目标时域EM散射特性数值计算方法与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标瞬态电磁响应的获取对于电磁脉冲激励研究、高分辨雷达技术、目标识别技术等具有重要意义,本文以精确获取金属目标的瞬态/宽带电磁散射特征为目的,研究了基于时域积分方程的瞬态电磁散射数值计算方法和实验测量技术。深入探讨了制约时域积分方程算法广泛应用的一些问题;详细分析了微波暗室条件下目标时域电磁散射测量技术和数据处理方法。在此基础上,提出了更为稳定的时域积分方程数值算法;实现了用于电大尺寸目标散射计算的快速算法;并获取了多组复杂金属目标在暗室条件下的高精度散射测量数据。
     论文首先回顾了金属目标时域电磁散射问题中积分方程(电场积分方程(EFIE)、磁场积分方程(MFIE)以及混合积分方程(CFIE))的建立方法,以及基本MOT(Marching-On-In-Time)技术的时间递推求解过程;给出了目标表面建模剖分的方法,设计制造了几种缩比目标模型;分析了MOT算法中的奇异性积分、后时不稳定的原因以及计算量缩减等问题,并提出了可行性解决方案。
     其次,针对时域积分方程求解目标电磁散射时的后时不稳定问题,研究了基于加权Laguerre多项式展开的MOT技术变形算法MOO(Marching-On-In-Order)算法以及采用隐式步进方案的隐式算法(IMPT)思想在电磁散射求解中的应用。分别通过对Hertz矢量展开系数的误差逼近和全域基函数加权Laguerre多项式的时频振荡特性分析,提出了MOO算法中Laguerre展开阶数的判定方法和利用频谱信息改善MOO算法低能区域振荡性的方法;推导了不同差分形式的磁场积分方程隐式算法求解式,与电场积分方程相结合建立了九种形式的混合积分方程,通过实际应用分析比较了它们的性能;此外,通过对电场积分方程进行微分,去除掉电标位中对电流展开系数的时间积分项,提出了一种基于二阶差分的电场积分方程隐式算法(SOD-IMPT);解决了适用于任意封闭或开放表面散射体散射计算的后时发散振荡问题,并且使得算法的执行效率得以大幅度提高。
     然后,针对电大尺寸目标快速计算的计算量缩减问题,将时域平面波(PWTD)技术成功应用于采用混合积分方程的IMPT算法进行目标的电磁散射计算。分析了PWTD+MOT的快速算法思想,并将两层PWTD(TLPWTD)和多层PWTD(MLPWTD)技术成功应用于本文提出的基于二阶差分的电场积分方程隐式算法的加速运算,使得时域积分方程方法解决电大尺寸目标电磁散射问题的能力进一步增强。
     最后,研究了暗室瞬态电磁测量系统的工作原理以及测量方法。给出了如何从测量数据中消除杂波、噪声从而获取有效数据的处理方法,采用本实验室的暗室测量系统对几种复杂金属目标的瞬态电磁散射特性进行了测量,获取了几种典型目标模型的瞬态/宽带测量数据,并与数值计算得到的数据进行比较,相互验证了有效性。
The recently developments in the areas of high resolution radar technology, electromagnetic pulse simulation studies, and target identification techniques related problems where the transient response plays major role. In order to obtain the wide-band electromagnetic scattering characteristics of arbitrary shaped conducting structures, a computation method which based on the Time-Domain-Integral-Equation (TDIE) and measurement method in transient electromagnetic scattering laboratory for electromagnetic scattering were investigated in this thesis. As two important reasons which restrict the the progress of the TDIE arithmetic, the late-time instabilites and large quantity of computation of TDIE method were studied deeply. Measurement theory and technique in a shielded anechoic chamber were researched, stable methods based on TDIE were developed, the fast analysis for electrically large structures were implemented successfully, and accurate wide-band scattering data for some complex shaped targets were measured.
     Firstly, the derivations of time domain EFIE, MFIE and CFIE for transient electromagnetic scattering from arbritrary shaped perfect electrically conducting bodies and Marching-On-In-Time(MOT) method for solving TDIE were reviewed, modeling and partitioning method for scatterers were presented, and some scale model radar targets are designed and manufactured. Some questions in MOT method including integral singularity, late-time-instabilites and computation complexity were analized, and some feasible schemes were advised.
