集成电路电离辐射效应数值模拟及X射线剂量增强效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究探索半导体器件电路电离辐射损伤效应和机理,提高其抗辐射水平是近年国内外微电子学领域十分重视的课题之一。抗辐射电子学已逐步成为一门综合性很强的边缘学科并发挥着愈来愈重要的作用。针对当前电离辐射效应研究的趋势及存在的不足,论文开展了电离辐射效应数值模拟计算:深入地对X射线引起的材料和器件的剂量增强效应进行了研究。主要内容有两大部分。
     一、电离辐射效应数值模拟
     在国内首次开展了单粒子翻转、单粒子烧毁等单粒子效应的数值模拟计算;模拟了MOSFET的单粒子翻转;力图从理论上建立分析器件SEU的可靠手段。通过输入不同粒子的线性能量传输LET(Line Energy Transfer)值,得到了已知器件结构的收集电荷与LET值的关系曲线。模拟得到的结果与电荷漏斗模型相吻合,表明了所建立的物理模型的正确性。对功率MOSFET器件单粒子烧毁(SEB)效应开展了模拟研究。理论模拟与以往的实验结果比较吻合,证明采取的物理模型的正确性。得到了SEB灵敏度与载流子浓度、基区宽度和发射结掺杂浓度等参数的变化关系。提出了改善SEB的几种加固措施。该模型对于评估器件SEB效应提供了理论模拟手段。有助于国内首次开展的微离子束单粒子效应模拟技术研究,显示了该研究在学术上和适用上的重要价值。所有这些对提高国产芯片抗单粒子辐射能力有很大意义。
     开展了总剂量效应数值模拟研究。分析了总剂量辐照产生的界面陷阱的分布及性质;计算了在加电状态下NMOS、PMOS器件受辐照后的特性。结果表明,对于NMOSFET,费米能级临近导带(N沟晶体管反型)时,受主型界面态为负电荷,施主型界面态陷阱为中性,界面态陷阱将引起正的阈值电压漂移。而对PMOSFET,当费米能级临近价带(P沟晶体管反型)时,施主型界面态陷阱带正电荷,受主型界面态陷阱为中性,界面态陷阱将引起负的阈值电压漂移。模拟计算所提供的较详尽的信息深化了我们对辐照总剂量效应的认识,从而为我们利用器件模拟分析加固思想、措施的正确性,为今后研究新问题、新效应等提供了依据。
     对瞬态辐照剂量率效应进行数值模拟,在国内首次采用增强光电流模型计算瞬态辐照光电流效应,该模型考虑了高注入对过剩载流子寿命的影响以及衬底电场的效应。对于高阻材料这些效应不容忽视。模型对正确预估微电路PN结瞬态电离辐射响应提供了很好的评估手段。
     模拟计算了不同上升时间的快前沿电磁脉冲对PN结的毁坏效应。详细地给出了器件正常工作、失效直至烧毁的全过程。
    
     集成电路电离辐射效应数值模拟及X射线剂量增强效应研究
     二、X射线剂量增强效应研究
     设计研制了多层平板电离室;首次用该电离室测量了能量为30~100keV X射
    线在三种材料界面附近的辐射剂量梯度分布,给出了不同材料界面剂量增强因子。
    实验数据与理论M。me-Carlo粒子输运方法的模拟计算结果符合很好。这说明模
    拟结果正确反映了不同材料界面的次级电子输运规律,其物理模型是正确的,模
    拟方法是可信的。
     在国内首次提出材料界面的剂量增强效应与器件中同样界面出现的剂量损伤
    增强效应不同的观点,剂量增强因子要明显大于剂量损伤增强因子。这种概念区
    别既抓住物理要害,也为器件抗辐射加固提供依据。在学术上,对某些混乱的数
    据或提法找到了较合理的解释。并通过实验证实了这种提法的正确性。
     Y、X射线电离辐射效应的等效关系研究。设计、研制了“相对测量法的双层
    膜”实验装置,成为研究器件X射线损伤增强效应和X、Y射线损伤等效性的有力
    工具。首次开展了CMOS器件4069、浮栅器件AT29C256和AT28fl56剂量增强效
    应研究。使用直流X光机准确测量器件的损伤增强因子。并与钻源数据进行比对,
    给出了CMOS器件剂量损伤增强因子。在BSgy装置上,开展了大规模集成电路
    浮栅器件的X射线损伤研究,给出浮栅器件y、X射线的剂量损伤等效关系。在
    DPF装置首次开展CMOS器件瞬态剂量率翻转增强效应研究。建立了相应的X射
    线剂量损伤增强效应研究方法和测试系统,为器件二射线抗辐射加固技术研究提
    供了实验技术支撑。
Recently years, it is becoming one of the important topics to study the effects and mechanisms of ionizing radiation for semiconductor devices and integrated circuits and to improve their radiation hardening in microelectronics field. Radiation hardening electronics has been become a comprehensive marginal subject and making full use of important action. The effects of ionizing radiation are simulated and dose enhancement effects for X-ray are studied in the paper. The main contributions in this thesis are as following:
    
