横向超结功率器件的REBULF理论与新技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电力电子技术的发展要求功率器件具有更优越的高压、高速、低功耗性能,超结(Superjunction,简称SJ)器件作为一类新型功率器件能进一步提高器件的耐压,降低比导通电阻。在超结MOSFET中,比导通电阻与耐压的1.3次方关系打破了常规器件中2.5次方的“硅极限”,缓解了比导通电阻与耐压之间的矛盾。LDMOS(Lateral Double-diffused MOSFET)是功率集成电路(Power Integrated Circuit,简称PIC)的关键器件,将超结技术应用于LDMOS构成SJ-LDMOS功率器件以提高其性能。但是,在横向超结器件中,纵向电场影响了超结的电荷平衡,使超结耐压下降,通常称为“衬底辅助耗尽效应”。这降低了SJ-LDMOS的性能,妨碍了横向超结功率器件的发展。
     本文研究了横向超结器件的耐压机理,通过优化体内电场分布,促进超结电荷平衡;并通过降低硅中的体电场提高器件纵向耐压,提出了横向超结器件的降低体电场(Reduced Bulk Field,简称REBULF)耐压模型。根据REBULF耐压模型,研制了一种基于电荷补偿的SJ-LDMOS器件,并从介质场增强和电位调节途径提出了两类新型器件结构,提高了横向超结器件的耐压。主要的创新工作包括: 1.提出了横向超结器件的REBULF耐压模型,通过优化体内电场提高超结器件的耐压。从电荷补偿、介质场增强和电位调节三个方面分析了优化体电场的方法。通过在漂移区补偿电荷来承担衬底耗尽,从而保证超结的电荷平衡,优化体电场;利用高密度的界面电荷增强介质层的电场,从而降低超结中的纵向电场,改善超结的电荷平衡,并提高器件纵向耐压;利用SOI器件的背栅特性,通过调节纵向电位,能优化体电场分布,促进电荷平衡。
     2.基于电荷补偿的REBULF耐压模型,结合BCD工艺的特点,研制了一种表面低阻通道LDMOS(Surface Low On-resistance Path LDMOS,简称SLOP LDMOS)。此器件利用高掺杂浓度的横向超结作为电流低阻通道,利用厚的N-well(或N-epi)作为纵向的耐压层,缓解了纵向电场对横向超结的影响,改善了电荷平衡,提高了器件耐压。同时,SLOP LDMOS利用了表面超结的特点,兼容了BCD工艺,能应用于功率集成电路。本文研制了500V耐压级的SLOP LDMOS器件,在超结宽度为3μm的情况下,测试的功率品质因数FOM (FOM = BV2/Ron,sp)达到了2.6MW/cm~2。
     3.基于介质场增强的REBULF耐压模型,提出了增强埋氧层电场的SOI SJ-LDMOS,包括具有埋氧层表面固定电荷和具有动态缓冲层的器件结构。通过界面电荷增强埋氧层的电场,降低了超结中的纵向电场,从而消除了纵向电场对超结电荷平衡的影响,同时提高了器件纵向耐压能力。动态缓冲层具有自适应增强电场的能力,利用电荷槽的电荷积累特性,电荷可以根据纵向电场的大小自适应的积累,做到了对电荷的按需分配,达到了完美的效果。分析表明,当漂移区长度为10μm时,超结器件的耐压达到220V,平均横向电场达到22V/μm。
     4.基于电位调节的REBULF耐压模型,提出了具有动态背栅电压的SOI SJ-LDMOS。利用SOI器件的背栅特性,通过动态的背栅电压来优化超结器件的纵向电场的分布。背栅电压使电子和空穴同时被吸引到埋氧层下方,这改善了超结的电荷平衡。因为背栅电压将一部分纵向电压从漏端转移到了源端,这提高了器件的纵向耐压能力。
     同时,本文还研究了基于电荷补偿的PSOI SJ-LDMOS。此结构利用超结在顶层形成低阻通道,降低比导通电阻。通过在漏端对埋氧层刻蚀,并增加N-buffer区,让衬底NP结参与耐压。这既补偿了超结的电荷,也解决了SJ-LDMOS的纵向耐压问题,同时保证了SOI的隔离优势。
Modern power electronics technology requires power devices with superior performance in high voltage, high speed and low loss, super junction (SJ) device as a new type of power device can further improve the breakdown voltage (BV), reduce the specific on-resistance (Ron). For the SJ-MOSFET, the constraint relation between Ron and BV is improved form 2.5th power to 1.3th power, which breaks the“Silicon Limit”in conventional device, and improves the tradeoff between the BV and Ron. As SJ technology is applied in LDMOS (Lateral Double-diffused MOSFET), LDMOS, the key device in power integrated circuit, becomes SJ-LDMOS to improve the performance of device. However, the vertical electric field destroys the charge balance of SJ resulting in the low BV in the lateral SJ devices, which is called“substrate-assisted depletion effect”. This effect reduces the performance of SJ-LDMOS, and embarrasses the development of lateral super junction power device.