     Secondly, aiming at the late-time-instabilites of the MOT, two improved algorithms, named marching on in order(MOO) algorithm which based on the weighed Laguerre polynomials and implicit method(IMPT) which based on implicit time recursion, were investigated for electromagnetic scattering. We proposed a new method to detemine the orders of the weighted Laguerre polynomial which are needed in the time variable expansion through approaching the temporal coefficients of the Hertz vector. And we also proposed an approach to reduce the oscillations which emerged in low energy region according to the Fourier transforms relation between frequency responses and time responses and oscillation character of laguerre polynomial in time and frequency domain, respectively. Implicit expressions were deduced from magnetic field integral equation using different kinds of finite differences, and nine kinds of integral equations were obtained through combine electric field integral equation with magnetic field integral equation with different kinds of finite differences, comparisons of performance with different kinds of differences were presented through simulation for different targets by using different kinds of incident pulse. A stable and accelerated procedure for EFIE was developed, the procedure employs implicit method in conjunction with a time averaging scheme to solve EFIE with the second order time derivatives, it has the superior stability and great efficiency for electromagnetic scattering compution for arbitrary surface of a closed or open PEC body.
     Thirdly, in order to reduce the computational complexity for the electrically large structures, the plane-wave-time-domain(PWTD) method was used to enhanced MOT algorithm by associated PWTD with IMPT method using CFIE, and both the two level PWTD(TLPWTD) and multilevel PWTD(MLPWTD) methods were used to enhanced MOT algorithm by associated them with second-order-time-derivatives IMPT method using EFIE which was proposed by the author in this thesis. It farther enhanced the ability to solve the electromagnetic scattering from arbitrary closed or open PEC surface of the electrically large structures using TDIE.
     At last, a system for measurement of ultra-wideband impulse scattering responses from scale models of radar targets in time domain is described. The method of acquisition of the scattering signal, and signal processing technique for measurement data are investigated in detail. Three scatterers, including a PEC sphere, a missile scale-model and a plane scale-model, are measured using this system. Compared the measured data with the numerical data, the result shows a good agreement.
引文
[1]王秉中.计算电磁学.北京:科学出版社,2002.
    [2]Harrington R F.Field computation by moment method.IEEE Press,1982.
    [3]Rao S M,Wilton D R,Glisson A W.Electromagnetic scattering by surfaces of arbitrary shape.IEEE Transactions on Antennas and Propagation,1982,30(3):409-417.
    [4]Strichland J H,Baty R S.An overview of fast multipole methods.In:Conference Name.Conference Location:SAND95-2405.UC-706,Sandia National Laboratories,Albuquerque,1995,1-39.
    [5]Ogata S,Campbell T J,Kalia R K,et al.Scalable and portable implementation of the fast multipole method on parallel computers.Computer physics communications,2003,153,445-461.
    [6]Song J M,Chew.W C.Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering.Microwave and Optical Technology Letters,1995,10(1):14-19.
    [7]Buchau A,Rieger W,Rucker W M.BEM computations using the fast multipole method in combination with higher order elements and the galerkin method.IEEE Trans.Magnetics,2001,37(5):3181-3185.
    [8]Zhao X W,Dang X J,Zhang Y,et al.The multilevel fast multipole algorithm for EMC analysis of multiple antennas on electrically large platforms.Progress in Electromagnetics Research,2007,69,161-176.
    [9]Hu J,Nie Z P,Lei L,et al.Local multilevel fast Multipole algorithm for 3D electromagnetic scattering.Progress in Electromagnetics Research symposium,Hangzhou,2005:23-26.
    [10]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2002.
    [11]Yee K S.Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media.IEEE Trans.Antennas Propagat.,1966,14(3):302-307.
    [12]Taflove A,Brodwin M E.Numerical solution of steady-state EM scattering problems using the time dependent Maxwell's equations.IEEE Trans.Microwave Theory Tech.,1975,MTT(23):623-630.
    [13]Britt L C.Solution of EM scattering problems using time domain techniques.IEEE Trans.Antennas Propagat.,1989,37(9):181-1192.