    Using two-dimensional numerical method, SEU for MOSFET and SEB for N channel VDMOSFET are simulated. From the theory, a reliable approach is set up for analyzing device 's SEU. Collective charge of upset depending on LET for specific device structure is calculated for different particles LET. The results of simulation are consistent with the model of charging funnel. The effect of Single Event Burnout is investigated. The simulation results match experimental results well and are of great interest for a better understanding SEB of the occurrence of events. The effects of the minority carrier lifetime in the base, the base width and the emitter doping concentration on SEB susceptibility are verified. Some hardening solutions to SEB are provided. It is helpful to study the effects and mechanisms of Single event Phenomenon using heavy ion micro beam.
    
    Donor/Accept nature of total dose radiation-induced interface traps is analyzed. The post-irradiation behavior of the MOSFET has been simulated. It can be seen that the acceptor interface traps are negatively charged and the donor interface traps are neutral when the Fermi level is near conduction band (inversion for N-channel MOSFET), leading to a positive threshold voltage shift contribution from the interface traps. When the Fermi level is near the valence band (inversion for P-channel MOSFET), the accept interface traps are neutral, and the donor interface traps are positively charged, leading to a negative threshold voltage shift contribution from the interface traps. The model is found to be in good agreement with experimental results. An excellent evaluation approach is provided for accurately prediction of total dose radiation hardening to ionizing radiation.
    
    Transient radiation response for microcircuit PN junctions with enhancement photo current models is calculated. On the basis of Wirth-Rogers photocurrent models, the enhanced models include two additional effects such as high injection effects on excess minority carrier lifetime and electric fields in the substrate. These effects are most
    
    
    
    pronounced in high resistively material. An excellent evaluation approach is provided for accurately prediction of transient response of modem microcircuit PN junctions to ionizing radiation. The behavior of PN junction device that is under EMP with different rapid-rise time has been simulated and analyzed. The effects such as two-dimensional current passage are given which could not be provided by one-dimensional device simulation. The whole process during which the device is under working, lapse and burnout are described in detail.
    
    A multiple parallel plate Aluminum ionization chamber has been designed for the study of dose distribution at and near the interface of different materials. Using the ionization chamber the measurements of dose gradient distribution at and near the interface of Kovar/Au1Al~ Pb/AL Ta/Al have been done for 30-lOOkeV x-rays with wide spectrum isotopic radiation accelerator and DEFs are provided. The experimental results are firstly published at home and abroad. DEF for interface of different materials is calculated by Monte-Carlo simulation of particle transportation, and the results are consistent with measured dose-enhancement factor. A reliable evaluation approach of theory is provided for studying x-ray~s dose enhancement.
    
    It has been proven that dose enhancement factors (DEF) near the different interface materials are different from dose damage enhancement factors (DDEF) near the same different int
引文
第一章
    [1.1] 赖祖武,抗辐射电子学—辐射效应及加固原理,国防工业出版社,1998.
    [1.2] 李振洽编,辐射加固原理和技术专辑,系统工程与电子技术编辑部,1982
    [1.3] 曹建中,半导体材料的辐射效应,科学出版社,1993.
    [1.4] 乔登江,核爆炸物理概论,原子能出版社,1988.
    [1.5] T.P. Ma, Ionizing radiation effects in MOS devices and circuits, United States of America, 1989.
    [1.6] Devine R A B, The structure if SiO_2 its defects and radiation hardness, IEEE Trans. Nuc. Sci, 1994, Vol.41, No.6, p452.
    [1.7] W.L.Chadsey, X-ray dose enhancement, Vol.Ⅰ: Summary Report, RADC-TR-76-159, ADAC26248.
    [1.8] 张义门等,半导体器件计算机模拟,电子工业出版社,1991.
    [1.9] 吉利久,计算微电子学,科学出版社,1990.
    [1.10] D.M.Long, D.G.Millward, dose enhancement effects in semiconductor devices, IEEE Trans. Nuc. Sci. 1982, Vol.29, No.6, p1980.
    [1.11] D.M. Fleetwood, The response of MOS devices to dose-enhancement low-energy radiation, IEEE Trans. Nuc. Sci. 1986, Vol.33, No.6, p1245.
    [1.12] D.M.Fleetwood, Accounting for dose-enhancement effects with CMOS transistors, IEEE Trans. Nuc. Sci. 1985, Vol.32. No.6, p4369.
    [1.13] M.R.Shaneyfelt Charge yield for Cobalt-60 and 10-keV X-ray irradiation of MOS devices, IEEE Trans. Nuc. Sci. 1991, Vol.38, No.6, p1187.
    [1.14] F.M.Roche, CMOS inverter design-hardened to the total dose effect, IEEE Trans. Nuc. Sci. 1996, Vol.43, No.6, p3097.
    [1.15] D.M.Fleetwood, Using a 10keV X-ray for hardness assurance, IEEE Trans. Nuc. Sci. 1986, Vol.33, No.6. p1330.
    [1.16] C.M.Dozier, Defect production in SiO_2 by X-ray and Co-60 radiation, IEEE Trans. Nuc. Sci. 1985, Vol.32, No.6, p4363.
    [1.17] Edward A, Burke, Radiation effects on microelectronics: forecasting tomorrow's problem, IEEE Trans. Nuc. Sci. 1990, Vol.37, No.6, p1553.
    [1.18] 黄胜明等,瞬态辐射环境下的电路分析程序 LSTRAC-2.微电子学与计算机,1989(12).
    [1.19] 陈盘训,双极晶体管X射线辐射剂量增强效应,核电子学与探测技术,1987,17(1),p7.
    
