雪里蕻腌渍过程中理化成分及其抗氧化性变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雪菜,又名雪里蕻或雪里红(Brassica junce Coss.Var.multiceps Tsen et Lee),是芥菜(Brassica juncea Coss.)的变种,也称为叶用芥菜。雪里蕻以长江流域以南的地区栽培较为普遍,不同的变种适应性各异。腌制雪里蕻在中国江浙一带非常的普遍,主要用于工业生产和家庭短期保藏,是重要的腌渍蔬菜。关于腌渍雪里蕻不同时间段的营养成分研究不多,本试验以宁波慈溪雪里蕻为原料,分别设置了两个萎焉程度,三种不同的腌渍方法(干腌、湿腌、接种乳酸菌腌渍),对不同腌渍时间的理化、营养成分进行了系统研究,并对腌渍过程中酚酸物质的含量和抗氧化能力的变化作了分析,为腌渍蔬菜的综合利用提供了依据。研究主要结果有:
     1、对不同萎焉程度、不同腌渍方法雪里蕻的理化、营养性状分析得出:
     1)不同的腌渍方法,无论鲜样还是萎焉后的样品,盐含量均在腌渍第一周陡然上升到40%左右(干基含量),与腌渍前达极显著差异(p<0.01),随后的腌渍阶段上升缓慢,以鲜样干腌上升量最大,在第八周达到52.35%,萎焉接种腌渍上升最少,为42.8%。总体来说,盐含量鲜样腌渍>萎焉腌渍,干腌>湿腌>接种。
     2)腌渍初期,伴随着自然和接种两种发酵方式,酸度呈现出先上升趋势,在第2-3周达到最大值;随着腌渍盐含量的升高,酸度开始下降,7-8周酸度又略有上升。鲜样和萎焉样都以接种腌渍的峰值酸度最大,分别达到2.70%和2.83%,各腌法与腌渍前原料差异都极显著(p<0.01)。腌渍中平均酸度接种腌渍=1.74%>湿腌=1.50%>干腌=1.48%,接种腌渍与另外两种腌渍方法没有显著差异。虽然鲜样的三种腌渍方法都在第3周达到最大酸度,但接种腌渍酸度高于湿腌和干腌。萎焉样同样接种酸度峰值最高,但晚于干腌和湿腌一周达到峰值。
     3)不同腌渍过程中蛋白质都呈现缓慢下降趋势,干腌、湿腌、接种腌三种腌渍方法中,鲜样蛋白质的量从28.56g/100gDW分别降至24.44、24.15、21.64g、100gDW其中干腌与腌前没有显著差异,湿腌差异显著(p<0.05),接种腌渍差异极显著(p<0.01);萎焉样由41.17g/100gDW分别降至35.06、24.57、25.62 g╱100gDW,其中干腌与腌渍前差异显著(p<0.05),湿腌、接种与腌前差异达到极显著(p<0.01),接种腌渍蛋白质下降快于另外两种腌渍方法。
     4)雪里蕻在腌渍过程中,氨基酸的含量随腌渍时间的增长而上升,在第6-7周达到最高值,峰值与腌前含量相比均达到极显著差异(p<0.01),随后下降。相同萎焉度不同腌渍方法、相同腌渍方法不同萎焉度之间没有显著差异。
     5)鲜样硝酸盐在不同腌渍过程中呈下降趋势,萎焉样除了干腌略有上升后才下降之外,也呈下降趋势。鲜样不同的腌渍方法在第二周分别下降了35%、31%和36.2%(由120.48 g/KgDW分别降为77.86、82.69和76.88g/KgDW),差异均达极显著(p<0.01),接种腌渍下降最多。第3-4周有轻微回升,但与腌渍前差异仍极显著(p<0.01)。萎焉样,腌渍前3周硝酸盐含量略高于腌渍前,差异不显著(p>0.05),第4周均降至与腌前差异显著(p<0.05),第5周降至极显著(p<0.01)。
     6)亚硝酸盐在腌渍过程中有先上升后下降的趋势,在腌渍的第5周出现峰值,其中鲜样干腌、湿腌、接种三种腌渍方法峰值分别达到814.47、931.15、499.93mg/Kg,与腌前(44.32 mg/Kg)差异极显著(p<0.01);萎焉样干腌、湿腌、接种亚硝峰值分别为691.99、695.44、572.41 mg╱Kg,与腌前(58.89mg/Kg)差异极显著(p<0.01)。两种萎焉度的接种腌渍峰值含量都低于干腌和湿腌,差异显著(p<0.05)。
     7)腌渍前五周内,两种萎焉度原料干腌硝酸盐与亚硝酸盐相关性都不显著(p>0.05),鲜样另外两种腌渍方法硝酸盐和亚硝酸盐含量显著相关(p<0.05),萎焉样三种腌渍方法硝酸盐亚硝酸盐变化达到极显著相关(p<0.01)。
     2、酚类活性物质含量的变化趋势为:
     1)总酚含量呈先升高后降低的趋势,不同萎焉度原料均以接种腌渍上升量最大,腌渍第2周鲜样和萎焉样分别从7.74 mg/g DW和3.96mg╱gDW上升至10.95mg/gDW和9.91mg╱gDW,上升量达41%和150%,差异极显著(p<0.01)。
     2)没食子酸、原儿茶酸、对羟基苯甲酸、香草酸的含量在腌渍过程中呈上升趋势,与腌渍前差异极显著(p<0.01);而咖啡酸、香豆酸、阿魏酸、芥子酸在腌渍过程中则呈现先轻微上升后下降的趋势,与腌渍前差异极显著(p<0.01)。各种腌法八种酚酸以芥子酸含量最高,平均323.33ug/gDW,没食子酸含量最少,平均20.93ug/gDW。