    [14]Yee K S,Ingham D,Shlager K.Time domain extrapolation to the far field based on FDTD calculations.IEEE Trans.Antennas Propagat.,1991,39(3):410-413.
    [15]Berenger J P.A perfectly matched layer for the absorption of electromagnetic waves.J.Comput.Phys.,1994,114(2):185-200.
    [16]Berenger J P.Three dimensional perfectly matched layer for the absorption of electromagnetic waves.J.Comput.Phys.,1996,127(2):363-379.
    [17]Volakis J L,Chatterjee A,Kempel.L C.Finite element method for electromagnetics:Antennas.Microwave circuits and Scattering Applications,.New York:IEEE Press,1998.
    [18]Jiao D,Jin J M.A general approach for the stability analysis of time-domain finite element method.Proc.IEEE Antennas Propagat S.Int.Symp.,2001,4,506-509
    [19]Lee J F,Lee R,Cangellaris A.Time-domain finite-element methods.IEEE Trans.Antennas Propagat.,1997,45(3),430-442.
    [20]金建铭(美)著,王建国译.电磁场有限元方法.西安:西安电子科技大学出版社,1998.
    [21]Jim D,Ergin A A,Shanker B,et al.A Fast Higher-Order Time-Domain Finite Element-Boundary Integral Method for 3-D Electromagnetic Scattering Analysis.Proc.IEEE Antennas Propagat S.Int.Symp.,2001,4,334-337.
    [22]Sacks Z S,Kingsland D M.A perfectly matched layer absorber for use as an absorbing boundary conditon.IEEE Trans.Antennas Propagat.,1995,43(12):1460-1463.
    [23]Gedney S D.An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices.IEEE Trans.Antennas Propagat.,1996,44(12):1630-1639.
    [24]Yan Y,Ge D,Chen Y.Hybrid STF-FDTD approach for the EM scattering analysis with extremely slow-decaying pulse incidence.Microwave Opt.Tech.Lett.,2001,28(4):247-251.
    [25]Dey S,Mittra R.A locally conformal finite difference time domain algorithm for modeling three dimensional perfectly conduction objects.IEEE Microwave Opt.Tech.Lett.,1997,7(9):273-275.
    [26]Okoniewski M.Three dimensional subgridding algorithm for FDTD.IEEE Trans.Antennas Propagat.,1997,45(3):422-427.
    [27]White M J,Iskonder M F,Huang Z.Development of multigrid FDTD code for three-dimensional applications.IEEE Trans.Antennas Propagat.,1997,45(10):1512-1517.
    [28]Bennett C L.A technique for computing approximate impulse response for conducting bodies.Ph.D.,Indiana:Purdue Univ.,1968.
    [29]Rynne B P.Stability and convergence of time marching methods in scattering problems.IMA Journal of Applied Mathematics,1985,35,297-310.
    [30]Rynne B P.Instabilities in time marching methods for scattering problems.Electromagn.,1986,6,129-144.
    [31] Rao S M, Wilton D R. Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. Antennas Propagat., 1991, 39 (1): 56-61.
    [32] Rynne B P, Smith P D. Stability of time marching algorithms for the electric field integral equation. J. Electromagn. Waves Appl, 1990,4,1181-1205.
    [33] Miller E K. A selective survey of computational electromagnetics. IEEE Trans.Antennas Propagat., 1988, 30,2-9.
    [34] Walker S P. Developments In time domain integral equation modeling at imperial college. IEEE Antennas and propagation Magazine, 1997, 39 (1): 7-19.
    [35] Liu T K, Mei K K. A time domain integral equation solution for linear antennas and scatterers. Radio Sci., 1973, 8 797-804.
    [36] Miller E K. Direct time domain techniques for transient radiation and scattering from wires. Proc. IEEE Communications and radar, 1980, 68, 1396-1423.
    [37] Rao S M, Sarkar T K, Dianat S A. A novel technique to the solution of transient electromagnetic scattering from thin wires. IEEE Trans.Antennas propagat.,1986, 34, 630-634.