    
    第二章
    [2.1] T. R oldham. Analysis of damage in MOS devices for several radiation enviroments, Nucl. Sci. 1984, Vol.31, No.6, p1236.
    [2.2] D.Zupac, K.F. Galloway, P. Khosropour, et al, Separation of effects of oxide-trapped charge and interface trapped charge on mobility in irradiated power MOSFETs, Nucl. Sci. 1993, Vol.40, No.6, p1307.
    [2.3] 郭维廉,硅-二氧化硅界面物理,国防工业出版社,1989.
    [2.4] 曹建中,半导体材料的辐射效应,科学出版社,1993.
    [2.5] T.P. Ma, Ionizing radiation effects in MOS devices and circuits, United States of America, 1989.
    [2.6] P.M.Lenahan, A comprehensive physically predictive model for radiation damages in MOS systems, IEEE Trans. Nuc. Sci. 1998, Vol.45, No.6, p2413.
    [2.7] J.F. Conley, Jr., Quantitative model of radiation induced charge trapping in SiO_2, IEEE Trans. Nuc. Sci. 1997, Vol.44, No.6, p1804.
    [2.8] 任迪远,余学锋,陆妩,MOSFET电离辐射感生跨导退化的简单模型,半导体学报,1995,Vol.16,No.7,p533.
    [2.9] 宋钦岐,MOS器件的电离辐照效应,MOS器件电离辐照效应文集,航空航天工业部科学技术公司,1992.
    [2.10] 宋钦岐,MOS电容的电离辐照效应及其加固技术研究,抗核加固,1986,Vol.3,No.1,p33.
    [2.11] D.A.Neamen, Modeling of MOS and post irradiation effects, IEEE Trans. Nuc. Sci. 1984, Vol.31, No.6, p1439.
    [2.12] 张国强,含F、Cl、NMOS结构的电离辐射/热载流子效应、机理及加固技术研究,清华大学大学博士论文,1999.
    [2.13] 叶良修,小尺寸半导体器件的Monte Carlo模拟,科学出版社,1997.
    [2.14] 何野等编,半导体器件的计算机模拟方法,科学出版社,1989.
    [2.15] S.K.Lai, Interface trap generation in silicon dioxide when electrons are captured by trapped holes, J.Appl. Phys, 54(5), May 1983.
    [2.16] K.Naruke, Radiation-induced interface states of poly-Si Gate MOS capacitors using low temperature gate oxidation, IEEE Trans. Nuc. Sci. 1983, Vol.30, No.6, p4054.
    [2.17] Harold E.Boesch, Interface-state generation in thick SiO_2 layers, IEEE Trans. Nuc. Sci. 1982, Vol.29, No.6, p1446.
    
