连续碳纤维表面金属化及其复合材料电磁屏蔽性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子设备的高频化、数字化,干扰信号的能量密度极度增大,有限空间的电磁环境发生前所未有的恶化,严重影响社会进程与人类生存和生态环境的协调、可持续发展。因此,电磁屏蔽材料的研究与发展成为人们日益关注的重要课题。随着科技的发展,新型电磁屏蔽材料的研究向着高屏蔽效率、低密度的方向发展。碳纤维具有强度高、质量轻,并且导电性良好的特点,可直接用于轻质屏蔽材料的制备,本课题采用连续电镀和化学镀的方法对碳纤维进行表面金属化,并将其填充于低密度的高分子材料基体,制备出新兴电磁屏蔽复合材料,该材料具有高效、质轻等突出优点,有望在电磁屏蔽材料领域发挥重要作用。
     本课题研究了连续碳纤维表面金属化改性的化学镀工艺和电镀工艺,理论分析和实验结果均证实对于碳纤维这样的小直径束状连续材料,采用电镀工艺可比化学镀工艺获得更好的表面金属化效果。因此本课题开发出我国第一条碳纤维表面连续电镀镍工艺的生产设备。由该设备制备的镀镍碳纤维镀层均匀致密,镀层厚度可调。
     采用镀镍碳纤维制备的三维编织镀镍碳纤维/环氧树脂(Ni-CF_(3D)/EP)复合材料比三维编织碳纤维/环氧树脂(CF_(3D)/EP)复合材料具有更高和更平稳的电磁屏蔽性能。在30~150 MHz频率范围内,镀镍碳纤维的屏蔽优势尤为突出,Ni-CF_(3D)/EP复合材料的屏蔽效能比CF_(3D)/EP复合材料高约40 dB。当在Ni-CF_(3D)/EP复合材料中加入5%的导电介质(镍包石墨)时,复合材料具备更加优异的电磁屏蔽性能,屏蔽值比之前提高10 dB。通过对莎皮罗丝网材料电磁屏蔽效能计算模型的修正,得到适用于编织材料的电磁屏蔽效能计算理论模型。
     以镀镍碳纤维为屏蔽填料制备的镀镍碳纤维/硅橡胶(Ni-CF/VMQ)屏蔽复合材料同样具有优异的电磁屏蔽性能。当纤维含量为80 phr时,复合材料达到最佳的综合性能,在30~1200 MHz频率范围内Ni-CF/VMQ复合材料的电磁屏蔽效能均在80 dB以上,此时材料的拉伸强度为3.23 MPa,密度1.37 g/cm~3,性能优于前人研究以粉末状填料制备的电磁屏蔽橡胶(拉伸强度1.5 MPa,密度3 g/cm~3)。
     根据Schelkunoff电磁屏蔽理论的指导,本课题还研究制备了兼具高导电和高导磁性能的表面沉积镍/四氧化三铁纳米颗粒(Ni/Fe_3O_4-NPs)复合镀层的碳纤维,并对复合镀层的沉积机理进行了研究,将实验数据带入两步吸附理论模型发现,实验结果与模型完全吻合,说明Ni/Fe_3O_4-NPs复合镀层的沉积过程适用于两步吸附理论模型。课题还制备了Ni/Fe_3O_4-NPs复合镀层碳纤维的复合材料。测试结果表明,镀层中含有Fe_3O_4-NP的复合材料比没有Fe_3O_4-NP的复合材料屏蔽性能可高10 dB。
     总之,本课题采用表面金属化改性的碳纤维为导电填料制备的填充复合型电磁屏蔽材料具备高效、质轻的特点。将高导电性与高导磁性材料相结合可制备性能优异的电磁屏蔽复合材料的理论得到充分验证,为新型电磁屏蔽复合材料的设计和研究提供新的思路和研究基础。
With rapid development of electronic devices with high frequency and digitization, the unprecedent deterioration of the electromagnetic environment in the limited space seriously impacts on social process and human survival, and harmonious environment and sustainable development of ecological environment. Therefore, the research and development of the electromagnetic shielding material have attracted extensive attention. With the development of technology, the research of electromagnetic shielding materials focus on the high shielding efficiency and low density direction. Due to high strength, light weight and good conductivity properties of carbon fiber, it can be directly used for preparation of light shielding material. In this work, metalized carbon fiber was filled in low density polymer matrix materials and used to fabricate novel high efficiency and low weight electromagnetic shielding composites, and is expected to play an important role in the electromagnetic shielding material field.
     In this work, the surface modification process of electroless and elecdeposition of carbon fiber was investigated. Especially, the manufactured equipment to synthesis of the long carbon fiber prepared by the continuous nickel electrodeposition was developed for the first time, which was applied for the fabrication of as-prepard carbon fiber with the dense and uniformly coatings with the adjustable thickness.The electromagnetic shielding effectiveness of three-dimensional braided nickel-plated carbon fiber/epoxy (Ni-CF_(3D)/EP) composite is about 40 dB higher than that of three-dimensional braided carbon fiber/epoxy (CF_(3D)/EP) composite in the frequency of 30~150 MHz. By correction of calculation model of electromagnetic shielding efficiency of Shapi Luo screen materials, we get a suitable calculation model of electromagnetic shielding efficiency to woven materials
     The silicone rubber filled with nickel-plated carbon fiber (Ni-CF/VMQ) composite, when the fiber content is 80 phr, the composite achieves the best overall performance. The electromagnetic shielding effectiveness is more than 80 dB in the frequency of 30~1200 MHz. The tensile strength is 3.23 MPa, and the density is 1.37 g/cm~3.