    [38] Blaricum M V, Miller E K. TWTD: A computer program for the time domain analysis of thin wire structures. UCRL-51277, CA, Livermore, Lawrence Livermore Nat. Lab, 1972
    [39] Bennett C 1, Weeks W L. Transient scattering from conducting cylinders. IEEE Trans. Antennas Propagat., 1970, 18, 627-633.
    [40] Bennett C L, Mieras H. time domain scattering from open thin conducting surfaces. Radio Sci., 1981, 16,1231-1239.
    [41] Vechinski D A, Rao S M. A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape IEEE Trans. Antennas Propagat., 1992,40(6): 661-665.
    [42] Sadigh A, D.Arvas. Treating the instabilities in marching-on-in-time method from a different perspective. IEEE Trans. Antennas Propagat., 1993, 41 (12):1695-1702.
    [43] Davies P J. On the stability of time-marching schemes for the general surface electric-field integral equation. IEEE Trans. Antennas Propagat., 1996, 44 (11):1467-1473.
    [44] Manara C, Monorchio A, Reggiannini R. A space-time discretization criterion for a stable time-marching solution of the electric field integral equation. IEEE Trans. Antennas Propagat., 1997,45 (3): 527-532.
    [45] Hu J L, Chan C H. Improved temporal basis function for time domain electric field integral equation method. Electronics Letters, 1999, 35 (11): 883-885.
    [46] Hu J L, Chan C H. A new temporal basis function for the time-domain integral equation method. Microwave Opt. Tech. Lett., 2001, 11 (11): 465-466.
    [47] Davies P J. A stability analysis of a time marching scheme for the general surface eletric field integral equation.Applied Numerical Mathematics,1998,27 33-57.
    [48]赵延文,聂在平,徐健华.时域电场积分方程地稳定求解.电波科学学报,2004,19(2):148-152.
    [49]Adve R S,Sarkar T K.Simultaneous time and frequency domain extrapolation.IEEE Trans.Antennas Propagat.,1998,46(4):484-492.
    [50]Sarkar T K,K J H,Lee W W.Analysis of electromagnetic systems irradiated by ultra short ultra wideband pulse.Meas.Sci.and Technol.,2001,12 1757-1768.
    [51]Rao M M,Sarkar T K,Anjali T,et al.Simultaneous extrapolation in time and frequency domains using Hermite expansions.IEEE Trans.Antennas Propagat.,1999,47(6):1108-1115.
    [52]Yuan M T,Sarkar T K,Jung B H,et al.Use of discrete Laguerre sequences to extrapolate wide band response from early time and low frequency data.IEEE Trans.Microwave Theory Tech.,2004,52(7):1740-1750.
    [53]Yuan M T,Koh J H,Sarkar T K,et al.A comparison of performance of three orthogonal polynomials in extraction of wide-band response using early time and low frequency data.IEEE Trans.Antennas Propagat.,2005,53(2):785-792.
    [54]Rao S M,Sarkar T K.Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time domain integral equation technique.Microwave Opt.Tech.Lett.,1998,17(1):66-69.
    [55]Rao S M,Sarkar T K.An efficient method to evaluate the time domain scattering from arbitrarily shaped conducting bodies.Microwave Opt.Tech.Lett.,1998,17(5):321.
    [56]Jung B H,Sarkar T K.Time domain electric-field integral equation with central finite difference.Microwave Opt.Tech.Lett.,2001,31(6):429-435.
    [57]Jung B H,sarkar T K,Chung Y S,et al.An accurate and stable implicit solution for transient scattering and radiation from wire structures.Microwave Opt.Tech.Lett.,2002,34(5):354-359.
    [58]Jung B H,Sarkar T K.Transient scattering from three dimensional conducting bodies by using magnetic field integral equation.J.of Electromagn.Waves and Appl.,2002,16(1):111-128.
    [59]Jung B H,Sarkar T K.Time domain CFIE for the analysis of transient scattering from arbitrarily shaped 3D conducting objects.Microwave Opt.Tech.Lett.,2002,34(4):289-296.
    [60]Chu Y H,Chew W C,Zhao J S,et al.A surface integral equation formulation for low frequency scattering from a composite object.IEEE Trans.Antennas Propagat.,2003,51(10):2837-2843.
