黄瓜单性结实和种质资源遗传多样性的ISSR分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜是一种重要的果菜类蔬菜作物,品种资源较为丰富,利用分子标记进行黄瓜种质资源鉴定和分类对黄瓜种质创新和选育新品种具有重要意义。目前尚未见有利用ISSR分子标记进行黄瓜资源鉴定和遗传多样性分析等的研究报道。本研究利用正交试验法成功设计并优化了黄瓜ISSR技术体系。黄瓜单性结实特性是其重要的经济性状,选育单性结实品种是现代黄瓜育种中重要的目标性状之一。本文基于黄瓜单性结实品系(EP-6)与非单性结实品系(ZR-2)构建了包含135个单株的F_2分离群体,对单性结实和非单性结实的分子特征进行了分析。利用ISSR分子标记技术对46份黄瓜品种资源进行了多态性分析,8个ISSR引物在46份黄瓜材料中获得了42条扩增带,采用Jaccard方法计算出遗传相似系数矩阵,以UPGMA法对46份黄瓜品种进行了聚类分析。利用ISSR技术对3个黄瓜组合的双亲和F_1进行了引物筛选,初步建立了应用于鉴定黄瓜亲本及其F_1种子的ISSR指纹图谱。研究的主要结果如下:
     1.利用正交试验设计方法,从Taq酶、dNTPs、引物、Mg~(2+) 4种因素各3个水平来优化黄瓜ISSR反应体系。通过实验确定的黄瓜ISSR最佳反应体系为:在25μl反应体系中各反应成分为:1×PCR buffer,1.5mmol/L Mg~(2+),25ng黄瓜模板DNA,1U Taq酶,200μmol/L dNTPs,0.75μmol/L引物,ddH2O。这一体系的建立为利用ISSR技术进行黄瓜种质资源鉴定、遗传图谱构建和基因定位奠定了初步的技术基础。
     2.以黄瓜单性结实品系EP-6和非单性结实品系ZR-2为亲本构建了分离群体,采用分离集团混合分析法(BSA)法筛选与黄瓜单性结实基因连锁的ISSR分子标记。引物N92在亲本和DNA池之间扩增出一条大小为850bp多态性片段,经F_2代群体135个单株验证,该片段稳定出现,在单性结实植株中表现为无带,在非单性结实植株中表现为有带,可以作为鉴别单性结实与非单性结实的标记引物。这一结果为今后黄瓜单性结实分子标记辅助育种和基因定位奠定了初步的基础。
     3. 8个ISSR引物在46份黄瓜品种中扩增出42条条带,其中多态性条带为36条,多态性比率为85.71 %,表明ISSR标记在黄瓜上具有较高的多态性。46份材料间遗传相似系数的变化范围是0.3030~0.8750,其中23(ZN1)和42(四川寸金子)的遗传系数最小(0.3030),其遗传距离最远;34(Edipse)与43(杨泾黄瓜)之间的遗传相似系数最高(0.8750),其遗传距离最近。聚类分析结果表明,若以相似性系数0.52为阈值时,可将46份黄瓜品种聚为两类,一类以较强的雌性表现为特征,另一类则多表现为普通性型。若以0.54的相似系数为阈值,46份黄瓜材料可以被分为四大类,虽然不能完全按照生态型将本研究中的黄瓜资源聚类,但总体而言,来自于同一生态型的多数资源可以聚在同一类或亚类中。各个类中均分布有具有单性结实性能的品种,前三类包括了较多的单性结实种质资源,占该类资源的46.10%。这既说明黄瓜单性结实性在品种间的普遍性,同时更说明不同品种间单性结实性又存在差异。
     4.利用ISSR技术对由双亲及其F_1组成的3个黄瓜组合进行了多态性分析, 65个引物中筛选出5个具有多态性,其中4个引物(J1、UBC818、N86和I-10)在组合1中均表现多态,F_1中双亲的特异带均能被扩增出来,表明四个引物均能将组合1的双亲及其F_1进行有效鉴别。引物N86和I-10对组合2和组合3的扩增结果表明,F_1中双亲的特异带均能被扩增出来,因此,引物N86和I-10均能将组合2和组合3的双亲及其F_1进行有效鉴别。据此初步建立了应用于鉴定黄瓜三个组合亲本及其杂种的ISSR指纹图谱。为黄瓜种子纯度的鉴定提供了新的技术途径,为实施黄瓜新品种知识产权保护提供了分子基础。
Cucumber(Cucumis sativus L.) is a very important vegetable crop with an adundant germplasms. Researches on evaluation and classification of cucumber germplasms with molecular markers play an important role in innovation of germplasms and breeding for new varieties. It hasn’t been reported that ISSR is used to indentify cucumber germplasms and genetic diversity . Orthogonal design was used to optimize the cucumber ISSR reaction system in the present research. Parthenocarpy is one of important economic characters and has been an important aim character in the field of modern cucumber breeding. Based on the separate progeny from the cross between parthenocarpic line EP-6 and non-parthenocarpic line ZR-2, 135 individuals were tested in molecule characters linked with parthenocarpy. 46 cultivated accessions were used in this study to analyze their polymorphisms with ISSR primers. 42 polymorphic ISSR bands were amplified with 8 ISSR primers. Genetic similarity coefficients were calculated by Jaccard method and culstering was conducted for 46 cultivars by UPGMA.The DNA fingerprinting of hybridity with ISSR markers were contructed preliminarly in three cucumber crosses . The main results were as follows:
     1 In this study, Orthogonal design with three levels of four factors(Taq DNA polymerase、dNTPs、primer、Mg~(2+)) was used to optimize the cucumber ISSR reaction system. The results showed that a better amplification of ISSR was obtained with the reaction system containing 1×PCR buffer,1.5mmol/L Mg~(2+),25ng DNA,ddH2O,1UTaq DNA polymerase,200μmol/L dNTPs,0.75μmol/L. It provided the basis for the analysis of diversity, map construction and gene localization of important traits in cucumber with ISSRmarkers.
     2 The separate progeny from the cross between parthenocarpic line EP-6 and non-parthenocarpic line ZR-2 was employed to screen the molecular markers linked to the parthenocarpy of cucumber with the method of BSA(bulked segregation anlysis). A band of 850bp was tested not only in two parents but also in two DNA pools with the primer N92. The product of electrophoresis with the primer N92 showed that non-parthenocarpic line had the band but parthenocarpy line none. Therefore the primer N92 could be used to identify cucumber parthenocarpy. It provided the basis for marker assistance selection in breeding and gene localization of cucumber parthenocarpy.
     3 With 8 ISSR primers, 42 bands were amplified in 46 cultivated accessions of cucumber, of 36 bands (85.71 %) were polymorphic. The genetic similarity coefficients of 46 cultivated accessions were ranged from 0.3030 to 0.8750, the coefficient(0.3030) between 23(ZN1)and 42(SichuanCunjinzi)was the lowest, meaning the longest genetic distance between them and the highest coefficient was found between 34(Edipse)and 43(Yangjing),meaning the shortest genetic distance between them. The culstering of 46 cultivated accessions showed that the cultivars are divided into 2 groups at the threshold of 0.52 and was realted to the sex phenotypes of cucumber. One group was charactered with more gynoecious phyenotypes ,and the other for general sex phenotypes. 46 cultivated accession were culstered four groups at the threshold of 0.54. Most of the same ecotypes could be grouped into same group and subgroup. Cultivar charactered by the specific band for parthenocarpy was found in different groups and the parthenocarpy accession of the first three groups accounts for 46.10%. It suggested that parthenocarpy of cucumber exist widely, but differences in this character be in various accessions.
     4 65 ISSR primers were used in three cucumber crosses, and of 5 primers showed polymorphisms in parents and their F_1. Primer J1、UBC818、N86 and I-10 have polymorphic bands in the cross1, and the specific bands of parents were found in their F_1. Polymorphisms could be found in the cross2 and cross3 with two primers(N86 and I-10),and the specific bands of parents were found in their F_1.The DNA fingerprinting of hybridity with ISSR markers were contructed preliminarly. It provided a new technique for distingishing uniform and a molecular basis for protecting intellectual property rights of new cucumber varieties.
引文
1. 吕家龙. 蔬菜栽培学各论(南方本)[M]. 中国农业出版社, 2001:160~161.
    2. 魏惠军, 杜胜利, 马德华. 分子标记在黄瓜遗传育种研究中的应用[J]. 生物技术通报, 1999, 2:28~30.
    3. 吴乃虎. 基因工程原理[M]. 北京:科学技术出版社, 2001:340~343.
    4. Willams J. G. K., Kubelik A. R., Livak K. J., et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18:6531~6535.
    5. 吴乃虎. 基因工程原理[M]. 北京:科学技术出版社, 2001: 112~113.
