纳米金刚石、碳纳米管、石墨烯性能的第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着纳米科学技术的发展,特别是随着纳米金刚石、富勒烯、碳纳米管、以及石墨烯片等纳米结构的不断被发现,碳素纳米材料科学研究得到了广泛的关注,并取得了巨大的进步。同时,随着计算方法和计算机技术的飞速方展,计算材料学在材料研究中已经占有越来越重要的地位。而密度泛函方法已经成为计算材料学领域中最重要的理论方法。在本论文中,我们利用第一原理密度泛函理论等理论手段,针对目前倍受关注的几种碳素纳米材料(纳米金刚石、碳纳米管以及石墨烯片)的性能进行了理论模拟,这对设计和制备碳纳米材料有一定的理论指导意义。计算纳米金刚石的结果表明粒子的尺寸影响纳米粒子的结构、稳定性以及电子结构。计算场发射性能表明,发射电流主要是来自表面的氢原子位置,同时发射的最大电流并非是来自最高占据态轨道,而是能量更低的轨道。电子密度是限制纳米金刚石场发射性能的主要因素。计算氮掺杂碳纳米管的场发射性能表明,氮原子引入的“耦合电子态”对场发射有重要的贡献。同时,外加电场的不同也会影响氮原子对场发射性能增强效果。计算石墨烯纳米结构的结果表明,石墨烯纳米带的力学性能与其边界的原子形貌有关。不同应变下纳米带输运性质的变化说明这种材料可以用于应力测量器件。计算三角形石墨烯片的电子结构表明,氮掺杂会改变三角片的电子结构以及自旋。
     本论文的计算结果解释了实验观测到的现象,同时为合成和设计新型纳米器件提供了新的途径和方法。
With the rapid development of nanoscience and nanotechnology, especially with the discovery of nanodiamond, carbon nanotube, fulleren and graphene, carbon related nanostructures have attracted much interest. Meanwhile, with the rapid development of computational methods and computer technology, computational materials science has become more and more important in modern materials reseach. Density functional theory (DFT) has become one of the most important methods in computational materials science. In this dissertation, we calculate various properties of three kinds of carbon related nanometer-sized materials, i.e. nanodiamond, carbon nanotube and graphene, which have been widely studied using DFT. This work will be helpful in designing and synthezing carbon based nanometer-sized devices.
     In Chapter 1, we give a brief introduction to the structures, properties, applications and syntheses of these three kinds of carbon-related materials. Furthermore, some unresolved issues in the study of these three kinds of materials and the objective of this dissertation are given.
     In Chapter 2, firstly, we introduce the basic concepts and progress of the theoretical method used in this work in detail, including first-principles calculations and density functional theory. We also describe the basic principles of the simulation package DMol3, which is used in this work. Then we give a brief introduction of the basic concepts of semi-empirical tight-binding (TB) model as well as the formula of TB potentials for carbon. At the end of this chapter, we briefly introduce the method of calculating the field emission current and transport properties of nanometer-sized materials.
     In Chapter 3, the size dependent effect as well as the field emission properties of nanodiamonds with the sizes smaller than 1.5 nm are studied using first-principles DFT method, and the electronic properties for larger nanodiamonds are explored using tight-binding method. Our calculations reveal that many properties, such as structure, stability, electronic properties and so on, for nanodiamond show a size dependent effect. Calculations on the field emission properties reveal that the emission current of nanodiamond mainly comes from the surface hydrogen atoms. Furthermore, the largest emission current comes from the lower occupied orbital rather than the highest occupied molecular orbital. Electron density is the bottleneck limiting the field emission properties for nanodiamond.
     In Chapter 4, we perform first-principles DFT calculations to investigate the field emission properties of N-doped CNTs. Using DFT, the emission current of N-doped CNTs are calculated, which reveals that the "couple states" in N-doped CNT play an important role in the field emission properties. On the other hand, the strength of applied electric field influences the field emission properties of N-doped CNT.
     In Chapter 5, we carry out first-principles DFT calculations to investigate the mechanical properties of one-dimension graphene nanoribbon and the electronic structure of zero-dimension triangular shaped graphene sheet. We calculate stress-strain response and the change of the electronic structure during tensile deformation of graphene nanoribbons, and the calculated results reveal that mechanical properties are related to the edge configurations of graphene nanoribbon. The change in the electronic structure as well as the transport properties indicates that graphene nanoribbon can be used as a strain sensor. Calculation on the triangular shaped graphene reveals that N-doping can modulate both the electronic properties and total spin of the triangle graphene.
     In conclusion, we perform first-principles DFT calculations on the properties of nanodiamond, carbon nanotube and graphene, and the calculated results can be used to explain the experimental observations and provide a potential method in synthesizing and designing new nanometer-sized devices.
引文
[1] J.C. Angus, C.C. Hayman, Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases, Science 1988, 241: 913.
    [2] B.T. Kelly, Physics of Graphite, Applied Science Publishers, London, 1981.
    [3] R.S. Lewis, M. Tang, J.F. Wecker, E. Anders, E. Stell, Interstellar diamonds in meteorites, Nature 1987, 326: 160.
    [4] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, C60: buckminsterfullerene, Nature 1995, 318: 162.
    [5] S. Iijima, Helical microtubules of graphitic carbon, Nature 1991, 354: 56.
    [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science 2004, 306: 666.