    [61]Rao S M,Sarkar.T K.Implicit solution of time doamin integral equations for arbitrarily shaped dielectric bodies.Microwave Opt.Tech.Lett.,1999,21(5): 201-205.
    [62]Lee W W.Transient scattering from arbitrarily shaped composite conducting and dielectric structures.Ph.D.,NewYork:Syracuse University,2001.
    [63]Oijala P Y,Taskinen M.Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects.IEEE Trans.Antennas Propagat.,2005,53(3):1168-1173.
    [64]Sarkar T K,Lee W W,Rao S M.Analysis of transient scattering from composite arbitrarily shaped complex structures.IEEE Trans.Antennas Propagat.,2000,48(10):1625-1634.
    [65]王生水.时域积分方程及其并行算法的研究与应用.博士学位论文.长沙:国防科学技术大学,2006.
    [66]Chung Y S,Sarkar T K,Jung B H.Solution of a time domain magnetic field integral equation for arbitrarily closed conducting bodies using an unconditionally stable methodology.Microwave Opt.Tech.Lett.,2002,35(6):493-499.
    [67]Ji Z,Sarkar T K,Jung B H,et al.A stable solution of time domain electric field integral equation for thin wire antennas using the laguerre polynomials.IEEE Trans.Antennas Propagat.,2004,52(10):2641-2649.
    [68]Chung Y S,Sarkar T K,Jung B H,et al.Solution of time domain electric field integral equation using the laguerre polynomials.IEEE Trans.Antennas Propagat.,2004,52(9):2319-2328.
    [69]Jung B H,Chung Y S,Sarkar T K.Time domain EFIE,MFIE,and CFIE formulations using laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures.Progress in Electromagnetics Research,2003,39 1-45.
    [70]Jung B H,Sarkar T K,Palma M S,et al.Transient electromagnetic scattering from dielectric objects using the electric field integral equation with laguerre polynomials as temporal basis functions.IEEE Trans.Antennas Propagat.,2004,52(9):2329-2339.
    [71]Jung B H,Sarkar T K,Palma M S.Time domain EFIE and MFIE formulations for analysis of transient electromagnetic scattering from 3D dielectric objects.Progress in Electromagnetics Research,2004,49,113-142.
    [72]Jung B H,Sarkar T K,Chung Y S.Solution of time domain PMCHW formalation for transient electromagnetic scattering from arbitrarily shaped 3D dielectric objects.Progress in Electromagnetics Research,2004,45,291-312.
    [73]蔡明娟.时域积分方程在分析介质问题中的算法研究与应用.博士学位论文.长沙:国防科学技术大学,2006.
    [74]Walker S P.Developments in time-domain integral-equation modeling at Imperial College.IEEE Antennas and propagation Magazine,1997,39,7-18.
    [75]Pisharody G,Wildman R A,Weile D S.Accurate solution of time domain integral equations using higher order vector bases and bandlimited extrapolation.Proc.IEEE Antennas Propagat S.Int.Symp.,2003,3,555-558.
    [76]Graglia R D,Wilton D R,Peterson A F.Higher order interpolatory vector bases for computational electromagnetics.IEEE Trans.Antennas Propagat.,1997,45329-342.
    [77]Weile D S,Pisharody G,Chen N W,et al.A novel scheme for the solution of the time domain integral equations of electromagnetics.IEEE Trans.Antennas Propagat.,2004,52(1):283-295.
    [78]Wildman R A,pisharody G,Weile D S,et al.An accurate scheme for the solution of the time domain integral equations of electromagnetics using higher order vector bases and bandlimited extrapolation.IEEE Trans.Antennas Propagat.,2004,52(11):2973-2984.
    [79]Pisharody G,Weile D S.Robust solution of time domain integral equations using loop tree decomposition and bandlimited extrapolation.IEEE Trans.Antennas Propagat.,2005,53(6):2089-2097.
    [80]Dodson S J,Walker S P,Bluck M J.Costs and cost scaling in time domain integral equation analysis of electromagnetic scattering.IEEE Antennas and propagation Magazine,1998,40 12-21.
    [81]周东明.时域积分方程快速算法及其应用研究.博士学位论文.长沙:国防科学技术大学,2006.