     3)腌渍过程中总酚酸的含量呈先上升后下降变化,同一腌渍方法,鲜样与萎焉样之间差异不显著(p>0.05);鲜样不同腌渍方法之间差异年不显著(p>0.05),萎焉样不同腌渍方法差异显著(p<0.05)。
     3、对腌渍过程的雪里蕻体外抗氧化性研究表明:
     1)采用FRAP铁离子还原力、DPPH自由基清除和ABTS自由基清除三个体系腌渍后雪里蕻的体外抗氧化能力均有先上升后下降的趋势,且与腌前差异显著(p<0.05)。
     2)蔬菜腌渍后抗氧化能力与其总酚含量相关极显著(p<0.01),三种抗氧化体系之间相关性也达到极显著(p<0.01)。
Potherb mustard (Brassica junce Coss. Var. multiceps Tsen et Lee), with Chinese name Red-in-Snow, is a cultivar of mustard(Brassica juncea Coss.). Potherb mustard also called leaf mustard, is widely cultured in the south of Changjiang River. Different cultivars have different adaptability. Pickled potherb mustard is very common in the district of Zhejiang, China, mainly because it can be preserved in long time in industry and house. However, most of pickled potherb mustard in the conventional food processing as products had low added value, and had no appropriately preserved time and methods. Moreover, the nutrition in potherb mustard, which was preserved in different time phases, was not clear. In the present research, the chemical characteristics and nutrients of the potherb mustard from Cixi, Ningbo during pickling was investigated. Mustard including withering and fresh materials was pickled by three different methods(dry-cured, wet-salted, lactobacillus inoculated-pickling). Chemical parameters such as nitrite and nitrate were analyzed, and phenolic acids and antioxidant activities were also evaluated.
     There are three main facts in this research:
     1 The effects of withering and pickling methods on the phytochemical properties of pickled mustard:
     1) In three pickling methods, using both withering and fresh material, salt content in pickled materials suddenly rose to about 40%in the first week of pickling (p<0.01), compared to that of raw materials, then increased slowly. Dry-cured with fresh materials had the highest salt content in the eighth week, reached 52.35%. Inoculated-pickling using withering material had the lowest salt content of 42.8%. Generally speaking, the orders of the salt content were as follows: fresh pickling>withering pickling; dry-cured>wet salted>inoculated-pickling.
