    57. Glasser SP, Arnett DK, McVeigh GE, et al. Vascular compliance and cardiovascular disease:a risk factor or a marker? Am J Hypertens 1997,10(10 Pt 1):1175-89.
    58. Lichtenstein O, Safar ME, Mathieu E, et al. Static and dynamic mechanical properties of the carotid artery from normotensive and hypertensive rats. Hypertension 1998; 32(2):346-50.
    59. Kloting N, Berndt J, Kralisch S, e al. Vaspin gene expression in human adipose tissue:association with obesity and type 2 diabetes. Biochem Biophys Res Commun 2006; 339(1):430-6.
    60. Youn BS, Kloting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes 2008; 57(2):372-7.
    61. Seeger J, Ziegelmeier M, Bachmann A, et al. Serum levels of the adipokine vaspin in relation to metabolic and renal parameters. J Clin Endocrinol Metab 2008; 93(1):247-51.
    62. Aust G, Richter O, Rohm S, et al. Vaspin serum concentrations in patients with carotid stenosis. Atherosclerosis 2009; 204(1):262-6.
    1. Chung HS, Harris A, Halter PJ, et al. Regional differences in retinal vascular reactivity. Invest Ophthalmol Vis Sci 1999; 40(10):2448-53.
    2. Cheung N, Wong TY. Diabetic retinopathy and systemic vascular complications. Prog Retin Eye Res 2008; 27(2):161-76.
    3. Moreno PR, Fuster V. New aspects in the pathogenesis of diabetic atherothrombosis. J Am Coll Cardiol 2004; 44(12):2293-300.
    4. Shah CA. Diabetic retinopathy:A comprehensive review. Indian J Med Sci 2008; 62(12):500-519.
    5. Malone JI, Morrison AD, Pavan PR, et al. Prevalence and significance of retinopathy in subjects with type 1 diabetes of less than 5 years'duration screened for the diabetes control and complications trial. Diabetes Care 2001; 24(3):522-6.
    6. Falkenberg M, Finnstrom K. Associations with retinopathy in type 2 diabetes:a population-based study in a Swedish rural area. Diabet Med 1994; 11(9):843-9.
    7. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977-86.
    8. UK Prospective Diabetes Study (UKPDS) Group. Intensive Blood-glucose control with sulphonyl ureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352 (9131):837-53.
    9. Nakagami T, Kawahara R, Hori S, et al. Glycemic control and prevention of retinopathy in Japanese NIDDM patients. A 10-year follow-up study. Diabetes Care 1997; 20(4):621-2.
    10. Shiraiwa T, Kaneto H, Miyatsuka T, et al. Postprandial hyperglycemia is a better predictor of the progression of diabetic retinopathy than HbAlc in Japanese type 2 diabetic patients. Diabetes Care 2005; 28(11):2806-7.
    11. Chew EY, Klein ML, Ferris FL, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study.(ETDRS) Report 22. Arch Ophthalmol 1996;114(9):1079-84.
    12. Cunha-Vaz J.Lowering the risk of visual impairment and blindness. Diabet Med 1998;15Suppl4:S47-50.
    13. Singleton JR, Smith AG, Russell JW, et al. Microvascular complications of impaired glucose tolerance. Diabetes 2003; 52(12):2867-73.
    14. Herman WH, Aubert RE, Engelgau MM, et al. Diabetes mellitus in Egypt: glycaemic control and microvascular and neuropathic complications. Diabet Med 1998;15(12):1045-51.
    15. McKay R, McCarty CA, Taylor HR. Diabetic retinopathy in Victoria, Australia: the Visual Impairment Project. Br J Ophthalmol 2000; 84(8):865-70.
    16. Klein R, Klein BE, Moss SE, et al. Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA 1988; 260(19):2864-71.
    17. Chew EY, Klein ML, Ferris FL 3rd, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol 1996; 114(9):1079-84.
    18. de Fine Olivarius N, Nielsen NV, Andreasen AH. Diabetic retinopathy in newly diagnosed middle-aged and elderly diabetic patients. Prevalence and interrelationship with microalbuminuria and triglycerides. Graefes Arch Clin Exp Ophthalmol 2001; 239(9):664-72.