     In this dissertation, REBULF (Reduced Bulk Field) technology for the lateral SJ device is proposed by analyzing the breakdown characteristic of device. Optimizing bulk field can promote the charge balance of SJ, and reducing the electric field in bulk silicon can increase the vertical BV. According to the REBULF technology, an SJ-LDMOS based on charge compensation is investigated and implemented experimentally, and two new structures are presented basing on enhanced dielectric electric field and adjustable potential, which improves the BV of lateral SJ device. The detail contributions of the dissertation are listed as followings:
     1. REBULF model for lateral SJ power device is proposed to improve the BV by optimizing bulk field. The field is optimized by these three methods: compensating charges, enhancing dielectric electric field, and adjusting potential. First, added compensation charges in drift region take on the vertical depletion, which ensures the charge balance in SJ and optimizes the bulk field. Second, the electric field in dielectric layer is enhanced by high density interface charges, which reduces the vertical electric field in SJ, improves the charge balance of SJ, and increases the vertical BV of device. Third, the vertical potential is adjusted by utilizing specific back-gate character of SOI device, which optimizes the bulk field distribution and promotes the charge balance.
     2. Basing on charge compensation REBULF model, the surface low on-resistance path (SLOP) LDMOS is researched and implemented experimentally. A heavily doped SJ region provides a low on-resistance path in this device, and then thick N-well or N-epi layer sustains vertical voltage, which reduces the affect of vertical field on lateral SJ and improves the charge balance resulting in increased BV. In addition, SLOP LDMOS can be applied in power IC for compatible BCD process because the SJ is shallow on the surface of device. A 500 V class SLOP LDMOS is implemented in a BCD process. The experiment result shows a power figure of merit (FOM, FOM = BV2/Ron,sp) of 2.6 MW/cm2 , when pillar width is 3μm.
     3. Basing on enhanced dielectric electric field REBULF model, two kinds of SJ-LDMOS with enhanced electric field in BOX are proposed, which are with added fixed charges at surface of BOX and with dynamic buffer layer. Enhancing electric field in the BOX by interface charges reduces the vertical electric field in SJ, which eliminates the affect of the vertical electric field on the SJ charge balance, while the ability of the device vertical BV is increased. Dynamic buffer layer has the ability to adaptively enhance electric field. According to the characteristic of charges accumulation in the trenches, charges can be accumulated with the longitudinal electric field magnitude and distributed according to need, to achieve the perfect results. Simulation results show that the BV of the SJ device is to 220V, and the average lateral field is to 22V/μm, while the length of the drift region is 10μm.
     4. Basing on adjustable potential REBULF model, SOI SJ-LDMOS with dynamic back-gate voltage is proposed. Utilizing specific back-gate character of SOI device, the vertical electric field distribution in SOI SJ-LDMOS is optimized by dynamic back-gate voltage. Electrons and holes are attracted the bottom of the BOX to improve the charge balance. Due to partial vertical voltage transferred to source region from drain region, this increases the vertical BV.