     According to Schelkunoff electromagnetic shielding theory, we studied the high conductivity and high permeability composite coatings of nickel/Fe_3O_4 nanoparticles (Ni/Fe_3O_4-NPs) on the surface of carbon fiber, and the deposition mechanism of composite coating. It was founded that the experimental data were fully consistent with the model of two-step adsorption theory. It demonstrates that the deposition process of Ni/Fe_3O_4-NPs composite coating is suitable for model of the two-step adsorption theory. We also prepared the composite of Ni/Fe_3O_4-NPs carbon fiber. The test results show that the electromagnetic shielding effectiveness of the composite of carbon fiber with Ni/Fe_3O_4-NPs coatings is 10 dB higher than that without Fe_3O_4-NPs.
     In conclusion, the filling electromagnetic shielding composite material filled with metalized carbon fiber have excellent electromagnetic shielding performance. It was confirmed in this work that the theory of material with both high conductivity and high permeability could obtain high electromagnetic shielding performance, providing the new train of thought and research foundation for the design and research of novel electromagnetic shielding materials.
引文
[1]吴勇.环境电磁辐射测量不确定度评定.中国计量. 2006(9):15-18.
    [2]张彦文,张广斌,田伟.某市环境电磁辐射水平的分布.环境与健康杂志. 2005(2):14-16.
    [3]张卫东,陶振英.电磁辐射污染的危害.锦州师范学校学报(自然科学版). 2001;22(3):59-61.
    [4] G.Jiang, M. Gilbert, D.J.Hitt, G.D.Wilcox, K.Balasubramanian. Preparation of nickelcoated mica as a conductive filler. Composites Part A. 2002;33:745-751.
    [5]孙宇新.电磁辐射对环境的污染及防护措施.工业安全与环保. 2001;27(12):1-4.
    [6]胡玉翠,李建平,张世麟.计算机信息泄密的防护措施.电子材料与电子技术. 1993;20(4):47-50.
    [7]刘志华,时丽冉.电磁辐射对人类健康的影响.生物学通报. 2006;41(3):30-31.
    [8]“电磁波”干扰返京航班十几分钟后才恢复正常.新京报. 2004年1月28日.
    [9]吴银彪.电磁辐射的污染与控制.中国环保产业. 1999;2(22-23).
    [10]周秀荣.电气化铁路对通信线路的干扰影响及防护措施.中国铁路. 2007(6):66-68.
    [11]张晓宁. Fe-Ni软磁合金吸波材料的设计与制备. [博士学位论文]北京;北京工业大学. 2003.
    [12] Vaneck W. Electromagnetic radiation from video display units: an eavesdropping risk. Computer&Security. 1985;4(269-286).
    [13]吕立波.一种被容易忽视的计算机信息泄密途径与防护.安防科技. 2006;11:34-36.
    [14]石长生,李国定.信息设备信息电磁发射机理与模型.中国计算机报. 1994;11:12-14.
    [15]冯桂山.计算机泄密机理及其防护措施介绍.宇航计测技术. 1994;13(1):27-32.
    [16] Frohlich H. What are non-thermal electric biological effects. Bioelectromagnetics. 1982;3(1):45-46.
    [17] Gao YG, Yu LF. Determination of dangerous region of the electromagnetic pollution caused by the electric fields around power line International conference proceedings on communication technolog. 1998(1):22-24.
    [18]李宏武,姚克,鲁德强.电磁环境污染造成的眼部损伤.外国医学眼科学分册. 2005;29(5):344-349.
    [19]陈真诚,蒋勇,祝杰,蒋大宗.毫米波照射生物活体激发非热效应的探讨.医疗卫生装备. 2001;4:27-29.
    [20] Lee BO, Woo WG, Kim MS. EMI shielding effectiveness of carbon nanofiber filled poly (vinyl alcohol) coating materials Macromolecular Materials and Engineering. 2001;286:114-118.
    [21]韦钢,杨毅,周冰.工频电磁场对人体的影响及相关标准分析.上海电力学院学报. 2009;25(2):145-149.
    [22]王光华. ABS基电磁屏蔽复合材料制备及性能. [硕士学位论文]四川;西南科技大学. 2008.
    [23]汝强,胡社军,胡显奇,邱秀丽,盛钢,王明.电磁屏蔽理论及屏蔽材料的制备.包装工程. 2004;25(5):21-23.
    [24]刘顺华,郭辉进.电磁屏蔽与吸波材料.功能材料与器件学报. 2002;8(3):213-217.
    [25]宋文中.防信息泄露材料元件.电子材料与电子技术. 1994;3(1):40-77.
    [26] Severini F, Formaro L, Pegoraro M, Poca L. Chemical modification of carbon fiber surfaces. Carbon. 2002;40:735-741.
    [27] Zheng J, Zhang ZQ, Meng LH. Effecte of Ozone method treating carbon fibers on mechanical properties of carbon/carbon composites. Materials Chemistry and Physics. 2006;97:167-172.
    [28] Dilsiz N, Wightman JP. Surface analysis of unsized and sized carbon fibers. Carbon. 1999;37:1105-1114.
    [29]管登高.镍基电磁屏蔽复合涂料的研究及其在EMI中的工程应用:[硕士学位论文],成都;四川大学. 2001.
    [30]涂铭旌,黄婉霞,毛键,陈家钊,刘颖.电磁波屏蔽涂料及其制备方法,中国专利. 97107515.8.
    [31]低温固化电磁屏蔽导电涂料.电子工艺技术. 1998;19(6):广告版面.
    [32]何益艳,李静,傅孝忠,杜世国.铜系电磁屏蔽涂料的制备及导电性能研究.化工新型材料. 2005;33(6):69-70.
    [33]林硕,吴年强,李志章.偶联剂对铜系复合涂料导电稳定性的影响.复合材料学报. 1999(4):44-49.
    [34]葛盛键.镀覆电磁屏蔽复合材料.南京理工大学. 2004.
    [35]喻冬秀,文秀芳.电磁屏蔽涂料用复合型导电填料研究进展.化工进展. 2006;25(8):890-894.
    [36]何芳,万怡灶,黄远,李浩,王玉林. ABS/镀镍碳纤维复合材料电磁屏蔽特性研究.工程塑料应用. 2007;35(7):21-24.