    [7] F.G. Geli, J.E. Butler, Diamond chemical vapor deposition, Ann. Rev. Phys. Chem. 1991, 42: 643.
    [8] R.S. Lewis, E. Anders, B.T. Draine, Properties, detectability and origin of interstellar diamonds in meteorites, Nature 1989, 339: 117.
    [9] N.R. Greiner, D.S. Phillips, J.D. Johnson, A.F. Volk, Diamonds in detonation soot, Nature 1989, 333: 440.
    [10] K.E. Spear, Diamond-ceramic coating of the future, J. Am. Ceram. Soc. 1989, 72: 171.
    [11] Y.K. Chang, H.H. Hsieh, W.F. Pong, M.-H. Tsai, F.Z. Chien, P.K. Tseng, L.C. Chen, T.Y. Wang, K.H. Chen, D.M. Bhusari, J.R. Yang, S.T. Lin, Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy, Phys. Rev. Lett. 1999, 82: 5377.
    [12] T. Buuren, Y. Gao, T. Tiedje, J.R. Dahn, B.M. Way, Evidence for quantum confinement in porous silicon from soft x-ray absorption, Appl. Phys. Lett. 1992, 60: 3013.
    [13] L.W. Wang, A. Zunger, Pseudopotential calculations of nanoscale CdSe quantum dots, Phys. Rev. B 1996, 53: 9579.
    [14] J. Raty, G. Galli, C. Bostedt, T. W. van Buuren, L. J. Terminello, Quantum confinement and fullerenelike surface reconstructions in nanodiamonds, Phys. Rev. Lett. 1999, 82: 037401.
    [15] J. Lee, B. Hong, R. Messier, R.W. Collins, Nucleation and bulk film growth kinetics of nanocrystalline diamond prepared by microwave plasma-enhanced chemical vapor deposition on silicon substrates, Appl. Phys. Lett. 1996, 69: 1716.
    [16] M.M. Garcia, I. Jimenez, L. Vazquez, C.G. Aleixandre, J.M. Albella, O. Sanchez, L.J. Terminello, F.J. Himpsel, X-ray absorption spectroscopy and atomic force microscopy study of bias-enhanced nucleation of diamond films, Appl. Phys. Lett. 1998, 72: 2105.
    [17] M. Yoshikawa, Y. Mori, H. Obata, N. Maegawa, G. Katagiri, H. Ishida, A. Ishitani, Raman scattering from nanometer-sized diamond, Appl. Phys. Lett. 1995, 67: 694.
    [18] S.N. Mikov, A.V. Igo, V.S. Gorelik, Raman scattering of light on diamond quantum dots in a matrix of potassium bromide. Phys. Solid State 1995, 37: 1671.
    [19] T.M. Willey, C. Bostedt, T. Buuren, J.E. Dahl, S.G. Liu, R.M.K. Carlson, L.J. Terminello, T. M?ller, Molecular Limits to the Quantum Confinement Model inDiamond Clusters, Phys. Rev. Lett. 2005, 95: 113401.
    [20] G.C. McIntosh, M. Yoon, S. Berber, D. Tománek, Diamond fragments as building blocks of functional nanostructures, Phys. Rev. B 2004, 70: 045401.
    [21] G.A. Mansoori, Modeling of heavy organics depositions, J. Petrol. Sci. Eng. 1997, 17:101.
    [22] J.E. Dahl, J.M. Moldowan, K.E. Peters, G.E. Claypool, M.A. Rooney, G.E. Michael, M.R. Mello, and M.L. Kohnen, Diamondoid hydrocarbons as indicators of natural oil cracking, Nature (London), 1999, 399:54.
    [23] J.E. Dahl, S.G. Liu, R.M.K. Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules, Science, 2003, 299:96.
    [24] Proceedings of the NATO Advanced Research Workshop on Synthesis, Properties and Applications Ultrananocrystalline Diamond, St. Petersburg, Russia 7 June 2004.
    [25] D. M. Gruen, Nanocrystalline diamond, Annu. Rev. Mater. Sci. 1999, 29:211.
    [26] A.R. Krauss, O. Auciello, M.Q. Ding, D.M. Gruen, Y. Huang, V.V. Zhirnov, E.I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, N. Suetin, Electron field emission for ultrananocrystalline diamond films, J. Appl. Phys. 2001, 89: 2958.
    [27] Y. Lifshitz, Th. Kohler, Th. Frauenheim, I. Guzmann, A. Hoffman, R.Q. Zhang, X.T. Zhou, S.T. Lee, The mechanism of diamond nucleation from energetic species, Science 2002, 297:1531.
    [28] M.G. Fyta, I.N. Remediakis, P.C. Kelires, D.A. Papaconstantopoulos, Insights into the Fracture Mechanisms and Strength of Amorphous and Nanocomposite Carbon, Phys. Rev. Lett. 2006, 96: 185503.
    [29] O.A. Williams, Ultrananocrystalline diamond for electronic applications, Semicond. Sci. Technol. 2006, 21: R49.
    [30] P. Zapol, L.A. Curtiss, Th. Frauenheim, D.M. Gruen, Tight-binding molecular dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries Phys. Rev. B 2001, 65: 045403.
    [31] I.S. Beloborodov, P. Zapol, D.M. Gruen, L.A. Curtiss, Transport properties of n-type ultrananocrystalline diamond films, Phys. Rev. B 2006, 74: 235434.