    19. Rema M, Srivastava BK, Anitha B, et al. Association of serum lipids with diabetic retinopathy in urban South Indians--the Chennai Urban Rural Epidemiology Study (CURES) Eye Study-2. Diabet Med 2006; 23(9):1029-36.
    20. Klein R, Marino EK, Kuller LH, et al. The relation of atherosclerotic cardiovascular disease to retinopathy in people with diabetes in the Cardiovascular Health Study. Br J Ophthalmol 2002; 86(1):84-90.
    21. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes:UKPDS 38. Br Med J 1998; 317(7160):703-13.
    22. Pinto CC, Silva KC, Biswas SK, et al. Arterial hypertension exacerbates oxidative
    stress in early diabetic retinopathy. Free Radic Res 2007; 41 (10):1151-8.
    23. Silva KC, Pinto CC, Biswas SK, et al. Hypertension increases retinal inflammation in experimental diabetes:a possible mechanism for aggravation of diabetic retinopathy by hypertension. Curr Eye Res 2007; 32(6):533-41.
    24. Pfeifer MA, Schumer MP, Gelber DA. Aldose reductase inhibitors:the end of an era or the need for different trial designs? Diabetes 1997; 46 Suppl 2:S82-9.
    25. Kuroki M, Kawakami M. Diabetic retinopathy--the mechanisms of the ocular neovascularization and the development of anti-angiogenic drugs. Nippon Rinsho 1999; 57(3):584-9.
    26. Ozaki H, Seo MS, Ozaki K, et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol 2000; 156 (2):697-707.
    27. Clermont AC, Aiello LP, Mori F, et al. Vascular endothelial growth factor and severity of nonproliferative diabetic retinopathy mediate retinal hemodynamics in vivo:a potential role for vascular endothelial growth factor in the progression of nonproliferative diabetic retinopathy. Am J Ophthalmol 1997; 124(4):433-46.
    28. Tolentino MJ, Miller JW, Gragoudas ES, et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 1996; 103 (11):1820-8.
    29.黄敬泽,张珍,王健.外周血循环内皮细胞,血浆内皮素与糖尿病视网膜病变的关系.中华眼底病杂志2000;16(3):1661-81.
    30.庞东渤,符丽娟,刘学政.糖尿病视网膜病变发病机制及治疗研究进展.眼视光学杂志2002;4(3):188.
    31.隋国良,葛在香,董砚虎.糖尿病视网膜病变的发病机制及其防治研究进展.国外医学内科学分册2000;27(3):1191-221.
    32. Brownlee M. Lilly Lecture 1993. Glycation and diabetic complications. Diabetes 1994;43(6):836-41.
    33. Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. Ⅶ. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes 2001; 50(8):1938-42.
    34. Kern TS, Tang J, Mizutani M, et al. Response of capillary cell death to aminoguanidine predicts the development of retinopathy:comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci 2000; 41(12):3972-8.
    35. Podesta F, Romeo G, Liu WH, et al. Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. Am J Pathol 2000; 156(3):1025-32.
    36. Gardner TW, Antonetti DA, Barber AJ, et al. New insights into the pathophysiology of diabetic retinopathy:potential cell-specific therapeutic targets. Diabetes Technol Ther 2000; 2(4):601-8.
    37. Yuuki T, Kanda T, Kimura Y, et al. Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy. J Diabetes Complications 2001; 15(5):257-9.
    38. Brownlee M. The pathobiology of diabetic complications:a unifying mechanism. Diabetes 2005; 54(6):1615-25.
    39. Ozturk BT, Bozkurt B, Kerimoglu H, et al. Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness. Mol Vis 2009; 15:1906-14.
    40. Hernandez C, Segura RM, Fonollosa A, et al. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet Med 2005; 22(6):719-22.
    41. Mysliwiec M, Balcerska A, Zorena K, et al. The role of vascular endothelial growth factor, tumor necrosis factor alpha and interleukin-6 in pathogenesis of diabetic retinopathy. Diabetes Res Clin Pract 2008; 79(1):141-6.
    42. Demircan N, Safran BG, Soylu M, et al. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (Lond) 2006; 20(12):1366-9.
    43. Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436 (7049): 356-62.
    44. Graham TE, Yang Q, Bluher M, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 2006; 354(24):
    2552-63.