     2) In the initial period of pickling, with the natural and the inoculated fermentation, the titratable acidity showed an increased tendency, and gave a maximum value in 2-3rd week, then decreased, probably causing by the higher concentration of salt; in 7-8th week, the titratable acidity rose slightly again. Inoculated-pickling with both fresh and withering material had the maximum titratable acidity value, respectively reached 2.0%and 2.83%. Compared with raw material, all values of the titratable acidity showed a significant (p<0.01) increase. The average titratable acidity: inoculated-pickling(1.74%)>wet-salting(1.50%)>dry-curing (1.48%). However, three persevered methods had no significant differences (p>0.01). Although the titratable acidity values of fresh pickling all reached maximum in the 3rd week, the value with inoculated-pickling was the higher than those of the other two treatments. Likewise, the values obtained with withering-pickling treatment were the same as those with fresh pickling. The most obvious differences between withering and fresh pickling were that the peak values of titratable acidity using withering materials occurred one week later than that of fresh pickling.
     3) In different preserve processes, the proteins all showed a slowly decreased trend. For example, dry-cured, wet-salted and inoculated-pickling of fresh materials reduced from 28.56 to 24.44, to 24.15, to 21.64g/100g of DW, respectively. Compared with raw material, dye-cured was not significantly different, wet-salted(p<0.05) and inoculated-pickling(p<0.01)were all significantly different. The three treatments of withering-pickled decreased from 41.17 to 35.06, to 24.57, to 25.62 g/100g of DW respectively, which were significant differences compared with raw materials: dye-cured (p<0.05), wet-salted and inoculated-pickling (p<0.01). The protein contents with the inoculated-pickling decreased more quickly than the other two pickles.
     4) In the processing of preserve, the free amino acid of potherb mustard increased with time, and had the highest values in the 6-7th week (p<0.01), then decreased. There were no significant differences between different pickled methods.
     5) The nitrate contents in fresh pickling descended with time, whereas withering-pickled slightly rose, and then descended. In the 2nd week, the nitrate content of different pickled fresh materials decreased by 35%、31%和36.2%respectively(p<0.01). The nitrate contents with withering-pickled treatment in 3 weeks increased slowly (p>0.05), however, in the 4th week, the nitrate decreased significantly (p<0.05).
     6) The nitrite contents in pickling showed a changing trend, and the highest values were found in the 5th week, then decreased The highest values of the nitrite in fresh materials using dry-cured, wet-salted and inoculated-pickling were 814.47、931.15、499.93mg/KgDW respectively, and the nitrite content in withering were 691.99、695.44、572.41 mg/KgDW respectively, which all were significantly different compared with raw materials(p<0.01). The nitrite contents in both fresh and withering materials using dry-cured was higher than the other two treated methods (p<0.05).
     7) The nitrate and nitrite contents in fresh materials using wet-salted and inoculated-pickling were significant negative correlation in 5 weeks (p<0.05), whereas the nitrate and nitrite in the withered materials all showed significant negative correlation(p<0.01).
     2 Changes of Phenols content in different preserved potherb mustards:
     1) The total phenols rose firstly, and then decreased. The total phenols contents with inoculated-pickling were higher than that in other two treatments, the values in fresh materials and withering ones increased from 7.74 to 10.95, 3.96 to 9.91 mg/gDW respectively (p<0.01).
     2) Gallic acid, protocatechnic acid, p-benzoic acid and vinillic acid in the pickling increased (p<0.01). Caffeic acid, p-cinnamic acid, ferulic acid and sinapic acid firstly increased, then decreased, which were significantly different compared with raw materials (p<0.01). In all phenolic acids of pickling potherb mustard, the sinapic acid content was the highest(323.33ug/gDW), and the gallic acid was the lowest(20.93ug/gDW).
     3) Total phenolic acid, the sum of eight phenolic acids, were increased firstly in pickling, and then decreased. The total phenolic acid values using the same pickled methods with different raw materials showed no difference(p>0.05); the valus using fresh materials but different pickled methods were similar(p>0.05); the value using withering materials with different pickled methods were significantly different(p<0.05).
     3 The results obtained by the antioxidant capability in vitro of pickling potherb mustards indicated that:
     1) The antioxidant capabilities were evaluated by FRAP, ABTS and DPPH, which all showed the same trend: an increase firstly and then descending. These data were all significantly different compared with raw materials(p<0.05).
     2) The antioxidant capability correlated with total phenols significantly (p<0.01), and three antioxidant systems all showed significantly dependent with another (p<0.01).