     In addition, a new PSOI SJ-LDMOS with charge compensation has been studied in this dissertation. It reduces the specific on-resistance by low on-resistance path at the top of device with heavily doped SJ region. After etching buried oxide at the drain region to add an N-buffer region, the PN junction in substrate sustains more vertical voltage. It compensates the charges in SJ, increases the vertical BV, while preserves the isolation advantage of SOI device.
引文
[1] A. Q. Huang, N. X. Zhang, B. Zhang. Low voltage power devices for future VRM. Proceeding of the 10th international Symposium on Power Semiconductor Devices and ICs, 1998:395-398
    [2] B. J. Baliga. Power Semiconductor Devices. PWS Publishing Company, Boston, MA, 1996
    [3] Michael Amato, Vladimir Rumennik. COMPARISON OF LATERAL AND VERTICAL DMOS SPECIFIC ON-RESISTANCE. IEDM Tech. Dig, 1985: 736-739.
    [4] D.J. Coe. High voltage semiconductor device. U.S. Patent 4 754 310, June 28, 1988
    [5] X. B. Chen. Semiconductor power devices with alternating conductivity type high voltage breakdown region. U.S. Patent 5 216 275, June 1, 1993
    [6] J. Tihanyi. Power MOSFET. U.S. Patent 5 438 215, August 1, 1995.
    [7] T. Fujihira. Theory of semiconductor superjunction devices. J. Appl. Phys., 1997, 36(10): 6254-6262
    [8] G. Deboy, M. Marz, J.P. Stengl, H. Strack, J. Tihanyi, and H. Weber. A new generation of high voltage MOSFETs breaks the limit line of silicon. IEDM Tech. Dig., 1998:683-685
    [9] X. B. Chen. Theory of a novel voltage-sustaining layer for power devices. Microelectronics Journal, 1998, 29(12):1005-1011
    [10] X. B. Chen, Johnny K. O. Sin. Optimization of the Specific On-Resistance of the COOLMOS?. IEEE Transactions on Electron Devices, 2001, 48(2):344-348
    [11] Antonio G. M. Strollo, Ettore Napoli. Optimal ON-Resistance Versus Breakdown Voltage Tradeoff in Superjunction Power Devices: A Novel Analytical Model. IEEE Transactions on Electron Devices, 2001, 48(9):2161-2167
    [12] W. Saito, L. Omura, S. Aida, et al.. A 20 m?cm2 600 V-class superjunction MOSFET. Proc. ISPSD, 2004: 459-462.
    [13] C. Rochefort, R. van Dalen, N. Duhayon, et al.. Manufacturing of high aspect-ratio p-n junctions using vapor phase doping for application in multi-resurf devices. Proc. ISPSD, 2002: 237-240.
    [14] R. Van Dalen, C. Rochefort. Vertical multi-RESURF MOSFETs exhibiting record low specific resistance. IEDM Tech. Dig., 2003:31.1.1-31.1.4
    [15] T. Kurosaki, H. Shishido, M. Kitada, et al.. 200 V multi RESURF trench MOSFET(MR-TMOS). Proc. ISPSD, 2003: 211-214.
    [16] Y. Hattori, K. Nakashima, M. Kuwahara, et al.. Design of a 200 V super junction MOSFET with n-buffer regions and its fabrication by trench filling. Proc. ISPSD, 2004:189-192.
    [17] Y. C. Liang, K. P. Gan, G. S. Samudra. Oxide-bypassed VDMOS (OBVDMOS): An alternative to superjunction high voltage MOS power devices. IEEE Electron Device Lett., 2001, 22(8): 407-409
    [18] K. P. Gan, X. Yang, Y. C. Liang, et al.. A simple technology for superjunction device fabrication: Polyflanked VDMOSFET. IEEE Electron Device Lett., 2002, 23(10): 627-629
    [19] T. Henson, J. Cao. Low voltage super junction MOSFET simulation and experimentation. Proc. ISPSD, 2003:37-40
    [20] M. Rub, M. Bar, G. Deboy, et al.. 550 V superjunction 3.9 ?mm2 transistor formed by 25 MeV masked boron implantation. Proc. ISPSD, 2004: 455-458
    [21] M. Rub, M. Bar, F. J. Niedernostheide, et al.. First study on superjunction high-voltage transistors with n-columns formed by proton implantation and annealing. Proc. ISPSD, 2004: 181-184
    [22] P. M. Shenoy, A. Bhalla, G. M. Dolny. Analysis of the effect of charge imbalance on the static and dynamic characteristics of the superjunction MOSFET. Proc. ISPSD, 1999: 99–102.