    45. Jia W, Wu H, Bao Y, et al. Association of serum retinol-binding protein 4 and visceral adiposity in Chinese subjects with and without type 2 diabetes. J Clin Endocrinol Metab 2007; 92(8):3224-9.
    46. Kloting N, Graham TE, Berndt J, et al. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab 2007; 6(1):79-87.
    47. Solini A, Santini E, Madec S, et al. Retinol-binding protein-4 in women with untreated essential hypertension. Am J Hypertens 2009; 22(9):1001-6.
    48. Takebayashi K, Suetsugu M, Wakabayashi S, et al. Retinol binding protein-4 levels and clinical features of type 2 diabetes patients. J Clin Endocrinol Metab 2007; 92(7):2712-9.
    49. Raila J, Henze A, Spranger J, et al. Microalbuminuria is a major determinant of elevated plasma retinol-binding protein 4 in type 2 diabetic patients. Kidney Int 2007;72(4):505-11.
    50. Murata M, Saito T, Otani T, et al. An increase in serum retinol-binding protein 4 in the type 2 diabetic subjects with nephropathy. Endocr J 2009; 56(2):287-94.
    51. Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor:a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci U S A 2005; 102(30):10610-5.
    52. Kloting N, Berndt J, Kralisch S, e al. Vaspin gene expression in human adipose tissue:association with obesity and type 2 diabetes. Biochem Biophys Res Commun 2006; 339(1):430-6.
    53. Youn BS, Kloting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes 2008; 57(2):372-7.
    54. Handisurya A, Riedl M, Vila G, et al. Serum Vaspin Concentrations in Relation to Insulin Sensitivity Following RYGB-Induced Weight Loss. Obes Surg 2009 Jun 9. (DOI 10.1007/sl1695-009-9882-y)
    55. Aust G, Richter O, Rohm S, et al. Vaspin serum concentrations in patients with carotid stenosis. Atherosclerosis 2009; 204(1):262-6.
    1. Nelson BA, Robinson KA, Buse MG. High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes. Diabetes 2000; 49(6): 981-91.
    2. MacLaren R, Cui W, Cianflone K. Visfatin expression is hormonally regulated by metabolic and sex hormones in 3T3-L1 pre-adipocytes and adipocytes. Diabetes Obes Metab 2007; 9(4):490-7.
    3. Rudich A, Tirosh A, Potashnik R, et al. Lipoic acid protects against oxidative stress induced impairment in insulin stimulation of protein kinase B and glucose transport in 3T3-L1 adipocytes. Diabetologia 1999; 42(8):949-57.
    4. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 2001; 25:402-8.
    5. Gettins PG. Serpin structure, mechanism, and function. Chem Rev 2002; 102(12): 4751-804.
    6. Silverman GA, Bird PI, Carrell RW, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001; 276(36):33293-6.
    7. Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor:a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci U S A 2005; 102(30):10610-5.
    8. Green H, Kehinde O. An established preadipose cell line and its differentiation in culture. Ⅱ. Factors affecting the adipose conversion. Cell 1975; 5(1):19-27.
    9. Cianflone K, Xia Z, Chen LY. Critical review of acylationstimulating protein physiology in humans and rodents. Biochim Biophys Acta 2003; 1609(2):127-43.
    10. Maslowska M, Wang HW, Cianflone K. Novel roles for acylation stimulating protein/C3adesArg:a review of recent in vitro and in vivo evidence. Vitam Horm 2005; 70:309-32.
    11. Lane MD, Reed BC, Clements PR. Insulin receptor synthesis and turnover in differentiating 3T3-L1 preadipocytes. Prog Clin Biol Res 1981; 66:523-42.
    12. Frayn KN, Karpe F, Fielding BA, et al. Integrative physiology of human adipose tissue. Int J Obes Relat Metab Disord 2003; 27(8):875-88.
    13. Bjorntorp P. Hormonal control of regional fat distribution. Hum Reprod 1997; 12(Suppl.1):21-5.
    14. Ong JM, Simsolo RB, Saffari B, Kern PA. The regulation of lipoprotein lipase gene expression by dexamethasone in isolated rat adipocytes, Endocrinology 1992; 130 (4):2310-6.