    [82]Yilmaz A E,Jin J M,Michielssen E.Time domain adaptive integral method for the combined field integral equation.Proc.IEEE Antennas Propagat S.Int.Symp.,2003,3 543-546.
    [83]Yilmar A E,Aygun K,Jin J M,et al.Matching criteria and the accuracy of time domain adaptive integral method.Proc.IEEE Antennas Propagat S.Int.Symp.,2002,2,166-169.
    [84]Ewe W B,Li L W,Leong M S.Fast solution of mixed dielectric/conducting scattering problem using volume-surface adaptive integral method.IEEE Trans.Antennas Propagat.,2004,52(11):3071-3077.
    [85]Yilmaz A E,Jin J M,Michielssen E.Time domain adaptive integral method for surface integral equations.IEEE Trans.Antennas Propagat.,2004,52(10):2692-2708.
    [86]Zhou Z X,Tyo J S.An adaptive time domain integral equation method for transient analysis of wire scatterer.IEEE Antennas and Wireless Propagation Letters,2005,4,147-150.
    [87]Michielssen E,Chew W,Ergin A A,et al.Recent developments in fast Multipole based frequency and time domain solvers.Proc.7th international conference on mathematical methods in electromagnetic theory,MMET'98 Proceedings, vol.Kharkov, Ukraine, 1998: 92-97.
    [88] Ergin A A, Shanker B, Michielssen E. Fast evaluation of three dimensional transient wave fields using diagonal translation operators. J. Comput. Phys., 1998,146, 157-180.
    [89] Lu M Y, Wang J G, Ergin A A, et al. Fast evaluation of two dimensional transient wave fields. J. Comput. Phys., 2000,158,161-185.
    [90] Ergin A A, Shanker B, Michielssen E. Fast transient analysis of acoustic wave scattering from rigid bodies using a two level plane wave time domain algorithm.J. Acoust. Soc. Am., 1999,106 (5): 2405-2416.
    [91] Shanker B, Ergin A A, Aygun K, et al. Analysis of transient electromagnetic scattering phenomena using a two level plane wave time domain algorithm. IEEE Trans. Antennas Propagat, 2000,48 (4): 510-523.
    [92] Kobidze G, Gao J, Shanker B, et al. A fast time domain integral equation based scheme for analyzing scattering from dispersive objects. IEEE Trans. Antennas Propagat., 2005, 53 (3): 1215-1226.
    [93] Ergin A A, Shanker B, and Michielssen E. The plane wave time domain algorithm for the fast analysis of transient wave phenomena. IEEE Antennas and propagation Magazine, 1999,41 (4): 39-52.
    [94] Aygun K, Shanker B, Ergin A A, et al. A two level plane wave time domain algorithm for fast analysis of EMC/EMI problems. IEEE Trans. Electromagnet Compat., 2002,44 (1): 152-164.
    [95] Shanker B, Ergin A A, Lu M Y, et al. Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm.IEEE Trans. Antennas Propagat., 2003, 51 (3): 628-641.
    [96] Ergin A A, Shanker B, Aygun K, et al. Computational complexity and implementation of two level plane wave time domain algorithm for scalar wave equation. Proc. IEEE Antennas Propagat S. Int. Symp., 1998,2, 944-947.
    [97] Shanker B, Ergin A A, Aygun K, et al. Computation of transient scattering from electrically large structures using the plane wave time domain algorithm. Proc.IEEE Antennas Propagat S. Int. Symp., 1998, 2, 948-951.
    [98] Lu M and Michielssen E. A local filtering scheme for FMM/PWTD algorithms.Proc. IEEE Antennas Propagat S. Int. Symp., 2004,4,4523-4526.
    [99] Lu M and Michielssen E. A simplified 3D plane wave time domain(PWTD) algorithm. Proc. IEEE Antennas Propagat S. Int. Symp., 2001,1,188-191.
    [100] Jiang P L, Yegin K, Li S Q, et al. An improved plane wave time domain algorithm for dissipative media. Proc. IEEE Antennas Propagat S. Int. Symp.,2003, 3, 563-566.