    [23] Pravin N. Kondckar. Static Off State and Conduction State Charge Imbalance in the Superjunction Power MOSFET. TENCON, 2003:1455-1458
    [24] Pravin N. Kondekar, Hawn Sool Oh, Young-Bum Cho, et al.. The Effect of Static Charge Imbalance on the On State Behavior of the Superjunction Power MOSFET: CoolMOSTM. NSTL, 2003: 77-80
    [25] Pravin N. Kondckar. Effect of static charge imbalance on forward blocking voltage of superiunction power MOSFET. TENCON, 2004:209-212
    [26] Ettore Napoli, Han Wang, Florin Udrea. The Effect of Charge Imbalance on Superjunction Power Devices: An Exact Analytical Solution. IEEE Electron Device Letters, 2008, 29(3): 249-251
    [27] R. Ng, F. Udrea, K. Sheng, et al.. Lateral unbalanced super junction (USJ)/3D-RESURF for high breakdown voltage on SOI. Proc. ISPSD, 2001: 395-398
    [28] S. G. Nassif-Khalil, C. A. T. Salama. Super junction LDMOST in silicon-on-sapphire technology (SJ-LDMOST). Proc. ISPSD, 2002: 81-84
    [29] S. G. Nassif-Khalil, C. A. T. Salama. Super-junction LDMOST on a silicon-on-sapphiresubstrate. IEEE Trans. Electron Devices, 2003, 50(5): 1385-1391
    [30] S. G. Nassif-Khalil, C.A.T. Salama. 170V super junction-LDMOST in a 0.5μm commercial CMOS/SOS technology. Proc. ISPSD, 2003: 228-231
    [31] F. Udrea. Advanced 3D RESURF devices for power integrated circuits. Proc. International Semiconductor Conf. (CAS), 2002: 229-238
    [32] T. Rotter, M. Stoisiek. High-voltage device (>600 V) produced with a low-voltage (<150 V) smart-power SOI technologies. Proc. ESSDERC, 2003: 195-198
    [33] T. Rotter, M. Stoisiek. High-voltage extension (VBR≥800 V) for smart-power SOI-technologies. IEDM Tech. Dig., 2004: 447-450
    [34] S. Honarkhah, S. G. Nassif-Khalil, C. A. T. Salama. Back-etched super-junction LDMOST on SOI. Proc. ESSDERC, 2004: 117-120
    [35] F. Udrea, T. Trajkovic, C. Lee, et al.. Ultra-fast LIGBTs and superjunction devices in membrane technology. Proc. ISPSD, 2005: 267-270
    [36] G. P. V. Pathirana, F. Udrea, R. Ng, et al.. 3D-RESURF SOI LDMOSFET for RF power amplifiers. Proc. ISPSD, 2003: 278-281
    [37] M. J. Lin, T. H. Lee, F. L. Chang, et al.. Lateral superjunction reduced surface field structure for the optimization of breakdown and conduction characteristics in a high-voltage lateral double diffused metal oxide field effect transistor. J. Appl. Phys., 2003, 42(10): 7227-7231
    [38] S. G. Nassif-Khalil, C. A. T. Salama. SJ/RESURF LDMOST. IEEE Trans. Electron Devices, 2004, 51(7): 1185-1191
    [39] M. Rub, M. Bar, G. Deml, et al.. A 600 V 8.7 Ohmmm2 lateral Superjunction transistor. Proc. ISPSD, 2006: 305-308
    [40] I. Y. Park, C. A. T. Salama. CMOS compatible super junction LDMOST with N-buffer layer. Proc. ISPSD, 2005: 163-166