    15. Sun J, Xu Y, Dai Z, Sun Y. Intermittent high glucose stimulate MCP-1, IL-18, and PAI-1, but inhibit adiponectin expression and secretion in adipocytes dependent of ROS. Cell Biochem Biophys 2009; 55(3):173-80.
    16. Nelson BA, Robinson KA, Buse MG. High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes. Diabetes 2000; 49(6):981-91.
    17. Van Epps-Fung M, Williford J, Wells A, Hardy RW. Fatty acid-induced insulin resistance in adipocytes. Endocrinology 1997; 138(10):4338-45.
    18. Nguyen MT, Satoh H, Favelyukis S, et al. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 2005; 280(42):35361-71.
    19. Sethi JK, Hotamisligil GS. The role of TNF alpha in adipocyte metabolism. Semin Cell Dev Biol 1999; 10(1):19-29.
    20. Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett 2008; 582(1):117-31.
    21. Marcus SL, Miyata KS, Zhang B, et al. Diverse peroxisome proliferator-activated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression. Proc Natl Acad Sci U S A 1993; 90(12):5723-7.
    22. Zhang B, Marcus SL, Sajjadi FG, et al. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase. Proc Natl Acad Sci U S A 1992; 89(16):7541-5.
    23. Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999; 4(4):611-7.
    24. El-Jack AK, Hamm JK, Pilch PF, Farmer SR. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBPalpha. J Biol Chem 1999; 274(12):7946-51.
    25. Larsen PJ, Jensen PB, Sorensen RV, et al. Differential influences of peroxisome proliferator-activated receptors gamma and-alpha on food intake and energy homeostasis. Diabetes 2003; 52(9):2249-59.
    26. Wang Q, Dryden S, Frankish HM, et al. Increased feeding in fatty Zucker rats by the thiazolidinedione BRL 49653 (rosiglitazone) and the possible involvement of leptin and hypothalamic neuropeptide Y. Br J Pharmacol 1997; 122(7):1405-10.
    27. Hollenberg AN, Susulic VS, Madura JP, et al. Functional antagonism between CCAAT/Enhancer binding protein-alpha and peroxisome proliferator-activated receptor-gamma on the leptin promoter. J Biol Chem 1997; 272(8):5283-90.
    28. Boden G, Cheung P, Mozzoli M, Fried SK. Effect of thiazolidinediones on glucose and fatty acid metabolism in patients with type 2 diabetes. Metabolism 2003; 52(6):753-9.
    29. Shadid S, Jensen MD. Effects of pioglitazone versus diet and exercise on metabolic health and fat distribution in upper body obesity. Diabetes Care 2003; 26(11):3148-52.
    30. Iwata M, Haruta T, Usui I, et al. Pioglitazone. ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator--activated receptor-gamma. Diabetes 2001; 50(5):1083-92.
    31. McTernan PG, Harte AL, Anderson LA, et al. Insulin and rosiglitazone regulation of lipolysis and lipogenesis in human adipose tissue in vitro. Diabetes 2002; 51(5): 1493-8.
    32.Cabrero A, Alegret M, Sanchez RM, et al. Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Diabetes 2001; 50(8):1883-90.
    33. Guerre-Millo M, Gervois P, Raspe E, et al. Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem 2000; 275(22):16638-42.
    34. Jeong S, Yoon M. Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARalpha in high fat diet-induced obese mice. Exp Mol Med 2009; 41(6):397-405.
    35. Teruel T, Smith SA, Peterson J, Clapham JC. Synergistic activation of UCP-3 expression in cultured fetal rat brown adipocytes by PPARalpha and PPARgamma ligands. Biochem Biophys Res Commun 2000; 273(2):560-4.
    36. Zhao SP, Wu J. Fenofibrate reduces tumor necrosis factor-alpha serum concentration and adipocyte secretion of hypercholesterolemic rabbits. Clin Chim Acta 2004;347(1-2):145-50.
    37. Oki K, Koide J, Nakanishi S, et al. Fenofibrate increases high molecular weight adiponectin in subjects with hypertriglyceridemia. Endocr J 2007; 54(3):431-5.
    38. Okopien B, Haberka M, Madej A, et al. Extralipid effects of micronized fenofibrate in dyslipidemic patients. Pharmacol Rep 2006; 58(5):729-35.