    [37]赵灵智,胡社军,何琴玉,李伟善,陈俊芳,汝强.电磁屏蔽材料的屏蔽原理与研究现状.包装工程. 2006;27(2):1-5.
    [38] Das NC, Khastgir D, Chaki TK, Chakraborty A. Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Composites Part A. 2000;31:1069-1081.
    [39] White X, Donald RJ, Michl M. Electromagnetic compatibility handbook. vol 3 Don White Consultants, Inc. 1973.
    [40] Al-Saleh M, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon. 2009;47:1738-1746.
    [41] Chuang DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 2001;39(2):279-285.
    [42] Schulz RB, Plantz VC, Brush DR. Shielding theory and practice. IEEE Trans. 1988;30(3):187-201.
    [43] Lee CY, Song HG, Jiang KS, Epstein AJ, Joo J. Electromagnetic interference shielding effkiency of polyaniline mixtures and multilayer films. Synth Met 1999;102:1346-1349.
    [44]毛键.电磁波屏蔽材料的电磁特性研究及低反射、高吸收梯度功能设计. [博士学位论文]四川;四川大学. 1999.
    [45] Mottahed BD, Manoocheheri S. Review of research in materials, modeling and simulation, design factors, testing, and measurements related to electromagnetic interference shielding. Polym Plast Technol Eng. 1995;34(2):271-346.
    [46]许先福,潘振克,黄正忠.电磁屏蔽材料的种类及应用.电子材料与电子技术. 2000;27(4):52-57.
    [47]奥汉德利RC.现代磁性材料原理和应用.北京:化学工业出版社. 2002.11.
    [48]杨君友,张同俊,李星国,胡振华,崔崑.非晶态合金研究进展.材料导报. 1995(6):31-34.
    [49] Xuan TP, Yang GZ, Yang LL, Ju ZT. Study on Electromagnetic Shielding Effectiveness of Ni-P-La Alloy Coatings. J Rare Earth. 2006;24(1):389-392.
    [50]光明译.电磁屏蔽用非晶态材料.金属功能材料. 1997(6):280-281.
    [51]张翼,宣天鹏.电磁屏蔽材料的研究现状及进展.安全与电磁兼容. 2006(6):77-81.
    [52] Guan HT, Liu SH, Duan YP, Cheng J. Cement based electromagnetic shielding and absorbing building materials. Cement Concrete Comp. 2006;28(5):468-474.
    [53]黄福祥,金吉琰,范嗣元,何光辉.电磁屏蔽材料.材料导报. 1997;11:18-21.
    [54]荒木庸夫.电子设备的屏蔽设计-干扰的产生及其克服方法.赵清译国防工业出版社. 1975.
    [55]黄福祥,金吉琰.发泡金属的电磁屏蔽性能研究.功能材料. 1996;27(2):147-149.
    [56] Huang XL, Wu GH, Dou ZY. Electromagnetic interfering shielding of low-density closed-cell aluminum matrix composites. Funct Mater. 2005;2(4):69-71.
    [57]丁世敬,赵跃智,葛德彪.电磁屏蔽材料研究进展.材料导报. 2008;22(4):30-33.
    [58] Peng CH, Wang HW, Kan SW, Shen MZ, Wei YM, Chen SY. Microwave absorbing materials using Ag-NiZn ferrite core-shell nanopowders as fillers. Journal of Magnetism and Magnetic Materials 2004;284:113-119.
    [59]林硕,李志章.电磁屏蔽导电复合涂料.材料导报. 1996(3):72-76.
    [60]施冬梅,杜仕国,田春雷,邓辉.电磁屏蔽铜系复合导电涂料实验研究.军械工程学院学报. 2001;13(4):71-73.
    [61]施泽民,贺飞峰,柯伟.电磁屏蔽导电涂料的研制.上海化工. 1997;3(22):29-32.
    [62]张晓宁.层状复合电磁屏蔽材料.北京:北京工业大学出版社. 2000.
    [63]张晓宁,毛倩谨.三明治型电磁屏蔽材料的制备与性能.材料研究学报. 2002;16(5):536-540.
    [64]薛茹君.电磁屏蔽材料及导电填料的研究进展.涂料技术与文摘. 2004;25(3):3-7.
    [65]管登高,黄婉霞,蒋渝,李洪武,陈家钊,涂铭旌.镍基电磁波屏蔽复合涂料制备及在EMC中的工程应用.电子元件与材料. 2004;23(2):41-43.
    [66]连宁,范顺宝.电磁屏蔽导电涂料的研究.电子机械工程. 1995(5):26-30.
    [67]毛健,陈家钊.高导电例子微观渗透提高Ni涂层屏蔽效能的研究.功能材料. 1997;28(6):626-628.
    [68]吴行,陈家钊. SiC/Ni复合型电磁屏蔽涂料的研究.功能材料. 2001;32(4):368-369.
    [69]管登高,黄婉霞. 10 kHz~1GHz镍基电磁波屏蔽复合涂料的研制及其在EMC中的工程应用.电讯技术. 2000(6):13-18.
    [70]管登高,黄婉霞.低频电磁波磁屏蔽复合涂料研究.电工技术杂志. 2002(12):29-30.
    [71]刘际伟,高晓敏.导电石墨/丙烯酸系电磁屏蔽涂料的研制.涂料工业. 1998;28(10):5-7.
    [72]徐峰.无机涂料与涂装技术.北京:化学工业出版社. 2002.
    [73]于彩霞.新型电磁防护涂料研究.北京;北京工业大学出版社. 2003.
    [74]王群,高东海,郭红霞,李永卿,袁岩兴.非晶态电磁屏蔽材料的制备与性能.安全与电磁兼容. 2006(1):74-76.
    [75]赵福辰.电磁屏蔽材料的发展现状.材料开发与应用. 2001;16(29-33).
    [76]张丽芳,李文明. ABS塑料Cu/Ni双镀层的电磁屏蔽性能.吉林大学自然科学学报. 1995(3):85-88.