    
    [2. 18] H.Edwin, Hole transport and trapping field oxide, IEEE Trans. Nuc.Sci. 1985, Vol.32, No.6, p3940.
    [2. 19] Viktor zekeriya, Dependence of X-ray generation of interface on gate metal induced interfacial stress in MOS structure, IEEE Trans. Nuc.Sci. 1984, Vol.31, No.6, p1261.
    [2. 20] C.M.Dozier, Photon energy dependence of radiation effects in MOS structures, IEEE Trans. Nuc.Sci. 1980, Vol.27, No.6, p1694.
    [2. 21] H.E.Boesch, Saturation of threshold voltage shifts in MOSFETS at high total dose, IEEE Trans. Nuc.Sci. 1985, Vol.33, No.6, p1191.
    [2. 22] C.M.Dozier, Use of the sub threshold behavior to compare X-ray and Co-06 radiation-induced defects in MOS transistors, IEEE Trans. Nuc.Sci. 1986, Vol.33, No.6,p1324.
    [2. 23] Lai S K, Interface trap generation in silicon dioxide when electrons are captured by trapped holes, J Appl phys, 1983, Vol.54, No.6, p2540.
    [2. 24] Wang Y, Ma T P, Barker R C. Orientation dependence of interface-trap transformation, IEEE Nuc.Sci., 1986, Vol. 33, No.6, p1324.
    [2. 25] Galloway K F, Schrimpt P D. MOS devices degradation due to total dose ionizing radiation in the natural space environment, Microelectronics J, 1990, Vol. 21,No.6,p67.
    [2. 26] Tsai M H, and Ma T P Effect of radiation-induced traps on 1/f noise in MOSFETs, IEEE Nuc.Sci., 1992. Vol. 39. No.6, p2178.
    [3. 1] J.R.Hauser et al, Ion tracks shunt effects in the multi-junction structures, IEEE Trans. Nuc.Sci. 1985, Vol.32, No.6. p4115.
    [3. 2] F. W Sexton, Micro beam studies of single event effects, IEEE Trans. Nuc. Sci. 1996, Vol.43, No.6, p687.
    [3. 3] Richard L.Johnson Jr. et al. Simulation approach for modeling single event upsets on advanced CMOS SRAMs IEEE Trans. Nuc.Sci. 1985, Vol.32, No.6, p4122.
    [3. 4] A.B. Campbell et al. Charge collection in CMOS/SOS structures, IEEE Trans. Nuc.Sci. 1985, Vol.32, No.6. p4128.
    [3. 5] 郭红霞,张义门,陈雨生,MOSFET单粒子翻转效应的二维数值模拟.西安电子科技大学学报.已录用
    [3. 6] H.L. Grubin et al, Numerical studies of charge collection and funneling in
    
    silicon device IEEE Trans. Nuc.Sci. 1984, Vol.31, No.6, p1161.
    [3. 7] paul E Dodd, Device simulation of charge collection and single-event upset, IEEE Trans. Nuc.Sci. 1996, Vol.43, No.6, p561.
    [3. 8] Ph.Rose et al, determination of key parameter for SEU Occurrence using 3-D full cell SRAM simulation, IEEE Trans. Nuc.Sci. 1999, Vol.46, No.6, p1354.
    [3. 9] 郭红霞,张义门,陈雨生.N-沟道功率MOSFETs单粒子烧毁的二维数值模拟,半导体技术,已投稿。
    [3. 10] P.E. Dodd et al, Three-dimensional of charge collection and multiple-bit upset in Si devices, IEEE Trans. Nuc.Sci. 1994, Vol.41, No.6, p2005.
    [3. 11] R.L. Woodruff et al. Three-dimentional numerical simulation of single event upset of an SRAM cell, IEEE Trans. Nuc.Sci. 1993, Vol.40, No.6, p1795.
    [3. 12] Yves Moreau et al, Evaluation of the upset risks in CMOS SRAM through full three dimensions simulation, IEEE Trans. Nuc.Sci. 1995, Vol.42, No.6, p1789.
    [3. 13] Ph.Roche et al, SEU response of an entire SRAM cell simulated as one continious three dimensional device domain, IEEE Trans. Nuc.Sci. 1998, Vol.45, No.6, p2534.
    [3. 14] A.A. Keshavarz, et al., Computer simulation of ionizing radiation burnout in power MOSFETs IEEE Trans. Nuc.Sci. 1988, Vol.35, No.6, p1422.
    [3. 15] G.H.Johnson, et al., A review of the techniques used for modeling single event effects in power MOSFETs IEEE Trans. Nuc.Sci. 1996, Vol.43, No.2, p546.
    [3. 16] J.R.Brews, et al., A conceptual model of single-event gate-rupture in power MOSFETs, IEEE Trans. Nuc.Sci. 1993, Vol.40, No.6, p1959.
    [3. 17] 唐本奇等,原子能科学技术, 2000, Vol.34, No.4,p339.
    [3. 18] W.J.Stapor and P.T.McDonald,Practical approach ion track energy distribution, J.Appl.phys.Vol 64. No 9, pp4430-4434, November 1988.
    [3. 19] Eric Lorfevre, et al., SEB occurrence in a VIP, influence of the epi-substrate junction IEEE Trans. Nuc.Sci. 1998, Vol.45, No.6, p1624.
    [3. 20] Charles Dachs, et al., Evidence of the ion's impact position effect on SEB in N-channel power MOSFETs, IEEE Trans. Nuc.Sci. 1993, Vol.40, No.6, p2167.
    [3. 21] M.de la Bardonnie, et al.. Characterization method for ionizing radiation degradation in power MOSFETs, IEEE Trans. Nuc.Sci. 1995, Vol.42, No.6, p1622.
    [3. 22] Eric Lorfevre, et al., Heavy ion induced failures in a power IGBT, IEEE Trans. Nuc.Sci. 1997, Vol.44, No.6, p2353.
    [3. 23] Gregory H.Johnson, et al.. Simulation single-event burnout of n-Channel power MOSFETs, IEEE Trans. Nuc.Sci. 1993, Vol.40, No.6, p1001.
    