    39. Savitha S, Tamilselvan J, Anusuyadevi M, Panneerselvam C. Oxidative stress on mitochondrial antioxidant defense system in the aging process:role of DL-alpha-lipoic acid and L-carnitine. Clin Chim Acta 2005; 355(1-2):173-80.
    40. Hultberg B, Andersson A, Isaksson A. Lipoic acid increases glutathione production and enhances the effect of mercury in human cell lines. Toxicology 2002; 175(1-3):103-10.
    41. Rudich A, Tirosh A, Potashnik R, Khamaisi M, Bashan N. Lipoic acid protects against oxidative stress induced impairment in insulin stimulation of protein kinase B and glucose transport in 3T3-L1 adipocytes. Diabetologia 1999; 42(8):949-57.
    42. Greene EL, Nelson BA, Robinson KA, Buse MG. alpha-Lipoic acid prevents the development of glucose-induced insulin resistance in 3T3-L1 adipocytes and accelerates the decline in immunoreactive insulin during cell incubation. Metabolism 2001; 50(9):1063-9.
    43. Kloting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue:association with obesity and type 2 diabetes. Biochem Biophys Res Commun 2006; 339(1):430-6.
    1. Miner JL. The adipocyte as an endocrine cell. J Anim Sci 2004; 82(3):935-41.
    2. Lefebvre AM, Laville M, Vega N, et al. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998; 47(1):98-103.
    3. Jia W, Wu H, Bao Y, et al. Association of serum retinol-binding protein 4 and visceral adiposity in Chinese subjects with and without type 2 diabetes. J Clin Endocrinol Metab 2007; 92(8):3224-9.
    4. Frayn KN. Visceral fat and insulin resistance-causative or correlative? Br J Nutr 2000; 83 (Suppl):S71-S77.
    5. Wajchenberg BL. Subcutaneous and visceral adipose tissue:their relation to the metabolic syndrome. Endocr Rev 2000; 21(6):697-738.
    6. Gettins PG. Serpin structure, mechanism, and function. Chem Rev 2002; 102(12): 4751-804.
    7. Silverman GA, Bird PI, Carrell RW, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001; 276(36):33293-6.
    8. Zvomc S, Lefewe M, Kilroy Q, et al. Secretome of primary cultures of human adipose-derived stem cells:modulation of serpins by adipogenesis. Mol Cell Proteomics 2007; 6(1):18-28.
    9. Hida K, Wada J, Zhang H, et al. Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rats. J Lipid Res 2000; 41(10): 1615-22.
    10. Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor:a unique insulin2sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA 2005; 102(30):10610-5.
    11. Kloting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue:association with obesity and type 2 diabetes. Biochem Biophys Res Commun 2006; 339(1):430-6.
    12. Youn BS, Kloting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes 2008; 57(2):372-7.
    13. Tan BK, Heutling D, Chen J, et al. Metformin decreases the adipokine vaspin in overweight women with polycystic ovary syndrome concomitant with improvement in insulin sensitivity and a decrease in insulin resistance. Diabetes 2008; 57(6): 1501-7.
    14. Handisurya A, Riedl M, Vila G, et al. Serum vaspin concentrations in relation to insulin sensitivity following RYGB-induced weight loss. Obes Surg 2009 Jun 9. (DOI 10.1007/sl1695-009-9882-y)
    15. Ye Y, Hou XH, Pan XP, et al. Serum vaspin level in relation to postprandial plasma glucose concentration in subjects with diabetes. Chin Med J (Engl) 2009; 122(21):2530-3.
    16. Aust G, Richter O, Rohm S, et al. Vaspin serum concentrations in patients with carotid stenosis. Atherosclerosis 2009; 204(1):262-6.
    17. Gulcelik NE, Karakaya J, Gedik A, et al. Serum vaspin levels in type 2 diabetic women in relation to micro vascular complications. Eur J Endocrinol 2009; 160(1):65-70.
    18. Seeger J, Ziegelmeier M, Bachmann A, et al. Serum levels of the adipokine vaspin in relation to metabolic and renal parameters. J Clin Endocrinol Metab 2008; 93: 247-51.
    19. Fu BD, Yamawaki H, Okada M, Hara Y. Vaspin can not inhibit TNF-alpha-induced inflammation of human umbilical vein endothelial cells. J Vet Med Sci 2009; 71(9):1201-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700