    [32] T. Tyler, V.V. Zhirnov, A. V. Kvit, D. Kang, J.J. Hren, Electron emission from diamond nanoparticles on metal tips, Appl. Phys. Lett. 2003, 82: 2904.
    [33] T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature1992, 358: 220.
    [34] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1 nm diameter, Nature 1993, 363: 603.
    [35] D.S. Bethune, C.H. Kiang, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 1993, 363: 605.
    [36] C. Liu, H.T. Cong, F. Li, P.H. Tan, H.M. Cheng, K. Lu, B.L. Zhou, Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method, Carbon 1999, 37: 1865.
    [37] L.F. Sun, S.S. Xie, W. Liu, W.Y. Zhou, Z.Q. Liu, D.S. Tang, G. Wang, L.X. Qian, Materials: creating the narrowest carbon nanotubes, Nature 2000, 403: 384.
    [38] L.M. Peng, Z.L. Zhang, Z.Q. Xue, Q.D. Wu, Z.N. Gu, D.G. Pettifor, Stability of carbon nanotubes: how small can they be?, Phys. Rev. Lett. 2000, 85: 3249.
    [39] X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R.O. Jones, Y. Ando, Smallest carbon nanotube is 3 ? in diameter, Phys. Rev. Lett. 2004, 92: 125502.
    [40]成会明,纳米碳管:制备、结构、物性及应用,化学工业出版社,2002年.
    [41]朱宏伟,吴德海,徐才录,碳纳米管,机械工业出版社,2003年。
    [42] B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response, Phys. Rev. Lett. 1996, 76: 2511.
    [43] R.S. Ruoff, D.C. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon 1995, 33: 925.
    [44] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, 1998.
    [45] H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science 1996, 272: 523.
    [46] W.A. de Heer, W.S. Bacsa, A. Chatelain, T. Gerfin, R.H. Baker, L. Forro, D. Ugarte, Aligned carbon nanotubes films: production and optical and electrical properties, Science 1995, 268: 845.
    [47] Y.H. Huang, M. Okada, K. Tanaka, T. Yamabe, Estimation of superconducting transition temperature in metallic carbon nanotubes, Phys. Rev. B 1996, 53: 5129.
    [48] Y. Murakami, T. Shibata, K. Okuyama, T. Arai, H. Suematsu, Y. Yoshida, Structural, magnetic and superconducting properties of graphite nanotubes and their encapsulation compounds, J. Phys. Chem. Solids 1993, 54: 1861.
    [49] W. Yi, L. Lu, D.L. Zhang, Z.W. Pan, S.S. Xie, Linear specific heat of carbon nanotubes, Phys. Rev. B 1999, 59: 9015.
    [50] W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Large current density from carbon nanotube field emitters, Appl. Phys. Lett. 1999, 75: 873.
    [51] Y. Saito, S. Uemura, K. Hamaguchi, Cathode ray tube lighting elements with carbon nanotube field emitters, Jpn. J. Appl. Phys. 1998, 37: 346.
    [52] C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. delaChapelle, S. Lefrant, P. Deniard, R. Lec, J.E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, 1997, 388: 756.
    [53] H.J. Dai, A.G. Rinzler, P. Nikolaev, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett. 1996, 260: 471.
    [54] H.M. Cheng, F. Li, G. Su. H.Y. Pan, L.L. He, X. Sun, M.S. Dresselhaus, Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Appl. Phys. Lett. 1998, 72: 3282
    [55] H.M. Cheng, F. Li, X. Sun, Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons, Chem. Phys. Lett. 1998, 289: 602.
    [56] A. Fonseca, K. Hernadi, Synthesis of single- and multi-wall carbon nanotubes over supported catalysts, Appl. Phys. A 1998, 67: 11.
    [57] A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science 1996, 273: 483
    [58] S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.G. Dai, Self-oriented regular arrays of carbon nanotube and their field emission properties, Science 1999, 283: 512.
    [59] S. J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single nanotubes, Nature 1998, 393: 49.
    [60] C. Dekker, Carbon nanotubes as molecular quantum wires, Physics Today 1999, 52: 22.
    [61] H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Stress-induced fragmentation of multiwalled carbon nanotubes in a polymer matrix, Appl. Phys. Lett. 1998, 72: 188.
    [62] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes, Nature 1997, 386: 377.
    [63] P. Chen, X. Wu, J. Lin, K.L. Tan, High H2 uptake alkali-doped carbon nanotubes under ambient pressure and moderate temperatures, Science 1999, 285: 91.
    [64] R. E. Peierls, Quelques propriétés typiques des corps solides, Ann. Inst. Henri Poincaré, 1935, 5: 177.
    [65] N. D. Mermin, Crystalline Order in Two Dimensions, Phys. Rev. 1968, 176: 250.
    [66] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth1, The structure of suspended graphene sheets. Nature 2007, 446: 60263.
    [67] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 2008, 321: 385.
    [68] L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K.F. Kelly, B.I. Yakobson, P.M. Ajayan, Controlled nanocutting of graphene, Nano. Res. 2008, 1: 116.
    [69] M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, Peculiar Localized State at Zigzag Graphite Edge, J. Phys. Soc. Jpn. 1996, 65: 1920.
    [70] K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 1999, 59: 8271.
    [71] M. Ezawa, Peculiar width dependence of the electronic properties of carbon nanoribbons, Phys. Rev. B 73, 045432 (2006).
    [72] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresslhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54, 17954 (1996).