    
    [3.24] Johnson Richard L, et al. Simulation approach for modeling single event upset. IEEE Trans. Nuc. Sci., 1985, Vol.33, No.6, p4122.
    [3.25] E.G.Stassinopoulos, et al., Charge generation by heavy ions in power MOSFETs burnout space prediction, and dynamic SEB sensitivity, IEEE Trans. Nuc. Sci. 1993, Vol.39, No.6, p1704
    [3.26] 陈雨生,周辉,郭红霞,重粒子微束单粒子效应研究中的几个问题,重粒子微束单粒子效应机制研讨会,北京,2001年12月.
    [3.27] Charles.Dachs, et al.,Simulation aided hardening of N-channel power MOSFETs to prevent single event burnout, IEEE Trans. Nuc. Sci. 1995, Vol.42, No.6, p1935.
    [3.28] Frank Roubaud, et al., Experimental and 2D simulation study of the single-event burnout in N-channel power MOSFETs, IEEE Trans. Nuc. Sci. 1993, Vol.40, No.6, p1952.
    [3.29] P.J.McNulty, Predicting SEU phenomena in space, 1990 IEEE short course Mocrielectronics for the natural radiation enviroment of space, pp3-1.
    [3.30] 贺朝会,半导体存储器的单粒子效应研究,西安交通大学博士论文,1999.
    第四章
    [4.1] 赖祖武,抗辐射电子学—辐射效应及加固原理,国防工业出版社,1998
    [4.2] 包宗明,王儒全等译,半导体器件的核辐射加固,原子能出版社,1985
    [4.3] 何野等编,半导体器件的计算机模拟方法,科学出版社,1989,12
    [4.4] 郭红霞,张义门,陈雨生.微电路 PN 结瞬态电离辐射响应二维数值模拟.强粒子与激光束.2002年第一期发表
    [4.5] Wirth, J.I, and S.C. Rogers, Transient response of transistors and diodes to ionizing radiation, IEEE Trans. Nuc. Sci. 1964, Vol-11. No.6, p24.
    [4.6] Paolo Pavan, A complete radiation reliability software simulator, IEEE Trans. Nuc. Sci. 1994, Vol.41, No.6, p2619.
    [4.7] Bertil Sigfridsson, Transient radiation effects in CMOS structures related to geometrical dimensions and nuclear radiation pulse forms, IEEE Trans. Nuc. Sci. 1990, Vol.37, No.6, p1744.
    [4.8] Edward W. Enlow, Photocurrent modeling of modern microcircuit PN junction, IEEE Trans. Nuc. Sci. 1988, Vol.35. No.6, p1467.
    [4.9] T.P. Ma, Ionizing radiation effects in MOS devices and circuits, United States of America, 1989.
    [4.10] MingJer, et al. A structure -Oriented model for determine the substrate spreading resistance in BULK CMOS latch up paths and its application in holding current prediction, Solid state Electronics, 1985, Vol.28, No.6, p855.
    
    
    [4.11] L.W. massengill, Analysis of Transient radiation upset in a 2K SRAM, IEEE Trans. Nuc.Sci. 1985, Vol.32, No.6, p4026.
    [4.12] 曹建中等编,半导体材料的辐射效应,科学出版社,1993.
    [4.13] 吉利久,计算微电子学,1990,科学出版社
    [4.14] 刘恩科等,半导体物理学,1994,国防工业出版社
    [4.15] Lloyd W. massengill, Transient radiation upset simulation of CMOS memory circuits, IEEE Trans. Nuc. Sci. 1984, Vol.31, No.6, p1337.
    [4.16] David M. Long, Transient response models for epitaxial transistors, IEEE Trans. Nuc. Sci. 1983, Vol.30, No.6, p4131.
    [4.17] A.N. Ishaque, Photocurrent modeling at high dose rates, IEEE Trans. Nuc. Sci. 1989, Vol.36, No.6, p2092.
    [4.18] James P. Raymond. Analysis and Testing of radiation-induced effects in microcircuits, Con. Short course Notes Monrery, CA. 1981.
    [4.19] L.W.雷盖特等著 段中译 核电磁脉冲辐射与防护,1980,国防工业出版社
    [4.20] 余稳等,电磁脉冲对半导体器件的电流模式破坏,强激光与粒子束,1999,11(3):355.
    [4.21] D.C. Wunsch, Determination of the threshold failure levels of semiconductor diodes and transistors due to pulsed power voltages, IEEE Trans. Nuc. Sci. 1968, Vol. 15, No.6, p244.
    [4.22] Orvis W.J. A review of the physics and models for burnout of semiconductor devices, UCRL-53573, 1984.
    [4.23] J.S. Yuan, Semiconductor devices physics and simulation, Plenum Press. New York and London, 1998.
    [4.24] S.Selberherr, Advanced physical models for silicon device simulation, Springer-Verlag Wien, New York, 1998.
    [4.25] 郭红霞,周辉,陈雨生,张义门.不同上升时间快前沿电磁脉冲引起 PN 结失效、烧毁的二维数值模拟.微电子学与计算机.200年第一期发表
    [4.26] Bertil Sigfridsson, Transient radiation effects in VMOS structures related to geometrical dimensions and nuclear radiation pulse forms, IEEE Trans. Nuc. Sci. 1990, Vol.37, No.6, p1744.
    第五章
    [5.1] Mcwhorter P J, Winokur P S. "Donor/Acceptor nature of radiation-induced interface traps", IEEE Trans. Nuc. Sci. 1988, Vol.35, No.6, p1154.
    