引文
◇ 陈功.概述我国盐渍蔬菜生产技术现状、存在问题及发展趋势.食品科技,2001(5):4-5.
    ◇ 陈建初,董绍华,叶兴乾等.芹菜黄酮及其在主要制汁过程中的变化.浙江大学学报,1998,24(3):179-282.
    ◇ 陈静波,田迪英.莴笋不同部位抗氧化活性的研究.食品研究与开发,2006,27(9):54-57.
    ◇ 陈业高主编.植物化学成分,北京:化学工业出版社,2004,240-241.
    ◇ 大连轻工学院.食品分析.中国轻工出版社.1995:235.
    ◇ 丁勇,李百战,孙纯武等.我国贮藏保鲜产业发展综述.制冷与空调,2005(1):61-65.
    ◇ 董卫国.酸性体质健康大敌.解放军健康,2003(2):30-3.
    ◇ 窦炳义.我国调味品的现状和发展趋势.中国调味品,1999,(4):2-4.
    ◇ 高锦明.植物化学.北京:科学出版社,2003,191-193.
    ◇ 龚宁,李昌梅,敖国富等.野菜硝酸盐、亚硝酸盐含量及抗氧化酶活性分析.广州大学学报(自然科学版),2005,4(5):401-470.
    ◇ 顾景范,食物中植物化学素的抗氧化作用,中国医药企业网(www.medfda.com),2004.
    ◇ 郭长江,韦京豫,杨继军等.66种蔬菜、水果抗氧化活性的比较研究.营养学报,2003,25(2):203-207.
    ◇ 郭晓红,杨沽彬,张建军.甘兰乳酸发酵过程中亚硝峰消长机制及抑制途径的研究.食品与发酵工业,1989,(4):26-34.
    ◇ 何洪巨,陈杭.芸苔属蔬菜中硫代葡萄糖苷的鉴定与含量分析.中国农业科学,2002,35(2):192-197.
    ◇ 侯铮迟,孙大宽,秦宗英等.高剂量辐照猪肉的挥发物、脂氧化和感官特特征分析律的研究.辐射研究与辐射工艺学报,2005,23(1):35-39.
    ◇ 黄书铭.雪菜腌制中亚硝酸盐的动态观察和护色保脆的研究.食品与机械,1998(3):22-24.
    ◇ 金贤荣等.芥菜的抗氧化作用.国外医学中医中药分册,2003,25(3):107.
    ◇ 李基银.腌菜质量与卫生.北京轻工业出版社,1988.
    ◇ 李里特,王颉,丹阳等.我国果品蔬菜贮藏保鲜的现状和新技术.无锡轻工业大学学报,2003,22(2):106-109.
    ◇ 李学贵.浅谈酱腌菜生产工艺的改革措施.中国酿造,2006(5):61-62.
    ◇ 林亲录,施兆鹏.类黄酮与酚酸等天然抗氧化剂的结构与其抗氧化力的关系.食品科学,2002,22(6):85-91.
    ◇ 林若泰,唐年鑫.辐照冷却包装分割猪肉研究.食品科学,1999.12:54-56.
    ◇ 刘福岭,戴行钧.食品物理与化学分析方法.轻工业出版社,1987年6月.
    ◇ 刘佩英.中国芥菜.北京:中国农业出版社,1994,19-35.
    ◇ 罗雪华,蔡秀娟.紫外风光光度法测定蔬菜硝酸盐含量.华南热带农业大学学报,2004,10(1):13-16.
    ◇ 毛由三,谢三星.亚硝酸盐中毒有关问题浅谈.动物毒物学,1995,10(1):35-37.
    ◇ 孟宪军.大白菜发酵菌种选育及发酵特性研究.沈阳农业大学博士学位论文,1999,6.
    ◇ 孟宪军.乳酸菌发酵复合蔬菜浆的工业研究.食品发酵与工业,2003,(1):87-89.
    ◇ 上海市农业科学研究所编.上海蔬菜品种志.上海科学技术出版社,1959.
    ◇ 沈明珠,翟宝杰,东惠茹等.蔬菜中硝酸盐的研究[Ⅰ]不同蔬菜硝酸盐和亚硝酸盐含量评价.园艺学报.1982,9(4):41-48.