    [41] I. Y. Park, C. A. T. Salama. New Superjunction LDMOST with N-Buffer Layer. IEEE Transactions on Electron Device, 2006, 53(8): 1909-1913
    [42] I. Y. Park, Y. K. Choi, K. Y. Ko, et al.. Implementation of Buffered Super-Junction LDMOS in a 0.18um BCD Process. ISPSD, 2009: 192-195
    [43] Wanjun Chen, Bo Zhang, Zhaoji Li. Novel SJ-LDMOS on SOI with Step Doping Surface-Implanted Layer. IEEE Proceeding of ICCCAS07, 2007: 1256-1259
    [44] Wanjun Chen, Bo Zhang, Zhaoji Li. Optimization of super-junction SOI-LDMOS with a step doping surface-implanted layer. Semiconductor Science and Technology, 2007, 22: 464-470
    [45]Yu Chen, Kavitha D. Buddharaju, Yung C. Liang, et al.. Superjunction Power LDMOS on Partial SOI Platform. Proc. ISPSD, 2007: 177-180
    [46] Kanechika M, Kodama M, Uesugi T, et al.. A Concept of SOI RESURF Lateral Devices With Striped Trench Electrodes. IEEE Electron Devices, 2005, 52(6): 1205-1210
    [47] K. Permthammasin, G. Wachutka, M. Schmitt, et al.. New 600V Lateral Superjunction Power MOSFETs Based on Embedded Non-Uniform Column Structure. ASDAM, 2006 : 263-266
    [48] H. P. Xu, V. W. Y. Ma, I. S. M. Sun, et al.. Superjunction LDMOS with Drift Region Charge- Balanced by Distributed Hexagon P-islands. IEEE Conference on Electron Devices and Solid-State Circuits, 2003 : 313-316
    [49] Wanjun Chen, Bo Zhang, Zhaoji Li. New High Voltage SJ-LDMOS with Non-uniform N-buried Layer. IEDST, 2007 : 70-73
    [50] Wanjun Chen, Bo Zhang, Zhaoji Li. Realizing high breakdown voltage SJ-LDMOS on bulk silicon using a partial N-buried layer. Chinese Journal of Semiconductor, 2007, 28(3): 355-360
    [51] Y. Onishi, H. Wang, H. P. E. Xu, et al.. SJ-FINFET: A new low voltage lateral superjunction MOSFET. IEEE ISPSD, 2008: 111–114
    [52] J. A. Apples, H. M. J. Vase. High voltage thin layer devices (RESURF devices). IEDM Tech. Dig. New York, 1979: 238-241
    [53] J. A. Apples, M. G. Collet, P. A. H. Hart, et al.. THIN LAYER HIGH-VOLAGR DEVICE (RESURF DEVICES). Philips Journal of Research, 1980, 35(1): 1-13
    [54] Adriaan W. Ludikhuize. A Review of RESURF Technology. The 12th International Symposium on Power Semiconductor Devices and ICs, 2000: 11-18
    [55] A. Popescu, F. Udrea, R. Ng, et al.. Analytical modeling for the RESURF effect in JI and SOI power devices. IEEE Proc-Circuits Devices Syst., 2002, 149 (5/6): 273-284
    [56] Mohamed Iman, Mohammed Quddus, Jim Adams, et al.. Efficacy of Charge Sharing in Reshaping the Surface Electric Field in High-Voltage Lateral RESURF Devices. IEEE Electron Devices, 2004, 51(1): 141-148
    [57]张波,段宝兴,李肇基.具有N+浮空层的体电场降低LDMOS结构耐压分析,半导体学报. 2006, 27(04):730-734
    [58] Baoxing Duan, Bo Zhang, Zhaoji Li. A New Reduced Bulk Field (REBULF) High-Voltage LDMOS with N+-Floating Layer. IEEE Proceeding of ICCCAS06, 2006: 2709-2712.