    [77]杜仕国.电磁屏蔽材料的现状与发展.化工新型材料. 1995;23(4):12-16.
    [78]陈文兴,杜莉娟,姚玉元,吕慎水.磁控溅射法制备电磁屏蔽织物的研究.真空科学与技术学报. 2007;27(3):264-268.
    [79]张丽芳,李文明.磁控溅射Cu/Ni薄膜的电磁屏蔽作用.塑料工业. 1996;24(3):95-97.
    [80] Savrun E, Aguila H. Elecrically conductive tungsten silicide coatings for EMI/RFI shielding of optically transparent windows. J Mater Sci. 1998;33(11):2893-2897.
    [81]李秀荣,刘静.高频电磁屏蔽用ITO膜结构与性能分析.武汉工业大学学报. 2000;22(6):21-24.
    [82] Gao Y, Huang L, Zheng ZJ, Zhu M. The influence of cobalt on the corrosion resistance and electromagnetic shielding of electroless Ni-Co-P deposits on Al substrate. Appl Sur Sci. 2007;253(24):9470-9475.
    [83]邓毅.导电炭黑在塑料中的应用.中国塑料. 2001;15(4):6-9.
    [84]王宏军.国外粉末导电填料/聚合物导电复合材料近期研究开发的特点.化工进展. 1990(6):36-37.
    [85]陈立军,方宏锋,张欣宇,杨建,李荣先.碳系填充型导电塑料的研究进展.合成树脂基塑料. 2007;24(2):78-81.
    [86]解娜,焦清介,臧充光,刘帅. LDPE-Ni/多晶铁纤维电磁屏蔽包装材料研究.包装工程. 2006;27(1):10-12.
    [87]区英鸿.塑料手册.北京:兵器工业出版社. 1991.
    [88]王锦成.电磁屏蔽材料的屏蔽原理及研究现状.化工新型材料. 2002;30(7):16-18.
    [89] Chen CS, Chen WR, Chen SC, Chien RD. Optimum injection molding processing condition on EMI shielding effectiveness of stainless steel fiber filled polycarbonate composite. Int Commun Heat Mass. 2008;35:744-749.
    [90] Wen SH, Chung DDL. Electromagnetic interference shielding reaching 70 dB in steel fiber cement. Cement Concrete Res. 2004;34:329-332.
    [91] Hochberg A, Versieck J. Shielding for EMI and antistatic plastic resins with stainlesssteelfibres. Plastics, Additives and Compou. 2001;3(3):24-28.
    [92] Al-Khodairi F, Bridge B, Oaten SR. Investigating the distribution and orientation of stainlesssteelfibre-filled polypropylene composites with eddy currents Nondestruct Test Eva. 1988;3(6):169-176.
    [93]杜仕国,施冬梅.金属填充聚合物屏蔽EMI包装材料.包装工程. 2000;21(4):19-21.
    [94] Bagwell RM, Mc-Manaman JM. Short shaped copper fibers in all epoxy matrix:Their role in a muhifunctional composite. Compos Sci Techn. 2006;66(3-4):522-527.
    [95] Das NC, Chaki TK, Khastgir D, Chakraborty A. Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers. J Appl Polym Sci. 2001;80(10):1601-1608.
    [96]喻冬秀,文秀芳,皮丕辉,程江,杨卓如.电磁屏蔽涂料用改性短碳纤维的研究.化工新材料. 2007;35(3):51-54.
    [97] Jou WS, Wu TL, Chiu SK, Cheng WH. The influence of fiber orientation on electromagnetic shielding in liquid-crystal polymers. J Electron Mater. 2002;31(3):178-184.
    [98] Jana PB, Mallick AK. Studies on effectiveness of electromagnetic interference shielding in carbon fiber filled polychloroprene composites. J Elastomers Plast. 1996;26(1):58-73.
    [99]王闯,李克智,李贺军,郭领军.碳纤维增强水泥基复合材料的电磁屏蔽性能.精细化工. 2008;25(6):536-540.
    [100] Das NC, Khastgri D, Chaki TK. Electromagnetic interference shielding effectiveness of hybrid conductive polymer composite. J Elastomers Plast 2002;34(3):199-223.
    [101] Jou WS, Wu TL, Chiu SK. Electromagnetic shielding of nylon一66 composites applied to laser modul. J Electron Mater. 2001;20(10):1287-1293.
    [102] Wu JH, Chung DDL. Increasing the electromagnetic interference shielding effectiveness of cart)on fiber polymermatrix composite by using activated carbon fiber. Carbon. 2002;40:445-467.
    [103] Lu GH, Li XT, Jiang HC. Electrical and shielding properties of ABS resin filled with carbon fiber. Comp Sci Techn. 1996;56:193-200.
    [104] Jou WS. A novel structure of woven continuous-carbon fiber composites with high electromagnetic shielding J Electron Mater. 2004;33(3):162-170.
    [105] Paligova M, Vilcakova J, Saha P, Kresalek V, Srejskal J, Quadrat O. Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base. Physical A. 2004;335(3):421-429.
    [106] Lee CY, Lee DE, Jeong CK, Hong YK, Shim JH, Joo J. Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polym Adv Technol. 2002;13(8):577-583.
    [107] Watzl A.用于电子领域的高技术玻璃纤维织物.产业用纺织品. 2005;23(10):42-43.
    [108] Shi ZY, Wang XZ, Ding ZM. The study of electroless deposition of nickel on graphite fibers. Appl Sur Sci. 1999;140:106-110.
    [109] Paligove M, Vilcakova J, Saha P. Electromagnetie shielding of epoxy resin composites carbon fibers coated with polyaniline base. Physics A. 2004;335(3-4):421-429.
    [110] Tzeng SS, Chang FY. EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Mater Sci Eng,A. 2001;302(2):258-267.
    [111] Huang CY, CHiou TW. The effect of reprocessing on the EMI shielding effectiveness of conductive fibre reinforced ABS composites. Eur Polym J. 1998;34(1):37-43.