    
    [101] Kobidze G, Shanker B, and Michielssen E. Hybrid PO-PWTD for analyzing of scattering from electrically large PEC objects. Proc. IEEE Antennas Propagat S.Int. Symp., 2003, 3, 547-550.
    [102] Shanker B, Ergin A A, and Michielssen E. The multilevel plane wave time domain algorithm for the fast analysis of transient scattering phenomena. Proc.IEEE Antennas Propagat S. Int. Symp., 1999,2,1342-1345.
    [103] Jiang P L and Michielssen E. Multilevel PWTD enhanced CFIE solver for analyzing EM scattering from PEC objects Residing in lossy media. Proc. IEEE Antennas Propagat S. Int. Symp., 2006,2,2967-2970.
    [104] Lu M, Shanker B, Ergin A A, et al. Novel 2D transient EFIE,MFIE, and CFIE solvers based on the multilevel plane wave time domain algorithm. Proc. IEEE Antennas Propagat S. Int. Symp., 2000,2, 737-740.
    [105] Aygun K, Shanker B, Ergin A A, et al. Analysis of shielding enclosures using the multilevel plane wave time domain algorithm. Proc. IEEE Electromagnetic compatibility, 1999,2, 690-693.
    [106] Shanker B, Ergin A A, Aygun K, et al. Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation. IEEE Trans. Antennas Propagat., 2000,48 (7): 1064-1074.
    [107] Kennaugh E M and Cosgriff R L. The use of impulse response in electromagnetic scattering problems. Proc. IRE National Convention Record. Part 1, vol. 1958:72-77.
    [108] Kennaugh E M and Moffatt D L. Transient and impulse response approximations.Proc. IEEE, 1965,53 893-901.
    [109] Moffatt D L. Interpretation and application of transient and impulse response approximations in electromagnetic scattering problems. The Ohio state University Electroscience Laboratory, 1968, Rep.2415-1
    [110] Hammond C W. The development of a bistatic electromagnetic scattering laboratory. M.S. thesis. Monterey: Naval Postgraduate School, 1980.
    [111] Chevalier Y, Imbs Y, Beillard B, et al. UWB measurements of canonical targets and RCS determination. Ultra-Wideband, Short-Pulse Electromagnetics 4, 1999,329-334.
    [112] Morgan M A. Time domain scattering measurements. IEEE Antennas propag.Newlett., 1984, 6(4):4-9.
    [113] Morgan M A. Ultra-Wideband impulse scattering measurements. IEEE Trans.Antennas Propagat., 1994,42 (6): 840-846.
    [114] Rothwell E J, Nyquist D P, and Chen K M. Radar target discrimination using the extinction-pulse technique. IEEE Trans. Antennas Propagat., 1987, 33 (9):929-937.
    [115] Baum C E, Rothwell E J, and Chen K M. The singularity expansion method and its application to target identification. Proc. IEEE, 1991, 79(10): 1481-1492.
    [116]Li Q,Ilavarasan P,Ross J E.Radar target identification using a combined early-time/late-time E-pulse technique.IEEE Trans.Antennas Propagat.,1998,46(9):1272-1278.
    [117]Rothwell E,Chert K M,Nyquist D P,et al.Measurement and processing of scattered ultrawide-band/short-pulse signals.Proc.SPIE,1996,2562 138-149.
    [118]赵明桂,任金媚.某型飞机目标散射特性研究.南京航空航天大学学报,1985,133-141
    [119]王保义.瞬态电磁场在目标识别中的新应用.电子科学学刊,1987,9,(2):97-106.
    [120]黄培康.雷达目标特征信号在导弹制导中的作用.系统工程与电子技术,1990,3,46-50.
    [121]杨爱秋,吕婴.时域测量技术在目标特性研究中的应用.宇航计测技术,1988,5.16-20.
    [122]徐海.散射体外部振荡特性的研究及其在目标识别中的应用.博士学位论文.西安:西安交通大学,1988.
    [123]王运飞,王经瑾,刘国治.超宽带散射信号的时域测量及处理 强激光与粒子束,2001,13(6):739-743.
    [124]胡伟东,吕昕,高本庆.一种超宽带目标特性测量方法北京理工大学学报,2004,24(8):719-722.