    [59]段宝兴.横向高压器件电场调制效应及新器件研究: [博士学位论文].成都:电子科技大学,2007
    [60] Bo Zhang, Lin Chen, Jie Wu, et al.. SLOP-LDMOS?A Novel Super-Junction Concept LDMOS and Its Experimental Demonstration. IEEE ICCCAS, Hongkong, 2005: 1399-1402
    [61] Bo Zhang, Wenlian Wang, Wanjun Chen, et al.. High-Voltage LDMOS with Charge-Balanced Surface Low On-Resistance Path Layer. IEEE Electron Device Letters, 2009, 30(8): 849-851
    [62] G. Amaratunga, F. Udrea. Power devices for high voltage integrate circuits: new device and technology concepts. In Proceedings of 2001 International Semiconductor Conference, 2001: 441-448.
    [63] A. Nakagawa. Intelligent Power IC Technology– High voltage SOI Power ICs. Toshiba Advanced Semiconductor Devices Research Lab., 2003
    [64] B. Smith, J. Xu, J. Devore, et al.. Peripheral motor drive PIC concerns for integrated LDMOS technologies. Proc. ISPSD, 2004: 159-162
    [65]胡刚毅,谭开洲,刘玉奎,等.硅功率集成技术发展动态.微电子学,2004,vol.34: 10-105
    [66] N. Aoike,M. Hoshino,A. Iwabuchi. Automotive HID headlamps Producing compact electronic ballasts using Power ICs. Industry applications Magazine, IEEE, 2002, vol.8: 37-41
    [67] P. Wessels, M. Swanenberg, H.V. Zwol, et al.. Advanced BCD technology for automotive, audio and power applications. Solid State Electron., 2007, 51(2): 195-211
    [68] Ming Qiao, Bo Zhang, Zhiqiang Xiao, et al.. High-Voltage Technology Based on Thin Layer SOI for Driving Plasma Display Panels, Proc. ISPSD, 2008: 52-55
    [69] C. Contiero, A. Andreini, P. Galbiati. Roadmap Differentiation and Emerging Trends in BCD Technology. in Proceeding of the 32nd European Solid-State Device Research Conference, 2002: 275-282.
    [70] C. Contiero, B. Murari, B. Vigna. Progress in power ICs and MEMS, "analog" technologies to interface the real world, Proc. ISPSD, 2004: 1-12
    [71] Xingbi Chen, Xuefeng Fan. Optimum VLD makes SPIC better and cheaper, IEEE 2001 International conference on Solid-State and integrated-Circuit technology proceedings (ICSICT), 2001:104-108
    [72] Qiao Ming,Xiao Zhiqiang,Fang Jian. A High Voltage BCD Process Using Thin Epitaxial Technology, Chinese Journal of Semiconductors, 2007, 28(11): 1742-1747
    [73]洪慧.功率集成电路兼容技术的研究: [博士学位论文].杭州:浙江大学,2007
    [74] Yasuhiko Onishi, Tatsuhiko Fujihira, Susumw Iwamoto, et al.. Lateral super-junction semiconductor device. U.S. patent, 6 757 636, June 29, 2004
    [75] Yasuhiko Onishi, Tatsuhiko Fujihira, Susumw Iwamoto, et al.. Lateral super-junctionsemiconductor device. U.S. patent, 7 002 211, Feb. 21, 2006
    [76] F. Udrea, D. Garner, K. Sheng, et al.. SOI Power Devices. Electronics & Communication Engineering Journal, 2000, 12(1): 27-40
    [77] A. Neve, D. Flandre, J. J.Guisquater. SOI technology for future high-performance smart cards. IEEE Micro (Computer Society), 2003, 23(3): 58-66
    [78] Y. Inoue. SOI technology for future SoC. Extended Abstracts of the Third International Workshop on Junction Technology (IWJT), 2002: 107-110
    [79] Sorin Cristoloveanu. Far-future trends in SOI technology: a guess. Journal of High Speed Electronics and System, 2002, 12(2): 137-145
    [80] L. Clavelier, B. Charlet, B. Giffard, et al.. Deep trench isolation for 600 V SOI power devices. European Solid-State Device Research (ESSDERC), 2003: 497-450
    [81] M. M. Iqbal, F. Udrea. Technology-Based Figure of Merit (FOM) for High Voltage LDMOSFETs Proof of Value of SOI in Power ICs. IEEE International SOI Conference Proceedings, 2007: 57-58.