    [73] K. S. Novoselov, D. Jiang, F. Schedin, Two-dimensional atomic crystals, PNAS, 2005, 102: 10451.
    [74] Q.-H. Yang, W. Lu, Y.-G. Yang, M.-Z. Wang, Free two-dimensional carbon crystal: single-layer graphene, New Carbon Mater. 2008, 23: 97.
    [75] P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics, Nature Nanotechnology, 2007, 2: 605.
    [76] C.L. Kane, Erasing electron mass, Nature, 2005, 438: 168.
    [77] N. Tombros, C. Jozsa1, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature, 2007, 448: 571.
    [78] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 2007, 6: 183.
    [79] K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum hall effect in graphene, Science, 2007, 315: 1379.
    [80] M.I. Katsnelson, Zitterbewegung, chirality, and minimal conductivity ingraphene, Eur. Phys. J. B, 2006, 51: 157.
    [81] K.S. Novoselov, A.K. Geim1, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva1, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac-fermions in graphene, Nature, 2005, 438: 197.
    [82]李旭,赵卫峰,陈国华.石墨烯的制备与表征.研究材料导报, 2008, 22: 84.
    [83] N. Tsuyoshi, M. Yoshiaki, Formation process and structure of graphite oxide, Carbon 1994, 32: 469.
    [84] E. McCann, K. Kechedzhi, V.I. Fal'ko, H. Suzuura, T. Ando, B.L. Altshuler, Weak-Localization Magnetoresistance and Valley Symmetry in Graphene, Phys. Rev. Lett. 2006, 97: 146805.
    [85] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff1, Preparation and characterization of graphene oxide paper, Nature 2007, 448: 457.
    [86] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 2006, 442: 282.
    [87] A.H.C. Neto, Graphene: Phonons behaving badly, Nat. Mater. 2007, 6: 176.
    [88] H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M.K. Vandersypen, A.F. Morpurgo, Bipolar supercurrent in graphene. Nature 2007, 446: 56.
    [89] A.J. Lu, B.C. Pan, J.G. Han, Electronic and vibrational properties of diamondlike hydrocarbons, Phys. Rev. B 2005, 72: 035447.
    [90] G.C. McIntosh, M. Yoon, S. Berber, D. Tománek, Diamond fragments as building blocks of functional nanostructures, Phys. Rev. B 2004, 70: 045401.
    [91] F. Himpsel, J. Knapp, J. van Vechten, D. Eastman, Quantum photoyield of diamond(111) - A stable negative-affinity emitter, Phys. Rev. B 1979, 20: 624.
    [92] M.W. Geis, N.N. Efremow, K.E. Krohn, I.C. Twichell, T.M. Lyszczarz, R. Kalishi, J.A. Greer, M.D. Tabat, A new surface electron-emission mechanism in diamond cathodes, Nature 1998, 393: 431.
    [93] J. Robertson, Mechanisms of electron field emission from diamond, diamondlike carbon, and nanostructured carbon, J. Vac. Sci. Technol. B 1999, 17: 659.
    [94] A. V. Karabutov, V. D. Frolov, V. I. Konov, Diamond/sp2-bonded carbon structures: quantum well field electron emission? Diamond Relat. Mater. 2001, 10: 840
    [95] S. R. P. Silva, G. A. J. Amaratunga, K. Okano, Modeling of the electron fieldemission process in polycrystalline diamond and diamond-like carbon thin films, J. Vac. Sci. Technol. B 1999, 17: 557.
    [96] A. S. Barnard, S. P. Russo, I. K. Snook, Structural relaxation and relative stability of nanodiamond morphologies, Diamond Relat. Mater. 2003, 12, 1867.
    [97] A.S. Barnard, S.P. Russo, I.K. Snook, Coexistence of bucky diamond with nanodiamond and fullerene carbon phases, Phys. Rev. B 2003, 68: 073406.
    [98] N. Park, S. Park, N.-M. Hwang, J. Ihm, S. Tejima, H. Nakamura, First-principles study of the effect of charge on the stability of a diamond nanocluster surface, Phys. Rev. B 2004, 69: 195411.
    [99] G.D. Lee, C.Z. Wang, J. Yu, E. Yoon, K.M. Ho, Heat-Induced Transformation of Nanodiamond into a Tube-Shaped Fullerene: A Molecular Dynamics Simulation, Phys. Rev. Lett. 2003, 91: 265701.
    [100] H.S. Ahn, K.R. Lee, D.Y. Kim, S. Han, Field emission of doped capped carbon nanotubes, Appl. Phys. Lett. 2006, 88: 093122.
    [101] L. Qiao, W.T. Zheng, H. Xu, L. Zhang, Q. Jiang, Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density functional study, J. Chem. Phys. 2007, 126: 164702.
    [1] M. L. Cohen, Calculation of bulk module of diamond and zinc-blende solids, Phys. Rev. B 1985, 32: 7988.
    [2] A. Y. Liu and M. L. Cohen, Prediction of new low compressibility solids, Science 1989, 245: 841.
    [3] M. Born, J. R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys. 1927, 84: 457.
    [4] D.R. Hatree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, Proc. Cambridge. Philos. Soc. 1928, 24: 89.
    [5] V. Fock, N?herungsmethode zur L?sung des quantenmechanischen Mehrk?rperproblems, Z. Phyz. 1930, 61: 126.
    [6] J. C. Slater, Note on Hartree's Method, Phys. Rev. 1930, 35, 210.