    [125]莫锦军,袁乃昌.一套先进的自动测量计算超宽带紧缩场测试系统.计算机测量与控制,2002,10(9):573-574.
    [126]毛钧杰,刘荧,朱建清.电磁场与微波工程基础.北京:电子工业出版社,2004.
    [127]毛钧杰,何建国.电磁场理论.长沙:国防科技大学出版社,1998.
    [128]数学手册编写组.数学手册.北京:高等教育出版社,1979.
    [129]Narayana S M,Rao G,Adve R,et al.Interpolation/extrapolation of frequency domain responses using the hilbert transform.IEEE Trans.Microwave Theory Tech.,1996,44(10):1621-1627.
    [130]Michielssen E,Chew W C,Aygun K,et al.Fast algorithms for the electromagnetic simulation of planar structures.Proc.IEEE Electromagnetic compatibility,1998,1,172-176
    [131]Michielssen E,Chew W C,Jin J M,et al.Fast time domain integral equation solvers for large-scale electromagnetic analysis.University of Illinois,report 2004
    [132]Bleszynski E,Bleszynski M,and Jaroszewicz T.A new fast time domain integral equation solution algorithm.Proc.IEEE Antennas Propagat S.Int.Symp.,2001,4176-179.
    [133]Hu J L,Chan C H,and Xu Y.A fast solution of time domain integral equation using fast fourier transformation. Microwave Opt. Tech. Lett., 2000, 25 (3):172-175.
    [134] Ergin A A. Plane-wave time-domain algorithms for effieient analysis of three-dimensional transient wave phenomena. Ph.D., Urbana Champaign:University of Illinois, 2000.
    [135] Richmond J A. A wire-grid model for scattering by conducting bodies. IEEE Trans. Antennas Propagat., 1966,14(6):782-786.
    [136] Knepp D L, Goldhirsh J. Numerical analysis of electromagnetic radiation properties of smooth conducting bodies of arbitrary shape. IEEE Trans. Antennas Propagat., 1972,20(3):383-388.
    [137] Albertsen N C, Hansen J E, Jensen N E. computation of radiation from wire antennas on conducting bodies. IEEE Trans. Antennas Propagat., 1974, 22(2):200-206.
    [138] Burke G J, Poggio A J. Numerical electromagnetic code(NEC)- method of moments. Naval Ocean Systems Center, Sandiego, CA, Tech. Document, 1977.
    [139] Wang N N, Richmond J H, Gilreath M C. Sinusoidal reaction formulation for radiation and scattering from conducting surfaces. IEEE Trans. Antennas Propagat., 1975, 23(3):376-382.
    [140] Newman E H, Pozar D M. Electromagnetic modeling of composite wire and surface geometries. IEEE Trans. Antennas Propagat., 1978, 26(6):784-789.
    [141] Singh J, Adams A T. A non rectangular patch model for scattering from surfaces.IEEE Trans. Antennas Propagat., 1979,27(4):531-535.
    [142] Sankar A, Tong T C. Current computation on complex structures by finite element method. Electronics Letters, 1975, 11(20):481-482.
    [143] Wang J H. Numerical analysis of three dimensional arbitrarily shaped conducting scatterers by trilateral surface cell modelling. Radio Sci.,1978,13(6):947-952
    [144] Wilton D R, Rao S M, Glisson A W. Potential integral for uniform and linear source distributions on polygonal and polyhedral domains. IEEE Trans. Antennas Propagat, 1984, 32(3):276-281.
    [145] Guan X P, Wang S G, Su Y, and Mao J J. A Comparison of Performance of Four Methods in Solving TimeDomain Integral Equations for Arbitrarily Shaped ConductingBodies. Progress in Electromagnetics Research Symposium, PIERS,2007,155-159.
    [146] Rao S M. Electromagnetic scattering and radiation of arbitrarily shaped surfaces by triangular patch modeling. Ph.D. Dissertation, Univ.Mississippi, 1980.
    [147] Woo A C, H. Wang T G, Schuh M J, Sanders M L. Benchmark Radar Targets for the Validation of Computational Electromagnetics Programs. IEEE Antennas and Propagation Magazine, 1993, 35(1): 84-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700