    [82] A. O. Adan, T. Naka, A. Kagisawa, et al.. SOI as a Mainstream IC Technology. IEEE International SOI Conference, 1998: 9-12
    [83] A. A. Velichko. Prospects of SOI technology evolution. 3rd Siberian Russian Workshop on Electron Devices and Materials, 2002: 18-22
    [84] J. Kim, T. M. Roh, S. G. Kim, et al.. High-Voltage Power Integrated Circuit Technology Using SOI for Driving Plasma Display Panels. IEEE Transactions on Electron Devices, 2001, 48(6): 1256-1263
    [85] A. Nakagawa, N. Yasuhara, I. Omura, et al.. Prospects of high voltage power ICs on thin SOI. Electron Devices Meeting, 1992: 229-232
    [86] S. Merchant, E. Arnold, H. Baumgart, et al.. Realization of high breakdown voltage (>700V) in thin SOI devices, IEEE ISPSD, 1991: 31-35
    [87] H. Funaki, Y. Yamaguchi, K. Hirayama, et al.. New 1200V MOSFET structure on SOI with SIPOS shielding layer, Proc. IEEE ISPSD, 1998: 25-28
    [88] B. X. Duan, B. Zhang, and Z. J. Li. New thin-film power MOSFETS with a buried oxide double step structure. IEEE Electron Device Lett., 2006, 27(5): 377-379.
    [89]罗小蓉,李肇基,张波.可变低k介质层SOI高压器件耐压特性.半导体学报,2006,27(5): 881-885
    [90] R. Sunkavalli, A. Tamba, B. J. Bbaliga. Step drift doping profile for high voltage DI lateralpower devices. IEEE International SOI Conference, 1995: 139-140
    [91] F. Udrea, A. Popescu, W. I. Milne. 3D RESURF double-gate MOSFET: A revolutionary power device concept. Electronics Letters, 1998, 34(8): 808-809
    [92] B. J. Fishbein, J. D. Plummer. Range distribution of implanted cesium ions in silicon dioxide films. Journal of Applied Physics, 1988, 63(12): 5887-5889
    [93] B. J. Fishbein, J. D. Plummer. Characterization of cesium diffusion in silicon dioxide films using backscattering spectrometry. Applied Physics Letters, 1987, 50(17): 1200-1202
    [94] G. Sixt, A. Goetzberger. Control of Positive Surface Charge in Si-SiO2 Interfaces by Use of Implanted Cs Ions. Applied Physics Letters, 1971, 19(11): 478-479
    [95] Holger Kapels, Robert Plikat, Dieter Silber. Dielectric Charge Traps: A New Structure Element for Power Devices. IEEE ISPSD, 2000: 205-208
    [96] Luo Xiaorong, Li Zhaoji, Zhang Bo, et al.. A novel structure and its breakdown mechanism of SOI high voltage device with shielding trench. Chinese Journal of Semiconductors, 2005, 26(11) :2154-2158
    [97] Xiaorong Luo, Bo Zhang, Zhaoji Li. New High-Voltage (> 1200 V) MOSFET with the Charge Trenches on Partial SOI, IEEE Transactions on Electron Devices, 2008, 55(7): 1756-1761
    [98]郭宇锋.SOI横向高压器件耐压模型和新器件结构研究:[博士学位论文].成都:电子科技大学,2005
    [99] Tomoko Matsudai, Akio Nakagawa. Simulation of a 700 V High-voltage Device structure on a thin SOI-substrate Bias Effect on SOI Devices. IEEE ISPSD, 1992: 272-277
    [100] Stefan Schwantes, Tobias Florian, Thilo Stephan, et al.. Analysis and Optimization of the Back-Gate Effect on Lateral High-Voltage SOI Devices, IEEE Transactions on Electron Devices, 2005, 52(7): 1649-1655