    [7] L. H. Thomas, The calculation of atomic fields, Proc. Cambridge. Philos. Soc. 1926, 23: 542.
    [8] E. Fermi, A statistical method for the determination of some properties of atoms. II. Application to the periodic system of the elements, Z. Phys. 1928, 48: 73.
    [9] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 1964, 136: B864
    [10] W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 1965, 140: A1133.
    [11] R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 1989, 61:689.
    [12] A.D. Becke, A multicenter numerical integration scheme for polyatomic molecules, J. Chem. Phys. 1988, 88: 2547.
    [13] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 1992, 45: 13244.
    [14] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 1988, 37: 786.
    [15] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 1996, 77: 3865.
    [16] M. Levy, J.P. Perdew, Density functionals for exchange and correlation energies: exact conditions and comparison of approximations, Int. J. Quantum Chem. 1994, 49: 539.
    [17] B. Delley, An all-electron numerical method for sloving the local density functional for polyatomic molecules, J. Chem. Phys. 1990, 92: 508.
    [18] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 2000, 113: 7756.
    [19] P. -O. L?wdin, On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. Chem. Phys. 1950, 18: 365.
    [20] J.C. Slater, G.F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 1954, 94:1498.
    [21] D. Chadi, (110) surface atomic structures of covalent and ionic semiconductors, Phys. Rev. B 1979, 19: 2074.
    [22] C.M. Goringe, D.R. Bowler, E. Hernández, Tight-binding modeling of materials, Rep. Prog. Phys. 1997, 60: 1447.
    [23] C.H. Xu, C.Z. Wang, C.T. Chan, K.M. Ho, A transferable tight-binding potential for carbon, J. Phys. Condens Matter 1992, 4:6047.
    [24] C.Z. Wang, C.T. Chan, K.M. Ho, Structure and dynamics of C60 and C70 from tight-binding molecular dynamics, Phys. Rev. B 1992, 46: 9761.
    [25] C.Z. Wang, K.M. Ho, Tight-binding molecular dynamics for Carbon and applications to nanostructure formation, J. Comput. Theor. Nanosci. 2004, 1: 3.
    [26] B. Zheng, W.T. Zheng, S.S. Yu, H.W. Tian, F.L. Meng, Y.M. Wang, J.Q. Zhu, S.H. Meng, X.D. He, J.C. Han, Growth of tetrahedral amorphous carbon film: tight-binding molecular dynamics study, Carbon 2005, 43: 1976.
    [27] L. Goodwin, A new tight binding parametrization for carbon, J. Phys. Condens Matter 1991, 3:3869.
    [28] M. Elstner, Jungnickel, J. Elsner, M. Haugk, S. Suhai, G. Seifert, Self-consistent charge density-functional tight-binding method for simulations of complex materialsproperties, Phys. Rev. B 1998, 58: 7260.
    [29] M. Elstner, The SCC-DFTB method and its application to biological systems, Theor. Chem. Acc. 2006, 116: 316.
    [30] M.S. Tang, C.Z. Wang, C.T. Chan, K.M. Ho, Environment-dependent tight-binding potential model, Phys. Rev. B 1996, 53: 979.
    [31] G.-D. Lee, C.Z. Wang, J. Yu, E. Yoon, K.M. Ho, Heat-induced transformation of nanodiamond into a tube-shaped fullerene: a molecular dynamics simulation, Phys. Rev. Lett. 2003, 91, 265701.
    [32] C.Z. Wang, K.M. Ho, M.D. Shirk, P.A. Molian, Laser-induced graphitization on a diamond (111) surface, Phys. Rev. Lett. 2000, 85: 4092.
    [33] C. Kim, B. Kim, S.M. Lee, C. Jo, Y.H. Lee, Effect of electric field on the electronic structures of carbon nanotubes, Appl. Phys. Lett. 2001, 79: 1187.
    [34] L. Qiao, W.T. Zheng, Q.B. Wen, Q. Jiang, First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes, Nanotechnology 2007, 18: 155707.
    [35] L. Qiao, W. T. Zheng, H. Xu, L. Zhang, Q. Jiang, Field emission properties of N-doped capped single-walled carbon nanotubes: A first-principles density-functional study, J. Chem. Phys. 2007, 126: 164702.
    [36] M. Khazaei, A.A. Farajian, Y. Kawazoe, Field emission patterns from first-principles electronic structures: application to pristine and cesium-doped carbon nanotubes, Phys. Rev. Lett. 2005, 95: 177602.
    [37] M. Khazaei, Y. Kawazoe, Effects of Cs treatment on field emission properties of capped carbon nanotubes, Surf. Sci. 2007, 601: 1501.
    [38] M. Khazaei, K.A. Dean, A.A. Farajian, Y. Kawazoe, Field Emission Signature of Pentagons at Carbon Nanotube Caps, J. Phys. Chem. C 2007, 111: 6690.
    [39] M. Brandbyge; J.L. Mozos, P. Ordej?n, J. Taylor, K. Storbor, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 2002, 65: 165401.
    [40] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordej?n, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 2002, 14: 2745.
    [41] J. Taylor, H. Guo, J. Eang, Ab initio modeling of quantum transport properties ofmolecular electronic devices, Phys. Rev. B 2001, 63: 245407.
    [42] E. Artacho, E. Anglada, O.Diéguez, J. D. Gale, AGarcía, J. Junquera, R. M. Martin, P. Ordejón, J. M. Pruneda, D. Sánchez-Portal, J. M. Soler, The SIESTA method: developments and applicability, J. Phys.: Condens. Matter 2008, 20: 064208.