    [112] Huang CY, Wu CC. The EMI shielding effectiveness of PC/ABS/nickel-coated -carbon-fibre composites. Eur Polym J. 2000;36(12):2729-2737.
    [113] Huang CY, Pai JF. Optimum conditions of electroless nickel plating on carbon fibers for EMI shielding effectiveness of ENCF/ABS composites. Eur Polym J. 1998;34(2):261-267.
    [114] Huang CY, Mo WW, Roan ML. The influence of heat treatment on electroless-nickel coated fibre(ENCF) on the mechanical properties and EMI shieling of ENCF reinforced ABS polymeric composites. Surf Coat Technol. 2004;184(3):163-169.
    [115] Huang CY, Mo WW, Roan ML. Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites. Surf Coat Technol. 2004;184(3):163-169.
    [116] Chiang WY, Chiang YS. Effect of titanate coupling agent on electromagnetic interference shielding effectiveness and mechanical prope~ies of PC-ABS-NCF composite. J Appl Polym Sci. 1992;46(4):673-681.
    [117]曾祥云,李家俊,施春生.碳纤维在电磁功能复合材料中的应用.材料导报. 1998;12(1):64-67.
    [118] Park KY, Lee SE, Kim CG, Han HJ. Application of MWNT-added glass fabric/epoxy composites to electromagnetic wave shielding enclosures Compos Struct 2007;81(3):401-406.
    [119]鲍红权,刘强华.化学镀金属导电玻璃纤维制备与性能研究.玻璃纤维. 1997(4):2-4.
    [120]李宏建,彭景翠,陈小华.填充碳纳米管/石墨的复合型电磁波屏蔽膜.化学物理学报. 2001;14:211-215.
    [121] Wu GH, Huang XL, Dou ZY, Chen S, Jiang LT. Electromagnetic interfering shielding of aluminum alloy-cenospheres composite. J Mater Sci. 2007;42:2633-2636.
    [122]凤仪,郑海务,朱振刚,陶宁.闭孔泡沫铝的电磁屏蔽效能.中国有色金属学报. 2004;14:33-36.
    [123] Klemperer C, Maharaj D. Composite electromagnetic interference shielding materials for aerospace applications. Compos Struct. 2009;91:467-472.
    [124] Richard P, Prasse T, Cavaille JY. Reinforcement of rubbery epoxy by carbon nanofibers. Mater Sci Eng,A. 2003;352(1-2):344-348.
    [125] Allaoui A, Bai S, Cheng HM. Mechamical and electrical properties of a MWNT/epoxy composite. Comp Sci Techn. 2002;62(15):1993-1998.
    [126] Salvetat JP, Andreo G, Briggs D. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett. 1999;82:944-947.
    [127] Gu W. Emission property of carbon nanotube with defects. Appl Phys Lett. 2006;89:143-145.
    [128] Akuthota B, Hughes D, Zoughi R. Near-field microwave detection of disbond in carbon fiber reinforced polymer composites used for strengthening cement-based structures and disbond repair verification. J Mater Civil Eng. 2004;16(6):540-547.
    [129]靳武刚.碳纤维在电磁屏蔽材料中的应用.现代塑料加工应用. 2004;16(1):24-27.
    [130] Luo XC, Chung DDL. Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites Composites Part B 1999;30(3):227-231.
    [131] Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials Carbon. 2001;39(2):279-285.
    [132] Kim BJ, Chio WK, Um MK, Park SJ. Effects of nickel coating thickness on electric properties of nickel/carbon hybrid fibers. Surf Coat Technol. 2011;205(11):3416-3421.
    [133] Rosa IM, Cinescu A, Sarasini F, Sarto MS, Tamburrano A. Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers. Comp Sci Techn. 2010;70(1):102-109.
    [134] Chen H, Alpas AT. Wear of aluminium matrix composites reinforced with nickel-coated carbon fibres Wear. 1996;192(1-2):186-198.
    [135] Hrbá? J, Gregor ?, MachováM, KrálováJ, BystroňT, ?í? M, et al. Nitric oxide sensor based on carbon fiber covered with nickel porphyrin layer deposited using optimized electropolymerization procedure. Bioelectrochemistry. 2007;71(1):46-53.
    [136] Hajjari E, Divandari M, Mirhabibi AR. The effect of applied pressure on fracture surface and tensile properties of nickel coated continuous carbon fiber reinforced aluminum composites fabricated by squeeze casting Mater Des 2010;31(5):2381-2386.
    [137] Pierozynski B, Jankowski J, Sokolski W. Application of nickel-coated carbon fibre material in cathodic protection of underground-buried steel structures. Corros Sci 2009;51(11):2605-2609.
    [138] Tzeng SS, Chang FY. Electrical resistivity of electroless nickel coated carbon fibers Thin Solid Films. 2001;388(1-2):143-149.
    [139] Kim IS, Lee SK. Fbrication of carbon nanofiber/Cu composite powder by electroless plating and microstructural evolution during thermal exposure. Scripta Mater. 2005;52:1045-1049.
    [140] Salazar JM, Barrena MI, Merion C, Merino N. Preparation of CNFs surface to coat with copper by electroless process Mater Lett. 2008;62:494-497.
    [141] Liu YL, Fu Q, Pan CX. Synthesis of carbon nanotubes on pulse plated Ni nanocrystalline substrate in ethanol flames. Carbon. 2005;43:2264-2271.
    [142] Fan YC, Liu YM, Chen YC, Sung Y, Ger MD. Carbon nanotube field emission cathodes fabricated with chemical displacement plating. Appl Sur Sci. 2009;255:7753-7758.
    [143] Hiermer T, Thomas KG, Yang ZG. Mechanical properties and failure behaviour of cylindrical CFRP-implant-rods under torsion load. Composites Part A. 1998;29(11):1453-1461.
    [144] Yan SS, Chou TW, Ko FK. Flexural and axial compressive failures of three-dimensionally braided composite I-beams. Composites 1986;17(3):178-184.