    
    [5.2] Saks N S, Brown D B. Interface trap formation via the two-stage H+ process, IEEE Trans. Nuc. Sci. 1989, Vol.36, No.6, p1848.
    [5.3] Mclean F B, Boesch H E. Time-dependent degradation of MOSFET channel mobility following pulsed irradiation, IEEE Trans. Nuc.Sci. 1989, Vol.36, No.6, p1772.
    [5.4] Ma T P. Ionizing radiation effects in MOS devices and circuits, printed in the United States of America, 1989.
    [5.5] 张义门,半导体器件计算机模拟,电子工业出版社,1991.
    [5.6] S.M.Sze,半导体器件物理,电子工业出版社,1987.
    [5.7] Schwank J R, Winokur P S. Radiation-induced interface-face generation in MOS devices,IEEE Trans. Nuc. Sci. 1986, Vol.33, No.6, p1178.
    [5.8] Boesch H E, Time-dependent interfave trap effects in MOS devices, IEEE Trans. Nuc. Sci. 1988, Vol.35, No.6, p1160.
    [5.9] 郭红霞,张义门,陈雨生.MOS器件辐照引入的界面态陷阱性质.固体电子学与进展.已录用.
    [5.10] Sake N S, Time dependence of interface trap formation in MOSFETS following pulse irradiation, IEEE Trans. Nuc. Sci. 1988, Vol.35, No.6, p1168.
    [5.11] Stahlbush R E, Post-irradiation behavior of the interface states density and the trapped positive charge. IEEE Trans. Nuc.Sci. 1990, Vol.37, No.6, p1641
    [5.12] Jupina M A, Lenahan P M, A spin dependent recombination study of radiation induced defects at and near the Si/SiO_2 interface, IEEE Trans. Nuc. Sci. 1989, Vol.36, No.6. p1800.
    [5.13] Lelis A J., The nature of the trapped hole annealing process, IEEE Trans. Nuc. Sci. 1989, Vol.36. No.6, p1808.
    [5.14] 何宝平,张正选,郭红霞.原子能科学技术.星用典型CMOS器件54HC04 ~(60)Co辐射效应研究.Vol.34.No.4,p334
    [5.15] S.K.Lai Two-carrier nature of interface-state generation in hole trapping and radiation damage, Appl. Phys.lett. 39(1), 1 July 1981.
    [5.16] C.L.Wilson, Modeling of ionizing effects in short-channel MOSFETS, IEEE Trans. Nuc. Sci. 1982, Vol.29, No.6, p1676.
    [5.17] Tim Grotjohn, A parametric short-channel MOS transistor model for sub threshold and strong inversion current, IEEE Trans. Electron Devices, Vol.31, No.2, February 234(1984).
    第六章
    