    ◇ 石碧.植物多酚.北京:科学出版社.2000,124-146.
    ◇ 石桂春.蔬菜保鲜储藏的现状、趋势和对策.吉林农业科学,2001,26(4):49-53.
    ◇ 宋曙辉,薛颖.十字花科蔬菜防癌作用的初步研究.中国肿瘤,1997,6(1):19-20.
    ◇ 孙静,黄建.十字花科蔬菜的防癌作用.国外医学卫生学分册,2003,30 (1):19-24.
    ◇ 谭雪,孙怀志,陈玉英等.蔬菜与健康.北方园艺,2004(3):61-61.
    ◇ 王景梓,王岗,徐贵发等.茶多酚的药理研究.食品与药品,2006,8(3):23-26.
    ◇ 王萍,朱祝军.腌制加工对不同品种叶用芥菜抗氧化物质含量和抗氧化活性的影响.核农学报,2006,20(6):516-520.
    ◇ 王萍.中国主要芸薹属蔬菜抗氧化能力基因型差异及环境互作效应研究.浙江大学博士论文,2005,6.
    ◇ 王晓霞,汪敬武.酚酸类化合物的测定方法研究.江西化工,2003,3:24-30.
    ◇ 王一民.十字花科蔬菜抗癌作用的奥秘.农业科技情报.1993,(2):64-65.
    ◇ 文碧玲,李培武,李航森等.油菜吲哚硫苷降解物对S-(180)小鼠抗肿瘤作用的实验研究.中草药,2002,33(4):331-333.
    ◇ 吴新杰,李强生,陈凤祥等.油菜籽(饼)中硫代葡萄糖苷测定方法研究进 展.中国油料作物学报,2003,25(1):86-88.
    ◇ 夏向东,吕飞杰,台建祥.抗氧化剂的功效及抗氧化活性的体外分析评价.食品研究与开发,2001,22(1):38-43.
    ◇ 谢丽玲,朱炎坤.叶芥菜中总黄酮含量测定的研究.仪器仪表与分析监测,2000,3:61-62.
    ◇ 谢正玉,武斑农等.七起亚硝酸盐食物中毒原因分析.肉品卫生,1993,(9):14-15.
    ◇ 徐专红.食品中硝酸盐和亚硝酸盐与人体健康.食品科技,1999,7(5):1-13.
    ◇ 燕平梅,薛文通,张惠等.蔬菜腌渍发酵中亚硝酸盐问题的研究.中国调味品,2005,8:42-45.
    ◇ 燕平梅,薛文通,张慧等.不同贮藏蔬菜中亚硝酸盐变化的研究.食品科学.2006,27.242-246.
    ◇ 杨以耕,陈材林.芥菜分类研究.园艺学报,1989,26(2):114-121.
    ◇ 叶世伯,李国庆.化学性食品中毒.北京大学出版社,1989,235-237.
    ◇ 张德权,艾启俊.蔬菜深加工新技术.化学工业出版社,2003,1:9-10.
    ◇ 张建华,胡飞,陈火英.佛手瓜菜汁饮料和南瓜发酵饮料的研制.上海农学院学报,2006,18(2):114-118.
    ◇ 张菊华,单阳,李高阳.乳酸菌发酵蔬菜汁的研究进展.饮料工业,2003,6(6):27-31.
    ◇ 张庆芳,迟乃玉,郑艳等.关于蔬菜腌渍发酵亚硝酸盐问题的探讨.微生物学杂志,2003,23(4):41-44.
    ◇ 张庆芳,郑燕.乳酸菌讲解亚硝酸盐机理的研究.食品与发酵工业,2002,28(8):27-31.
    ◇ 张庆芳.蔬菜淹渍发酵亚硝酸盐降解机理和提高白菜品质方法的研究.沈阳农业大学博士学位论文,2001,12.
    ◇ 张岩,肖更生,,陈卫东等.发酵蔬菜的研究进展.现代食品科技,2005,21(1):184-186.
    ◇ 章善生.中国酱腌菜.北京:中国商业出版社,1994.
    ◇ 赵大云,丁霄霖.雪里蕻腌菜风味物质的研究(Ⅰ)雪里蕻腌菜氨基酸及有机酸成分检测与分析.中国调味品,2000,12:13-17.