    [145] Chang LW, Yau SS, Chou TW. Notched strength of woven fabric composites with molded in holes. Composites. 1987;18(3):89-95.
    [146] Fukuta K. Three-dimensional braided composite materials. J Jpn Soc Compos Mater. 1995;21(2):51-60.
    [147] Xu XR, Luo XJ, Zhuang HR, Li WL, Zhang BL. Electroless silver coating on fine copper powder and its effects on oxidation resistance. Mater Lett. 2003;57(24-25):3987-3991.
    [148] Kim JH, Kim SS. Microwave abosrbing properties of Ag-coated Ni-Zn ferrite microspheres prepared by electroless plating. J Alloys Compd. 2011;509:4399-4403.
    [149] Hanyaloglu SC, Aksakal B, Mccolm IJ. Reactive sintering of electroless nickel-plated aluminum powders. Mater Charact. 2001;47(1):9-16.
    [150] Pang JF, Li Q, Wang W, Xu XT, Zhai JP. Preparation and characterization of electroless Ni-Co-P ternary alloy on fly ash cenospheres. Surf Coat Technol. 2011;205(17-18):4237-4242.
    [151] Yu XZ, Shen ZG. The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method. J Magn Magn Mater 2009;321:2890-2895.
    [152] Moon JH, Kim KH, Choi HW. Electroless silver coating of rod-like glass particles. Ultramicroscopy. 2008;108:1307-1310.
    [153] Kumar M, Agarwala R, Agarwala V. Synthesis and characterization of electroless Ni-P coated graphite particles. Bull Mater Sci. 2008;31(5):819-824.
    [154] Palaniappa M, Veera Babu G, Balasubramanian K. Electroless nickel-phosphorus plating on graphite powder. Mater Sci Eng,A. 2007;471:165-168.
    [155] Panwar V, Mehra RM. Study of electrical and dielectric properties of styrene-acrylonitrile/graphite sheets composites. Eur Polym J. 2008;44:2367-2375.
    [156] Chang CP, Lu CL, Shyu FL, Chen RB, Fang YK, Lin MF. Magnetoelectronic properties of a graphite sheet. Carbon. 2004;42(13):2975-2980.
    [157] Gao JN, Tang FQ, Ren J. Electroless nickel deposition on amino-functionalized silica spheres Surf Coat Technol. 2005;200(7):2249-2252.
    [158] Alam MO, Chan YC, Huang KC. Reliability study of the electroless Ni–P layer against solder alloy Microelectron Reliab. 2002;42(7):1065-1073.
    [159] Song D, Zhou JD, Jiang W, Zhang XJ, Yan Y, Li FS. A novel activation for electroless plating on preparing Ni/PS microspheres Matter Lett. 2009;63(2):282-284.
    [160]屈战民.石墨粉化学镀镍及化学镀银工艺.电镀与精饰. 2007;29(6):24-27.
    [161] Wu XM, Qi SS, Duan GC. Preparation and characterization of electromagnetic polyaniline/nickel plating graphite nanosheets composites through ultrasonic irradiation. Synth Met 2011;161:2215-2219.
    [162] Kong FZ, Zhang XB, Xiong WQ, Liu F, Huang WZ, Sun YL, et al. Continuous Ni-layer on multiwall carbon nanotubes by an electroless plating method. Surf Coat Technol. 2002;155:33-36.
    [163]任强富,贾瑛,张秋禹.膨胀石墨表面化学镀镍及性能.应用化学. 2009;26(495-497).
    [164] Li Q, Zeng GZ, Zhao WF, Chen GH. Preparation and characterization of nickel-coated graphite nanosheets. Synth Met. 2010;160:200-202.
    [165] Jiang SX, Guo RH. Electromagnetic shielding and corrosion resistance of electroless Ni–P/Cu–Ni multilayer plated polyester fabric. Surf Coat Technol. 2011;205:4274-4279.
    [166] Yau SS, Chou TW, Ko FK. Flexural and axial compressive failures of three-dimensionally braided composite I-Beams. Composites. 1986;17(3):178-184.
    [167] Wan YZ, Wang YL, He F, Huang Y, Jiang HJ. Mechanical performance of hybird bismaleimide composites reinforced with three-dimensional braided carbon and Kevlar fabrics. Composites A. 2007;38:495-504.
    [168] Zhang YD, Wang YL, Huang Y, Wan YZ. Preparation and properties of three-dimensional braided UHMWPE fiber reinforced PMMA composites J Reinforced Plastics Compos. 2006;25:1601-1609.
    [169]道德锟,吴以心,李兴国.立体织物与复合材料.中国纺织大学出版社, 1998.
    [170]杨桂,敖大新.编织结构复合材料制作、工艺及工业实践.北京:科学出版社. 1999.
    [171]陈华辉,邓海金,李明.现代复合材料:中国物资出版社, 1998.
    [172]李皓,梁辉,何芳,黄远,王玉林,万怡灶.碳纤维增强环氧树脂电镀Cu—SiO2纳米微粒复合镀层.电镀与精饰. 2008;30(10):13-15.
    [173]何芳.三维编织超高分子量聚乙烯纤维/碳纤维混杂复合材料性能研究. [博士学位论文],天津;天津大学. 2006.
    [174] Gong JC. Impact properties of three-dimensional braided graphite/epoxy composites. J Compos Mater 1991;25:715-731.
    [175]凯泽著,叶中雄等译.电磁干扰与防护.徐氏基金会出版社. 1989.
    [176]马铁军.炭纤维毡类电磁功能复合材料的研究. [博士学位论文],天津:天津大学. 1998.
    [177]郭鹤桐,张三元.复合电镀技术.北京:化学工业出版社. 2007.
    [178] Stankovic VD, Gojo M. Electrodeposited composite coatings of copper with inert, semiconductive and conductive particles. Surf Coat Technol. 1996;81(2-3):225-232.