    6. Zabeau M., Vos P.. Selective restriction fragment amplification: a general method for DNA finger printing European patent Application[J], No 0534858A1, 1993: 3~31.
    7. Kelly J. D., Miklas P. N.. Therole of RAPD markers inbreeding for disease resistance in common bean[J]. MolBreed, 1998, 4(1):1~11.
    8. Zietkiewice Z. E., Rafalskia and Labudad.. Genome finger printing by simple sequence repeat (SSR) –anchored polymerase chain reactionamplification[J]. Genomics, 1994, 20: 176~183.
    9. Li G, Quiros C F. Sequence-related amplified polymorphism(SRAP),A new marker system based on a simple PCR reaction:its application to mapping and gene tagging inBrassica[J]. Theor.Appl.Gene., 2001,103: 455~461.
    10. REN Y., WANG D.Y., ZHANG Y.D., et al. Sequence-related Amplifide Polymorphism(SRAP):A novel tech-nique for molecular marker[J]. Chinese Agricultural Science Bulletin, 2004, 20(6):11~13.
    11. Young N. D., Zamir D., Ganal M. W., et al. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the TM-2agene in tomato[J]. Genetics, 1988, 120:579~585.
    12. Michlmore R. W., Paran I., Kesseli R. V.. Identification of markers linked to disease resistance genes by bulked segregating population[J]. Proc. Natl. Acad. Sci. USA, 1991, 88: 9829~9832.
    13. 任旭琴.遗传多样性及其研究方法[J]. 淮阳工学院学报, 2002, 11(5) : 6~8.
    14. 董玉琛. 生物多样性及作物遗传多样性检测[J]. 植物品种资源, 1995, (3): 1~5.
    15. 敖光辉, 刘亚秋, 李伯军. 植物遗传多样性及种群生态学研究中的分子标记[J]. 内江师范学院学报, 2005, 20(4):64~67.
    16. 粟生群. 利用 RAPD 和 AFLP 评价小豆裁培种质资源遗传多样性(学位论文), 四川农业大学, 2005.
    17. 李锡香, 沈镝, 张春震, 等. 中国黄瓜遗传资源的来源及其遗传多样性表现[J]. 作物品种资源, 1999, (3):27~29.
    18. 孙小镭, 王永强, 曲士松. 山东黄瓜种质资源地理分布与生态类型的关系[J]. 山东农业科学, 2000, (6):36~37.
    19. 戚春章, 袁珍珍, 李玉湘. 黄瓜新类型——西双版纳黄瓜[J]. 园艺学报, 1983, 10(4):259~263.
    20. 利容千. 中国蔬菜植物核型研究[M]. 武汉:武汉大学出版社, 1989:106~111.
    21. Knerr L D, Staub J E, Holder D J, etal. Genetic diversity in Cucumis setiuvs L. assessed by variation at 18 allozy mecoding loci. Theor. Appl. Genet.[J] ,1989, 78:119~128.
    22. Meglic V, Staub J E. Genetic diversity incucumber(Cucumis sativus L.)I: Anree valuation of the U.S. germpalsm collection[J]. Genetic Resources Crop Evolution, 1996, 43:533~5467.
    23. Staub J E, Serqyen F C, Mccreight J D. Genetic diversity in cucumber(Cucumis sativus L.)Ⅲ: Anevaluation of indiagermplasm. Genetic Resources Crop Evolution[J]. 1997 ,44:315~326.
    24. Dijkhuizen A, Kennerd W C, Havey M J, et al. RFLP variability and genetic relationship in cultivated cucumber. Euphytica[J]. 1996, 90:79~899.
    25. 李锡香, 朱德蔚, 杜永臣, 等. 黄瓜种质资源遗传多样性的 RAPD 鉴定与分类研究[J]. 植物遗传资源学报, 2004, 5(2):147~152.
    26. Horejsi T, StabJ E. Genetic variation in cucumber(Cucumis sativus L.) asassessed by random amplified polymorphic DNA[J]. Genetic Resources Crop Evolution, 1999, 46:337~350.
    27. 顾兴芳, 杨庆文. AFLP 技术在黄瓜种质资源鉴定和分类上的应用初探[J]. 中国蔬菜. 2000, (1):30~32.
    28. 王志峰, 孙日飞, 孙小镭, 等. 山东省黄瓜地方品种资源亲缘关系的 AFLP 分析[J]. 园艺学报, 2004, 31(1):103~105.