    [1] Presentation of Richard P.Feynman at the annual meeting of the American Physical Society at the California Institute of Technology on December 29, 1959.
    [2] Y. Lifshitz, Th. Kohler, Th. Frauenheim, I. Guzmann, A. Hoffman, R.Q. Zhang, X.T. Zhou, S.T. Lee, The mechanism of diamond nucleation from energetic species, Science 2002, 297:1531.
    [3] R. Larciprete, S. Lizzit, S. Botti, C. Cepek, A. Goldoni, Structural reorganization of carbon nanoparticles into single-wall nanotubes, Phys. Rev. B 2002, 66: 121402.
    [4] J.E. Dahl, S.G.. Liu, R.M.K. Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules, Science 2003, 299: 96.
    [5] J.Y. Raty, G. Galli, G. Bostedt, T.W. van Buuren, L.J. Terminello, Quantum confinement and fullerencelike surface reconstruction in nanodiamonds, Phys. Rev. Lett. 2003, 90: 037401.
    [6] A. S. Barnard, S. P. Russo, I. K. Snook, Structural relaxation and relative stability of nanodiamond morphologies, Diamond Relat. Mater. 2003, 12, 1867.
    [7] A.S. Barnard, S.P. Russo, I.K. Snook, Coexistence of bucky diamond with nanodiamond and fullerene carbon phases, Phys. Rev. B 2003, 68: 073406.
    [8] N. Park, S. Park, N.-M. Hwang, J. Ihm, S. Tejima, H. Nakamura, First-principles study of the effect of charge on the stability of a diamond nanocluster surface, Phys. Rev. B 2004, 69: 195411.
    [9] G.D. Lee, C.Z. Wang, J. Yu, E. Yoon, K.M. Ho, Heat-Induced Transformation of Nanodiamond into a Tube-Shaped Fullerene: A Molecular Dynamics Simulation, Phys. Rev. Lett. 2003, 91: 265701.
    [10] A.J. Lu, B.C. Pan, J.G. Han, Electronic and vibrational properties of diamondlike hydrocarbons, Phys. Rev. B 2005, 72: 035447.
    [11] G.C. McIntosh, M. Yoon, S. Berber, D. Tománek, Diamond fragments as building blocks of functional nanostructures, Phys. Rev. B 2004, 70: 045401.
    [12] A.R. Krauss, O. Auciello, M.Q. Ding, D.M. Gruen, Y. Huang, V.V. Zhirnov, E.I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, N. Suetin, Electron field emission for ultrananocrystalline diamond films, J. Appl. Phys. 2001, 89: 2958.
    [13] T. Tyler, V.V. Zhirnov, A. V. Kvit, D. Kang, J.J. Hren, Appl. Phys. Lett. Electron emission from diamond nanoparticles on metal tips, 2003, 82: 2904.
    [14] T.D. Corrigan, D.M. Gruen, A.R. Krauss, P. Zapol, R.P.H. Chang, The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond, Diamond Relat. Mater. 2002, 11: 43.
    [15] K. Subramanian, W.P. Kang, J.L. Davidson, W.H. Hofmeister, B.K. Choi, M. Howell, Nanodiamond planar lateral field emission diode, Diamond Relat. Mater. 2002, 14: 2099.
    [16] G. Yuan, Z. Z. Gu, H. Song, H. Mimura, Current-voltage and electron emission characteristics of diamond particles, J. Vac. Sci. Technol. B 2007, 25: 540.
    [17] F. Himpsel, J. Knapp, J. van Vechten, D. Eastman, Quantum photoyield of diamond(111) - A stable negative-affinity emitter, Phys. Rev. B 1979, 20: 624.
    [18] M.W. Geis, N.N. Efremow, K.E. Krohn, I.C. Twichell, T.M. Lyszczarz, R. Kalishi, J.A. Greer, M.D. Tabat, A new surface electron-emission mechanism in diamond cathodes, Nature 1998, 393: 431.
    [19] J. Robertson, Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon, J. Vac. Sci. Technol. B 1999, 17: 659.
    [20] A.V. Karabutov, V.D. Frolov, V.I. Konov, Diamond/sp2-bonded carbon structures: quantum well field electron emission? Diamond Relat. Mater. 2001, 10: 840
    [21] S.R.P. Silva, G.A.J. Amaratunga, K. Okano, Modeling of the electron field emission process in polycrystalline diamond and diamond-like carbon thin films, J. Vac. Sci. Technol. B 1999, 17: 557.
    [22] B. Delley, An all-electron numerical method for sloving the local density functional for polyatomic molecules, J. Chem. Phys. 1990, 92: 508.
    [23] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 2000, 113: 7756.
    [24] M. Khazaei, A.A. Farajian, Y. Kawazoe, Field emission patterns from first-principles electronic structures: application to pristine and cesium-doped carbon nanotubes, Phys. Rev. Lett. 2005, 95: 177602.
    [25] A.S. Barnard, P. Zapol, A model for the phase stability of arbitrary nanoparticles as a function of size and shape, J. Chem. Phys. 2004, 121: 4276.
    [26] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 1996, 77: 3865.
    [27] A.Puzder, A.J.Williamson, J.C.Grossman, G.Galli, Surface Chemistry of Silicon Nanoclusters, Phys. Rev. Lett. 2002, 88: 097401.