    [101] Stefan Schwantes, Tobias Florian, Michael Graf, et al.. Analysis of the back gate effect on the breakdown behaviour of SO1 LDMOS transistors. Proceeding of the 34th European Solid-State Device Research conference (ESSDERC), 2004: 253-256
    [102] Stefan Schwantes, Josef Fürthaler, Bernd Schauwecker, et al.. Analysis of the Back-Gate Effect on the ON-State Breakdown Voltage of Smart Power SOI Devices. IEEE Transactions on Device and Materials Reliability, 2006, 6(3): 377-385
    [103] Qiao,Ming, Zhang, Bo, Li, Zhaoji, et al.. Analysis of back-gate effect on breakdown behaviour of over 600V SOI LDMOS. Trans. Electronics Letters, 2007, 43 (22): 1231-1233
    [104]乔明,张波,李肇基,等.背栅效应对SOI横向高压器件击穿特性的影响.物理学报,2007,56(7): 3990-3995
    [105] W. Wondrak, R. Held, E.Stein, et al.. A New Concept for High-voltage SOI Devices. IEEE ISPSD, 1992: 278-281
    [106] Y. S. Huang, B. J. Baliga. Extension of RESURF Principle to Dielectrically Isolated Power Devices, IEEE ISPSD, 1991: 27-30
    [107] F. Udrea, A. Popescu, W. Milne. Breakdown analysis in JI, SO1 and partial SO1 power structures. Proceedings 1997 IEEE International SOI Conference, 1997: 102-103
    [108] Y. Dong, M. Chen, J. Chen, et all.. Fabrication of high Quality Patterned SOI Materials by Optimized Low-dose SIMOX. IEEE International SOI Conference, 2004: 60-61.
    [109] T. Sasaki, S. Takayama, K. Kawamura, et all.. Surface Smoothing Effect in Patterned SOI Fabrication with SIMOX Technology. IEEE International SOI Conference, 2003: 48-49.
    [110] H. Moriceau, C. Yalicheff, C. Gorla, et al.. Transfer of patterned Si and SiO2 layers for the fabrication of Patterned and Mixed SOI. IEEE International SOI Conference, 2004: 203-204.
    [111] J. Sun, J. Chen, M. Chen, et al.. The Formation of Sub-micro Partial SOI Materials by SIMOX Technology. IEEE International SOI Conference, 2005: 92-93
    [112] R. Bashir, W. Mckeown, A. E. Kabir. A Simple Process to Produce a High Quality Silicon Surface Prior to Selective Epitaxial Growth. IEEE Electron Device Letters, 1995, 16(7): 306-308
    [113] S. Maruno, T. Nakahata, T. Furukawa, et.al.. Selective Epitaxial Growth by Ultrahigh-Vacuum Chemical Vapor Deposition with Alternating Gas Supply of Si2H6 and Cl2. Japan. J. Applied Physics, 2000, 39(11): 6139-6142
    [114] H. Nagano, T. Sato, K. Miyano, et al.. SOI/Bulk Hybrid Wafer Fabrication Process Using Selective Epitaxial Growth (SEG) Technique for High-End SoC Applications. Japan. J. Applied Physics, 2003, vol.42: 1882-1886
    [115] A. Ogura. Partial SOI/SON Formation by He+ Implantation and Annealing. IEEE International SOI Conference, 2002: 185-186
    [116] A. Ogura. Formation of patterned buried insulating layer in Si substrates by He+ implantation and annealing in oxidation atmosphere. Applied Physics Letters, 2003, 82(25): 4480-4482.
    [117] K. Tan, J. Feng, Y. Liu, et. al.. A Novel Bonding Partial SOI Structure with Polysilicon Transition Layer. 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2006: 218-220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700