    
    [6.1] E.Aburke, The direct measurement of dose enhancement in GAMMA tests facilities, IEEE Trans. Nuc. Sci. 1989, Vol.36, No.6, p1890.
    [6.2] J.R. Solin, Electron collision doses enhancement, IEEE Trans. Nuc. Sci. 2000, Vol.47, No.6, p2447.
    [6.3] R.R.Harta, Comparsion of measured dose enhancement effects in LiF TLDs with 2-D Monte Carlo predictions, IEEE Trans. Nuc. Sci. 1986, Vol.33, No.6, p1258
    [6.4] J.M.Benedetto, Dose and energy dependence interface trap formation in Cobalt-60 and X-ray environments, IEEE Trans. Nuc. Sci. 1988, Vol.35, No.6, p1260.
    [6.5] D.M.Fleetwood, Comparion enhanced device responce and predicted X-ray enhancemaent on MOS oxides, IEEE Trans. Nuc. Sci. 1988, Vol.35, No.6, p1265.
    [6.6] 郭红霞,陈雨生,张义门等,多层平板电离室测量不同材料界面剂量分布及其蒙特卡洛模拟,物理学报,2001,Vol.50,No.8,p1545
    [6.7] 郭红霞,张义门,陈雨生.x射线对Kovar封装材料的剂量增强效应的Monte—Carlo计算.核电子学与探测技术.Vol.21,No.5,p392.
    [6.8] J.C. Garth, An algorithm for calculating dose profiles in multi-layers devices using a personal computer, IEEE Trans. Nuc. Sci. 1986, Vol.33, No.6, p1266.
    [6.9] J.A.Wall, Gamma doses distributions at and near the interface of different materials, IEEE Trans. Nuc. Sci. 1970, Vol.17, No.6, p305.
    [6.10] M.Simons, Member, IEEE, dose enhancement in a room Cobalt-60 source, IEEE Trans. Nuc. Sci. 1997, Vol.44, No.6, p2052.
    [6.11] J.C.Garth, A comprehensive comparison of CEPXS/ONELD calculations of dose enhancement with the Co-60 data set of wall and Burke, IEEE Trans. Nuc. Sci. 1996, Vol.43, No.6, p2731.
    [6.12] E.Aburke, The direct measurement of dose enhancement in GAMMA tests facilities, IEEE Trans. Nuc. Sci. 1989, Vol.36, No.6, p1890.
    [6.13] 曹建中,半导体材料的辐射效应,科学出版社,1993.
    [6.14] W.L.FilipponeTwo-dimensional transport equation calculations of dose profiles due to electron beam irradiation, IEEE Trans. Nuc. Sci. 1987, Vol.34, No.6, p1564.
    [6.15] J.C.Garth, Gamma-ray transport through material layers, IEEE Trans. Nuc. Sci. 1997, Vol.44, No.6, p2058.
    [6.16] J.A.Wall, Gamma doses distributions at and near the interface of different materials, NWER Subtask TA040.
    [6.17] J.C.Garth, Monte Carlo analysis of Dose profiles near photon irradiated material interfaces, IEEE Trans. Nuc. Sci. 1975, Vol.22, No.6, p2562.
    [6.18] T.P. Ma Ionizing radiation effects in MOS devices and circuits, printed in the United States of America, 1989
    
    
    [6.19] 汲长松编,核辐射探测器及其实验技术手册,原子能出版社,1990.
    [6.20] [美]W.E.Horne编著,辐射对电子元器件的影响,魏观译,北京,国防工业出版社,1974.
    [6.21] C.M. Dozier and D.B. Brown, effect of photon energy on the response MOS devices, IEEE Trans. Nul. Sci. 1981, Vol.28, No.6, p4137.
    第七章
    [7.1] W.L. Mclaughlin, L. Chalkley, measurement of radiation dose distribution with photochromic materials, 1965, radiology 84, p124.
    [7.2] W.L.Chadsey, X-ray dose enhancement, Vol.Ⅰ: Summary Report, RADC-TR-76-159, ADAC26248.
    [7.3] D.M.Long, D.G.Millward, dose enhancement effects in semiconductor devices, IEEE Trans. Nuc. Sci, 1982, Vol.29, No.6, p1980.
    [7.4] 郭红霞,陈雨生,张义门等,稳态、瞬态X射线辐照引起的CMOS器件剂量增强效应研究,物理学报,2001,Vol.50,No.12,p2279
    [7.5] 郭红霞,陈雨生,张义门.浮栅ROM器件X射线剂量增强效应实验研究.物理学报.已投稿
    [7.6] 郭红霞,陈雨生,张义门.同步辐射装置X射线引起的剂量增强效应实验研究.高能物理与核物理.已投稿
    [7.7] 郭红霞,陈雨生,张义门.双层膜结构测量CMOS器件X射线相对剂量增强因子及其理论模拟.核电子学与探测技术.已录用
    [7.8] D.E.Beutlter, Variations in semiconductor device response in a medium-energy X-ray dose-enhancement environment, IEEE Trans. Nuc. Sci, 1987, Vol.34, No.6, p1544.
    [7.9] J.R. Solin, Electron collision doses enhancement. IEEE Trans. Nuc. Sci. 2000,Vol.47, No.6, p2447
    [7.10] T.P. Ma, Ionizing radiation effects in MOS devices and circuits, printed in the United States of America, 1989.
    [7.11] D M Long, et al., Handbook for dose enhancement effects in electronic devices, RADC-TR-83-84. 1983.
    [7.12] D.M. Fleetwood, Comparison of enhancement device response an d predicted X-ray dose enhancement effects on MOS oxides, IEEE Trans. Nuc. Sci. 1988, Vol.35, No.6, p1265.
    [7.13] J.R. Turinetti, determination of low energy (<160keV) X-ray spectra verification of transport calculations through silicon, IEEE Trans. Nuc. Sci., 1998, Vol44, No.6, p2065.
    