    [28] G. Herzberg, Molecular spectra and molecular structure, Krieger, New York, 1991, Vol.3
    [29] M. Khazaei, Y. Kawazoe, Effects of Cs treatment on field emission properties of capped carbon nanotubes, Surf. Sci. 2007, 601: 1501.
    [30] M. Khazaei, K.A. Dean, A.A. Farajian, Y. Kawazoe, Field Emission Signature of Pentagons at Carbon Nanotube Caps, J. Phys. Chem. C 2007, 111: 6690.
    [31] C.H. Lee, W.R.L. Lambrecht, B. Segall, P.C. Kelires, Th. Frauenheim, U. Stephan, Electronic structure of dense amorphous carbon, Phys. Rev. B 1994, 49: 11448.
    [32] B. Zheng, W.T. Zheng, S.S. Yu, H.W. Tian, F.L. Meng, Y.M. Wang, J.Q. Zhu, S.H. Meng, X.D. He, J.C. Han, Growth of tetrahedral amorphous carbon film: tight-binding molecular dynamics study, Carbon 2005, 43: 1976.
    [33] A.P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 1996, 271: 933.
    [34] M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 1996, 54: 16317.
    [35] M. H. Sanni, M. Kargarian, A. Ranjbar, Comparison between stability, electronic, and structural properties of cagelike and spherical nanodiamond clusters, Phys. Rev. B 2007, 76: 035417.
    [36] N.D. Drummond, A.J. Williamson, R.J. Needs, G.. Galli, Electron Emission from Diamondoids: A Diffusion Quantum Monte Carlo Study, Phys. Rev. Lett. 2005, 95: 096801.
    [1] A. Maiti, J. Andzelm, N. Tanpipat, P. von Allmen, Effect of adsorbates on field emission from carbon nanotubes, Phys. Rev. Lett. 2001, 87: 155502.
    [2] G. Zhang, W. Duan, B. Gu, Effect of substitutional atoms in the tip on field emission properties of capped carbon nanotubes, Appl. Phys. Lett. 2002, 80: 2589.
    [3] M. Khazaei, A.A. Farajian, Y. Kawazoe, Field emission patterns from first principles electronic structures: application to pristine and Cesium-doped carbon nanotubes, Phys. Rev. Lett. 2005, 95: 177602.
    [4] G. Kim, Y. W. Son, Y. Cho, S. Han, and J. Ihm, Field emission of carbon nanotubes and electronic structure of carbon nanopeapods, Curr. Appl. Phys. 2002, 2: 57.
    [5] D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles, Carbon 2000, 38: 2017.
    [6] R. Czerw, M. Terrones, J. C. Charlier, X. Blasé, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Ruhle, D.L. Carroll, Identification of electron donor states in N-doped carbon nanotubes, Nano Lett. 2001, 1: 457.
    [7] S. Y. Kim, J. Lee, C. W. Na, J. Park, K. Seo, B. Kim, N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition, Chem. Phys. Lett. 2005, 413: 300.
    [8] J. Liu, S. Webster, D.L. Carroll, Highly aligned coiled nitrogen-doped carbon nanotubes synthesized by injection-assisted chemical vapor deposition, Appl. Phys. Lett. 2006, 88: 213119.
    [9] L.H. Chan, K.H. Hong, D.Q. Xiao, W.J. Hsieh, S.H. Lai, H.C. Shih, T.C. Lin, F.S. Shieu, K.J. Chen, H.C. Cheng, Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes, Appl. Phys. Lett. 2003, 82: 4334.
    [10] M. Doytcheva, M. Kaiser, M.A. Verheijen, M.R. Reyes, M. Terrones, N. de Jonge, Electron emission from individual nitrogen-doped multi-walled carbon nanotubes, Chem. Phys. Lett. 2004, 396: 126.
    [11] S.K. Srivastava, V.D. Vankar, D.V.S. Rao, V. Kumar, Enhanced field emissioncharacteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process, Thin Solid Films 2006, 515: 1851.
    [12] R.B. Sharma, D.J. Late, D.S. Joag, A. Govindaraj, C.N.R. Rao, Field emission properties of boron and nitrogen doped carbon nanotubes, Chem. Phys. Lett. 2006, 428: 102.
    [13] X. Wang, Y. Liu, D. Zhu, L Zhang, H. Ma, N. Yao, B. Zhang, Controllable growth, structure, and low field emission of well-aligned CNx nanotubes, J. Phys. Chem. B 2002,106: 2186.
    [14] J.M. Bonard, R. Kurt, C. Klinke, Influence of the deposition conditions on the field emission properties of patterned nitrogenated carbon nanotube films, Chem. Phys. Lett. 2001, 343: 21.
    [15] H.S. Ahn, K. R. Lee, D. Y. Kim, S. Han, Field emission of doped capped carbon nanotubes, Appl. Phys. Lett. 2006, 88: 093122.
    [16] B. Delley, An all-electron numerical method for sloving the local density functional for polyatomic molecules, J. Chem. Phys. 1990, 92: 508.
    [17] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 2000, 113: 7756.
    [18] A. Buldum, J.P. Lu, Electron field emission properties of closed carbon nanotubes, Phys. Rev. Lett. 2003, 91: 236801.
    [19] C. Kim, B. Kim, S. M. Lee, C. Jo, and Y. H. Lee, Electronic structures of capped carbon nanotubes under electric fields, Phys. Rev. B 2002, 65: 165418.