    [179] Tang YF, Ling ZD, Lu YN, Li AD, Ling HQ, Wang YJ, et al. Preparation of composite coatingparticles ofα-Al2O3–SiO2 by heterogeneous nucleation-and-growth processing. Mater Lett. 2002;3:446-449.
    [180] KalendováA. Effects of particle sizes and shapes of zinc metal on the properties of anticorrosive coatings. Prog Org Coat. 2003;46(4):324-332.
    [181] Li XL, Wang XB, Gao R, Li S. Study of deposition patterns of plating layers in SiC/Cu composites by electro-brush plating. Appl Sur Sci. 2011;257(23):10294-10299.
    [182] Allahkaram SR, Golroh S, Mohammadalipour M. Properties of Al2O3nano-particlereinforced copper matrix composite coatings prepared by pulse and direct current electroplating. Mater Des 2011;32(8-9):4478-4484.
    [183] Sancakoglu O, Culha O, Toparli M, Agaday B, Celik E. Co-deposited Zn-submicron sized Al2O3 composite coatings: Production, characterization and micromechanical properties. Mater Des. 2011;32(7):4054-4061.
    [184] Riley DJ. Electrochemistry in nanoparticle science. Curr Opin Colloid Interface Sci. 2002;7:186-192.
    [185] Rüttermann S, Wandrey C, Raab WH, Janda R. Novel nano-particles as fillers for an experimental resin-based restorative material. Acta Biomater. 2008;4(6):1846-1853.
    [186] Mchenry ME, Laughlin DE. Nano-scale materials development for future magnetic applications Acta Mater. 2000;48(1):223-238.
    [187] Kim JM, Park JK, Kim KN, Kim CH, Jang HG. Synthesis of In2O3nano-materials with various shapes. Curr Appl Phys. 2006;6:198-201.
    [188] Johnston JH, Mcfarlane AJ, Borrmann T, Moraes J. Nano-structured silicas and silicates––new materials and their applications in paper. Curr Appl Phys. 2004;4(2-4):411-414.
    [189] Lee JJ, Moon H, Park HG, Yoon D, Hyun SH. Applications of nano-composite materials for improving the performance of anode-supported electrolytes of SOFCs Int J Hydrogen Energy 2010;35(2):738-744.
    [190] Vaezi MR, Sadrnezhaad SK, Nikzad L. Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloid Surf A: Physicochem Eng Aspects. 2008;315:176-182.
    [191] Chen L, Wang L, Zeng Z, Zhang J. Effect of surfactant on the electrodeposition and wear resistance of Ni–Al2O3 composite coatings. Mater Sci Eng A. 2006;434:319-325.
    [192] Shrestha NK, Takebe T, Saji T. Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings. Diamond Relat Mater. 2006;15:1570-1575.
    [193] Surender M, Basu B, Balasubramaniam R. Wear characterization of electrodeposited Ni–WC composite coatings. Tribology Int. 2004;37:743-749.
    [194] Wang W, Hou FY, Wang H, Guo HT. Fabrication and characterization of Ni–ZrO2 composite nano-coatings by pulse electrodeposition. Scripta Mater. 2005;53:613-618.
    [195] Aal AA, Zaki ZI, Hamid ZA. Novel composite coatings containing (TiC–Al2O3) powder. Mater Sci Eng A. 2007;447:87-94.
    [196] Ma KY, Guo ZC, Zhu XY. Characteristics of electrodepos-ited RE-Ni-W-B-B4C-MoS2 composite coating. Trans Non-ferrous Met Soc China. 2003;13(5):1220-1225.
    [197] Xu RD, Wang JL, Guo ZC, Wang H. Effects of rare earth on microstructures and properties of Ni-W-P-CeO2-SiO2 nano-composite coatings. J Rare Earth. 2008;26(4):579-583.
    [198] Gül H, K?l?c F, Aslan S, Alp A, Akbulut H. Characteristics of electro-co-deposited Ni–Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings. Wear. 2009;267:976-990.
    [199] Xu RD, Wang JL, He LF. Study on the characteristics of Ni-W-P composite coatings containing nano-SiO2 and nano-CeO2 particles. Surf Coat Technol. 2008;202:1574-1579.
    [200] Sikder AK, Misra DS, Singhbal D. Surface engineering of metal-diamond composite coatings on steel substrates using chemical vapour deposition and electroplating routes. Surf Coat Technol. 1999;114:230-234.
    [201] Feng QY, Li TJ, Zhang ZT. Preparation of nanostructured Ni/Al2O3 composite coatings in high magnetic field. Surf Coat Technol. 2007;201:6247-6252.
    [202] Chen YJ, Gao P, Zhu CL, Wang RX, Wang LJ. Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J Appl Phys. 2009;106:054303.
    [203] Zeng Y, Hao R, Xing BG, Hou YL, Xu ZC. One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chem Commun. 2010;46:3920-3922.
    [204] Zhang LH, Wu JJ, Liao HB, Hou YL, Gao S. Octahedral Fe3O4 nanoparticles and their assembled structures. Chem Commun. 2009;45:4378-4380.
    [205] Yang C, Wu JJ, Hou YL. Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chem Commun. 2011;47:5130-5141.
    [206] Wang Q, Yang XW, Yu LX, Yang H. Magnetic and luminescent properties of Fe/Fe3O4@Y2O3:Eu nanocomposites. J Alloy Comp. 2011;509(37):9098-9104.
    [207] Qiang CW, Xu JC, Zhang ZQ, Tian LL, Xiao ST, Liu Y. Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. J Alloy Comp. 2010;506(1):93-97.
    [208] Karaoglu E, Baykal A, Deligoz H, Senel M, Sozeri H, Toprak MS. Synthesis and characteristics of poly(3-pyrrol-1-ylpropanoic acid) (PPyAA)–Fe3O4 nanocomposite. J Alloy Comp. 2011;509(33):8460-8468.
    [209] Phang SW, Tadokoro M, Watanabe J, Kuramoto N. Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polym Adv Technol. 2009;20:550-557.
    [210]马兆海.镍基合金和复合镀层的电沉积及其结构与性能研究:厦门大学, 2006.