    
    [7.14] H.R. Schwartz, D.K. Nichols and A.H. Johnston, Single-Event Upset in Flash Memories, IEEE Trans. Nucl. Sci., 1997, Vol.44, No.6, p2315.
    [7.15] 刘寅 朱钧,一种FLASH存贮单元的结构及功能分析,微电子学,第28卷,第1期(1998):32.
    [7.16] T.F. Wrobel, Radiation Characterization of a 28C256 EEPROM, IEEE Trans. Nucl. Sci., 1989, Vol.36, No.6, p2241.
    [7.17] A.I. Chumakov, and A.V.Yanenko, Radiation and Post irradiation Functional Upsets in CMOS SRAM, IEEE Trans. Nucl Sci, 1996, Vol. 43, No. 6, p3109.
    [7.18] P.T. McDonald, W.J. Stapor, A.B. campbell, et al, Non-Random Single Event Upset Trends, IEEE Trans. Nucl. Sci., 1989, Vol. 36, No. 6, p2324.
    [7.19] T.F. Wrobel, Radiation Characterization of a 28C256 EEPROM, IEEE Trans. Nucl. Sci., 1989, Vol. 36, No. 6, p2241.
    [7.20] E.S.S nyder, P.J. McWhorter, T.A. Dellin, et al, Radiation Response of Floating Gate EEPROM Memory Cells, IEEE Trans. Nucl. Sci., 1989, Vol. 36, No. 6, p2131.
    [7.21] 贺朝会,陈晓华,刘恩科等,EEPROM 28C64和28C256的14MeV质子辐照特性,微电子学,1999,29(4):262-266
    [7.22] D.E.Beutlter, Variations in semiconductor device response in a medium-energy X-ray dose-enhancement environment, IEEE Trans. Nuc. Sci. 1987, Vol.34, No.6, p1544.
    [7.23] 陈盘训,X射线剂量增强环境下电子系统辐射效应和加固,核电子学与探测技术,1987,Vol.12,No.2,p81
    第八章
    [8.1] 李振洽编,辐射加固原理和技术专辑,系统工程与电子技术编辑部,1982
    [8.2] S.M.Sze,半导体器件物理,电子工业出版社,1987.
    [8.3] 曹建中,半导体材料的辐射效应,科学出版社,1993.
    [8.4] 中国工程物理研究所应用电子学研究所编,半导体器件瞬时辐射效应手册,抗核加固,1996,Vol.13,No.2.
    [8.5] D.E.BEUTLER, Comparison of photo current enhancement and enhancement in CMOS devices in a medium-energy X-ray environment, IEEE Trans. Nuc. Sci. 1990, Vol.37, No.6, p1541.
    [8.6] 郭红霞,陈雨生,张义门等,稳态、瞬态X射线辐照引起的CMOS器件剂量增强效应研究,物理学报,2001,Vol.50,No.12,p2279.
    
    
    [8.7] G.J.Brucker, Flash X-ray test of the CMOS/SOS scp-star ALU, IEEE Trans. Nuc. Sci. 1984, Vol.31, No.6, p1579.
    [8.8] D.M.Fleetwood, Using laboratory X-ray and Cobalt-60 irridiation to predict CMOS device response in Strategic and space enviroments, IEEE Trans. Nuc. Sci. 1988, Vol.35, No.6, p1497.
    [8.9] D.M. Fleetwood, The response of MOS devices to dose-enhancement low-energy rediation, IEEE Trans. Nuc. Sci. 1986, Vol.33, No.6, p1245.
    [8.10] D.M, Fleetwood, Accounting ford dose-enhancement effects with CMOS transistors, IEEE Trans. Nuc. Sci. 1985, Vol.32, No.6, p4369.
    [8.11] P.M.Lenahan, A comprehensive physically predictive model for radiation damages in MOS systems, IEEE Trans. Nuc. Sci. 1998, Vol.45, No.6, p2413.
    [8.12] A. Ishaqe, M. Becker, and R.C. Block, Extended photo current modeling with application to latch up analysis.
    [8.13] Enrico Sangiorgi, Bruno Ricco, and L. Selmi., Three dimensional distribution of CMOS latchup current, IEEE Electron Device letter EDL-8, 1987, p154.
    [8.14] James P. Raymond, Analysis and testing of radiation induced effects in microcircuit, Nuclear and space radiation effects. Conf. Short course Notes, monterey, 1981.
    [8.15] 郭红霞、龚建成,何宝平等.DPF脉冲X射线能谱测量,核技术,2000 Vol.23,No.1,p22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700