    [20] J. Luo, L. M. Peng, Z. Q. Xue, and J. L. Wu, Density-functional-theory calculations of charged single-walled carbon nanotubes, Phys. Rev. B 2002, 66: 115415.
    [21] G. Zhou and Y. Kawazoe, Localized valence states characteristics and work function of single-walled carbon nanotubes: a first-principles study, Phys. Rev. B 2002, 65: 155422.
    [22] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 1996, 77: 3865.
    [23] L. Qiao, W.T. Zheng, H. Xu, L. Zhang, Q. Jiang, Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density functional study, J. Chem. Phys. 2007, 126: 164702.
    [24] C.H. Xu, C.Z. Wang, C.T. Chan, K.M. Ho, A transferable tight-binding potential for carbon, J. Phys. Condens Matter 1992, 4:6047.
    [25] S.S. Yu, Q.B. Wen,W.T. Zheng, Q. Jiang, Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations, Nanotechnology 2007, 18: 165702.
    [1] R. E. Peierls, Quelques propriétés typiques des corps solides, Ann. Inst. Henri Poincaré, 1935, 5: 177.
    [2] N. D. Mermin, Crystalline Order in Two Dimensions, Phys. Rev. 1968, 176: 250.
    [3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science 2004, 306: 666.
    [4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 2005, 438, 197.
    [5] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Room-temperature quantum Hall effect in graphene, Science 2007, 315: 1379.
    [6] J.S. Bunch, Y. Yaish, M. Brink, K. Bolotin, P.L. McEuen, Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots, Nano Lett. 2005, 5: 287.
    [7] L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K.F. Kelly, B.I. Yakobson, P.M. Ajayan, Controlled nanocutting of graphene, Nano. Res. 2008, 1: 116.
    [8] M. Y. Han, B. ?zyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 2007, 98: 206805.
    [9] Z.H. Chen, Y.M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics, Physica E 2007, 40: 228.
    [10] B. ?zyilmaz, P. Jarillo-Herrero, D. Efetov, D.A. Abanin, L.S. Levitov, P. Kim, Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions, Phys. Rev. Lett. 2007, 99: 166804.
    [11] M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, Peculiar Localized State at Zigzag Graphite Edge, J. Phys. Soc. Jpn. 1996, 65: 1920.
    [12] K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 1999, 59: 8271.
    [13] M. Ezawa, Peculiar width dependence of the electronic properties of carbon nanoribbons, Phys. Rev. B 73, 045432 (2006).
    [14] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresslhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54, 17954 (1996).
    [15] P. Shemella, Y. Zhang, M. Mailman, P.M. Ajayan, S.K. Nayak, Energy gaps in zero-dimensional graphene nanoribbons, Appl. Phys. Lett. 2007, 91: 042101.
    [16] O. Hod, J.E. Peralta, G.E. Scuseria, Edge effects in finite elongated graphene nanoribbons, Phys. Rev. B 2007, 76: 233401.
    [17] M. Ezawa, Coulomb blockade in graphene nanodisks, Phys. Rev. B 2008, 77: 155411.
    [18] W.L. Wang, S. Meng, E. Kaxiras, Graphene nanoflakes with large spin, Nano Lett. 2008, 8: 241.
    [19] J. Fernández-Rossier1, J.J. Palacios, Magnetism in Graphene Nanoislands, Phys. Rev. Lett. 2007, 99: 177204.
    [20] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 2008, 321: 385.
    [21] S.S. Yu, W.T. Zheng, Q.B. Wen, Q. Jiang, First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges, Carbon, 2008, 46: 537.
    [22] Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan, Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping, Nano Lett. 2007, 7: 1469.
    [23] B. Biel, X. Blase, F. Triozon, S. Roche, Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons, Phys. Rev. Lett. 2009, 102: 096803.
    [24] B. Delley, An all-electron numerical method for sloving the local density functional for polyatomic molecules, J. Chem. Phys. 1990, 92: 508.
    [25] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 2000, 113: 7756.
    [26] M. Brandbyge; J.L. Mozos, P. Ordej?n, J. Taylor, K. Storbor, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 2002, 65: 165401.
    [27] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordej?n, D.Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 2002, 14: 2745.
    [28] J. Taylor, H. Guo, J. Eang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 2001, 63: 245407.
    [29] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 1996, 77: 3865.
    [30] Z. Li, H. Qian, J. Wu, B.-L. Gu, and W. Duan, Role of Symmetry in the Transport Properties of Graphene Nanoribbons under Bias, Phys. Rev. Lett. 2008, 100: 206802.
    [31] F. Liu, P. Ming, J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B 2007, 76: 064120.
    [32] Y.-W. Son, M.L. Cohen, S.G. Louie, Energy Gaps in Graphene Nanoribbons, Phys. Rev. Lett. 2006, 97: 216803.
    [33] C. Q. Sun, Size dependency of nanostructures: impact of bond order deficiency, Prog. Solid State Chem. 2007, 35: 1.
    [34] L. Sun, Q. Li, H. Ren, H. Su, Q.W. Shi, J. Yang, Strain effect on electronic structures of graphene nanoribbons: A first-principles study, J. Chem. Phys. 2008, 129: 074704.
    [35] S. S. Yu, Q. B. Wen, W. T. Zheng, Q. Jiang, Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations, Nanotechnology 2007, 18: 165702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700