    ◇ 赵大云,杨方琪.雪菜中芥子苷酶解特性的研究.食品与发酵工业.1998,24(3):40-46.
    ◇ 赵大云.雪里蕻腌菜风味物质及其低盐接种腌制剂的研究.无锡轻工业大学博士论文,2000,11.
    ◇ 赵书欣,甄清.接种乳酸菌腌制渍菜过程中亚硝酸盐变化规律的研究.中 国畜产与食品,1998,(4):153-154.
    ◇ 郑桂富,许晖,吴杰.亚硝酸盐在雪里蕻腌制过程中生成规律的研究.四川大学学报(工程科学版),2000,32(3):85-87.
    ◇ 钟之绚,郭剑.酸白菜发酵中乳酸菌群的分析.微生物学报,1995,35(1):29-32.
    ◇ Ahmet E, Kanber R. Effects of diferent drip irrigation programs on the boll number and shedding percentage and yield of cotton. Agricultural Water Management. 2003, 60: 1-11.
    ◇ Ahn D U, Nam K C. Double- packing is effective in reducing lipid oxidation and. off-odor volatiles of irradiated raw turkey meat. Poultry Science, 2003, 82: 1468-1474.
    ◇ Ahn D U, Zhu, M J, Mendonca A. Temperature abuse affects the quality of Irradiated pork loins. Meat Science, 2004(67): 643-649.
    ◇ Ahn D U, Nam K C. Efects of aecorbie acid and antioxidants on color, lipid oxidation and volatile of irradiated ground beef. Radiation Physics and Chemistry, 2004(71): 149-154.
    ◇ Arron K, Hassan A M. High-performance liquid-phase separation of glycosides. Ⅲ. Determination of total GS in cabbage and rapeseed by capillary electrophoresis via the enzymatically released glucose. Analytical Biochemistry 1999, 267, 92-99.
    ◇ Benzie, I F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry, 1996, 239: 70-76.
    ◇ Block G. A role for antioxidants in reducing cancer risk. Nutrition Review, 1992,50:207-213.
    ◇ Block G. Langseth L. Antioxidant vitamins and disease prevention. Food Technology, 1994,7:80-84.
    ◇ Bravo L. Polyphenols: Chemistry, dietarys ources, metabolism and nutritional significance. Nutrtion Review. 1998, 56(11): 317-333.
    ◇ Chu Y H, Chang C L, Hsu H F. Flavornoid content of several vegetables and their antioxidant activity. Journal of the Science of Food and Agriculture, 2000(80): 561-566.
    ◇ Chun O K, Kim D O, Smith, Net al. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. Journal of Science of Food of Agriculture, 2005, 85, 1715-1724.
    ◇ Corre W J, Breimern T, Nitrate and nitrite in vegetable, Wageningen: Center for agriculture publishing and documentation, 1997: 85-86.
    ◇ Cotelle N, Bernier J L, Catteau J P, et al. Antioxidant properties of hydroxy-flavones. Free Rradical Biology and Medicine, 1996,20:35-43.
    ◇ Diplock A T. Will the "good fairies" please proves to us that vitamin E lessens human degenerative of disease? Free Radical Research, 1997, 27:511-532.
    ◇ Eduardo A S R, Robert K H. The effect of cooking and processing on the GS content: study on four varieties of Portuguese cabbage and hybrid white cabbage. Journal of Science of Food of Agriculture. 1993, 62, 259-265.
    ◇ Fenwick G R, Griffiths N M. Bitterness in Brussels sprouts: The role of GS and their breakdown products. Journal of Science of Food of Agriculture, 1983, 34: 73-80.
    ◇ Gangolli S D, Brandt P A, Feron V Jet al. Nitrates, nitrites and N-titroso compounds. Environmental toxicology and pharmacology, 1994, section292: 1-38.
    ◇ Gregor D M, Mullin W J. Review of analysis of glucoseinolates. Journal of Association of Official Analytical Chemists, 1983,66:825-849.
    ◇ Harborne J B, Grayer R J. Flavonoids and insects. In the flavonoids, Advances in Reseach Since1986. Chapman and Hall, London, 1994, 589-618.