    [211]刘建. Ni-纳米TiO2复合电镀层的制备与性能研究:北京工业大学, 2006.
    [212] Mchenry ME, Laughlin DE. Nano-scale materials development for future magnetic applications. Acta Mater. 2000;48(1):223-238.
    [213] Malshe A, Deshpande D. Nano and microscale surface and sub-surface modifications induced in optical materials by femtosecond laser machining J Mater Process Technol. 2004;149(1-3):585-590.
    [214]郭忠诚,杨显万.电沉积多功能复合材料的理论与实践.北京:冶金工业出版社. 2002.
    [215] Celis JP, Roos JR, Beulens C. Analysis of the electrolytic codeposition of nonbrownian particles with a metal matrix. J Electrochem Soc. 1987;134(6):1402-1405.
    [216] Valdes JL, Cheh HY. A mathematical model for the elctrolytic codeposition of particle with a metallic matrix. J Electrochem Soc. 1987;134(4):223-226.
    [217] Fransaer J, Celis JP, Roos JR. Analysis of the electrolytic codeposition of nonbrownian particles with metals. J Electrochem Soc. 1992;139(2):413-415.
    [218] Ahmak S, Riaz U, Kaushik A, Alam J. Soft Template Synthesis of Super Paramagnetic Fe3O4 Nanoparticles a Novel Technique. J Inrog Organomet Polym. 2009;19:355-360.
    [219] Ozkaya T, Toprak MS, Baykal A, Kavas H, K¨oseo?glu Y, Aktas? B. Synthesis of Fe3O4 nanoparticles at 100 ?C and its magnetic characterization. J Alloy Comp. 2009;472:18-23.
    [220]刘建平,高中平,彭元芳,赵国鹏,曾振欧. Ni/α—Al2O3纳米复合电镀工艺的研究.电镀与涂饰. 2007;26(7):23-25.
    [221] Wang S, Chen ZH, Ma WJ, Ma QS. Influence of heat treatment on physical–chemical properties of PAN-based carbon fiber. Ceram Int. 2006;32:291-295.
    [222] Zhou GH, Wang SW, Huang XX, Guo JK. Improvement of oxidation resistance of unidirectional Cf/SiO2 composites by the addition of SiCp. Ceram Int. 2008;34:331-335.
    [223] Perez JM. Iron oxide nanoparticles: hidden talent. Nat Nanotechnol. 2007;2(9):535-536.
    [224] Huang CY, Mo WW. The effect of attached fragments on dense layer of electroless Ni/P deposition on the electromagnetic interference shieldingeffectiveness of carbon fibre/acrylonitrile–butadiene–styrene composites. Surf Coat Technol. 2002;154(1):55-62.
    [225] Faez R, Paoli MA. A conductive rubber based on EPDM and polyaniline: I. Doping method effect Eur Polym J. 2001;37(6):1139-1143.
    [226] Soto MA, Ara OA, Faez R. Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline /organoclaynanocomposite and EPDM rubber. Synth Met 2006;156(18-20):1249-1255.
    [227] Tantawy FE. New double negative and positive temperature coefficients of conductive EPDM rubber TiC ceramic composites. Eur Polym J. 2002;38(3):567-577.
    [228] Barba AA, Lamberti G, Amore M, Acierno D. Carbon black/silicone rubber blends as absorbing materials to reduce Electro Magnetic Interferences (EMI). Polym Bull. 2006;57(4):587-593.
    [229] Morari C, Balan I, Pintea J, Chitanu E, Iordache I. Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders. Prog Electromagn Res. 2011;21:93-104.
    [230]马颖琦.一种具有宽带电磁屏蔽性能的导电硅橡胶的研究. [硕士学位论文]天津;天津大学. 2008.
    [231] Kuwahara H, Sudo S, Lijima M, Ohya S. Dielectric properties of thermally degraded chloroprene rubber Polym Degrad Stabil. 2010;95(12):2461-2466.
    [232] Calleja R, Sanchis MJ, Riande E. Effect of an electric field on the deformation of incompressible rubbers: Bifurcation phenomena J Electrostat. 2009;67(2-3):158-166.
    [233] Hu YJ, Zhang HY, Li F, Cheng XL, Chen TL. Investigation into electrical conductivity and electromagnetic interference shielding effectiveness of silicone rubber filled with Ag-coated cenosphere particles Polym Test. 2010;29(5):609-612.
    [234]李跟华,米志安,刘君,苏正涛.镀银铜粉填充型导电硅橡胶的研究. 2003;17(2):10-11.
    [235]耿新玲,苏正涛,钱黄海,刘君,王景鹤.镀银镍粉填充型导电硅橡胶的性能研究.橡胶工业. 2006;53(7):417-419.
    [236] Yang SY, Chen CY, Parng SH. Effects of conductive fibers and processing conditions on the electromagnetic shielding effectiveness of injection molded composites. Polym Compos. 2002;23(6):1003-1013.
    [237]邹华,赵素合,谢丽丽,田明,张立群.镀镍石墨/硅橡胶导电复合材料的性能研究.橡胶工业. 2008;55(2):85-87.
    [238]谢丽丽,邹华,张立群,田明.镀镍石墨/甲基乙烯基硅橡胶导电复合材料的制备与性能.合成橡胶工业. 2008;31(2):140-144.
    [239] Kaynak A. Electromagnetic shielding effectiveness of galvanostatically synthesized conducting polypyrrole films in the 300–2000 MHz frequency range. A Mater Res Bull. 1996;31(7):845-860.
    [240] Duan YP, Liu SH, Guan HT. Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite. Sci Technol Adv Mater. 2005;6(5):513-518.
    [241]马晓兵,叶永富.导电橡胶电阻率稳定性研究.橡胶工业. 1995;42(11):650-654.
    [242] Andriyana A, Verron E. Prediction of fatigue life improvement in natural rubber using configurational stress. Int J Solids Struct. 2007;44(7-8):2079-2092.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700