    ◇ Harborne J B. Methods in plant biochemistry. In: Plant Phenolics. Academic Press, London, 1989.
    ◇ Hayase F, Hirashima S, Okamoto Get al. Scavenging of active oxygens by melanoidins, Agriculture Biological Chemistry, 1989, 53(12): 3383-3385.
    ◇ Kanda .T, Akiyama H, Yanagida Aet al. Inhibitory effects of apple polyphenol on induced histamine release from RBI -2H3 cells and rat mast cells. Bioscience Biotechnol and Biochemistry, 1998,62(7): 1284-1289.
    ◇ Karen S, Robert K H. An estimate of the mean daily intake of GS from cruciferous vegetables in the UK. Journal of Science of Food of Agriculture. 1984, 35,712-720.
    ◇ Karki T, Itoh H, Kozaki M. Chemical changes occuring during gundruk fermentation part Ⅱ-2 Flavour components. Lebensm-Wiss.u. -Technol., 1983, 16; 2 113-208.
    ◇ Kaur C, Kapoor H C. Anti-oxidant activity and total Phenolic content of some Asian vegetables. International Journal of Food Science and Technology, 2003, 37: 153-161.
    Kaur C, Kapoor H C. Antioxidants in fruits and vegetables-the millennium's health. International. Food Science and Technology, 2001, 36: 703-725.
    Kim D O, Jeong S W, Lee C Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 2003, 81: 321-326.
    Mariken J T J. A critical appraisal of the use of the antioxidant capacity (TEAC) assay in defining optimal antioxidant structures. Food Cchemistry, 2003, 80: 409-414.
    Miller N J, Rice Evans-C A. Anovel method for mearing antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical cience, 1993, 84: 407-412.
    Nout M J R. Upgrading traditional biotechnological processes. Office of international affairs national research council. Applications of biotechnological to traditional fermented foods. Washington D C: National academy press. 1992, 11-19.
    Pechacek R, Velisek J, Hrabcova H. Decomposition products of ally isothiocyanate in aqueous solutiond. Journal of Agricultural and Food Chemistry, 1997, 45(12): 4584-4588.
    Pederson C S. Advances in Food Research, vol 10, Academic Press. New York, 1960.
    Pellegrini N, Ying M. Screening of dietary carotenoids and carotenoid-rich fruits extract for antioxidant activities applying 2, 2'-azobis (3-ethylbenzothine-6-surfonic acid) radical cation decolorization assay. Methods in Enzymology, 1999, 299, 384-389.
    Robbins R J. Phenolic Acids in Foods: An Overview of Analytical Methodology. Journal of Agricultural and Food Chemistry. 2003, 51, 2866-2887.
    Robin V D B, Haenen G R M. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chemistry, 1999, 66: 511-517.
    Rosa E A S, Heaney R K, Fenwick G R, et al. Glucosinolates in crop plants. Horticultural Reviews, 1997, 19: 99-215.
    Schobinger U, Barbic I, Duerr Pet al. Phenolic compounds in apple juice-positive and negative effects. Fruit Processing. 1995, 5(6): 171-172.
    Shimada K, Fujikawa K, Yahara K et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 1992,26,1231-1237.
    ◇ Soares J R, Dins T C P, Cunha A P et al. Antioxidant activity of some extracts of Thymus zygis. Free Radical Research, 1997,26: 469-478.
    ◇ Tsai P J, Mcintosh J, Pearce P et al. Anthocyanin and antioxidant capacity in Roselle. Food Research International, 2002,35:351-356.
    ◇ Verkerk R, M.S.van der Gaag. Effects of processing condition on GS in cruciferous vegetables. Cancer Letters. 1997, 114,193-194.
    ◇ Wynne G, Nigel D. Identification of GS on the leaf surface of plants from the cruciferae and other closely related species. Phytochemistry 2001, 57, 693-700.
    ◇ Xu G., Ye X, Chen J et al. Effect of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Citrus Peel Extract. Journal of Agriculture and Food Chemistry, 2007, 55(2), 330-335.
    ◇ Yildirlm A, Mavi A, Kara A A. Determination of antioxidant and antimicrobial activities of Rumexs crispus L. extracts. Journal of Agricultural and Food Chemistry, 2001,49:4083 - 4089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700