    29. Dijkhuizen A, et al. RFLP variation and genetic relationships in cultivated cucumber. Euphytica[J]. 1996, 90(1): 79~87.
    30. Staub J E. Comparation of isozyme and random amplified polymorphic DNA data for determining intra specific variation in cucumis[J]. Genetic Resources and Crop Enalrtion, 1997, 44(3):257~269.
    31. Katzir N, etal. Length polymorphism and homologies of micro satellites in several cucurbitaceae speicies[J]. Theoretical and Applied Genetics, 1966, 93(8): 1282~1290.
    32. 张海英, 王永建, 许勇, 等. 黄瓜种质资源遗传亲缘关系的 RAPD 分析[J]. 园艺学报, 1998, 25(4): 345~349.
    33. 李锡香, 朱德蔚, 杜永臣, 等. 黄瓜种质资源遗传多样性及其亲缘关系的 AFLP分析[J], 园艺学报, 2004, 31(3): 309~314.
    34. 李丽, 郑晓鹰, 柳李旺. 用 SRAP 标记分析黄瓜品种遗传多样性及鉴定品种[J]. 分子植物育种, 2006, 4(5): 702~708.
    35. 庞金安, 马德华, 霍振荣. 黄瓜杂交一代纯度鉴定研究进展[J]. 天津农业科学, 2000, 6(2): 40~43.
    36. Matsuura S, Petrino M G, KakunagaT, et al. An approach for rapid checking of seed purity by RFLP analysis of nuclear DNA in F1-hybrid of cucumber[J]. Journal ofthe Japanese Society for Horticural.Science, 1994, 63(2): 379~383.
    37. 孙敏, 乔爱民, 王和勇, 等. 黄瓜杂交种子纯度的 RAPD 鉴定[J]. 西南师范大学学报(自然科学版), 2003, 28(1):103~107.
    38. 中国农业科学院主编. 中国果树栽培学[M]. 北京: 农业出版社, 1987, 105~ 108.
    39. 陈学好, 曹碚生. 黄瓜单性结实研究概况[J]. 中国蔬菜, 1994, (3): 56~59.
    40. 刘宏宇, 秦智伟, 周秀艳. 园艺作物单性结实研究进展[J]. 北方园艺, 2004(5): 4~5.
    41. 陈学好, 曾广文, 曹碚生. 园艺作物的单性结实及应用[J]. 植物生理学通讯, 2001, 37(6): 570~575.
    42. Giuseppe L R, Elena P, Michela Z, et al. Genetic engineering of parthenocarpic plants[J]. Nature Biotech, 1997, 15:1398~1401.
    43. Guglielmo D., Angelo S., Giuseppe L R.. Transgenic parthenocarpicegg plant:superior germplasm for increased winter production[J]. Mol Breeding, 2000, 6: 79~86.
    44. Nadia F, Sara S, Tiziana P, et al. Genetic engineering of parthenocarpic fruit development in tomato[J]. MolBreeding, 1999, 5: 463~470 .
    45. PontiO M.B. Inheritance of parthenocarpy in pickling cucumbers and linkage with other characters[J]. Euphytica, 1976, 25: 633~642.
    46. 曹碚生, 陈学好, 徐强, 等. 黄瓜单性结实世代遗传效应的初步研究[J]. 园艺学报, 1997, 24(1): 53~56.
    47. EL-Shawaf. Inheritance of parthenocarpic yield in gynoecious pickling cucumber for once-over mechanical harvest by diallel analysis of six gynoecious lines[J]. Amer Soc Hort Sci, 1981, 106(3): 359~364.
    48. 陈学好, 曹碚生. 黄瓜基因及其连锁研究进展[J]. 园艺学报, 2000, 27(增刊): 497~503.
    49. 张海英, 许勇, 王永健. 葫芦科瓜类作物分子遗传图谱研究进展[J]. 分子植物育种, 2004, 2(4): 548~556.
    50. Pierce L K, Wehner T C. Review of genes and linkage groups in cucumber[J]. HortScience, 1990, 25(6): 605~615.
    51. Knerr L D, Staub J E . Inheritance and linkage relationships of isozyme loci in cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics, 1992, 84: 217~224.
    52. Meglic V, Staub J E. Inheritance and linkage relationships of isozyme and morphological loci in cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics, 1996, 92: 865~872.
    53. Kennard W C, Poetter K, Dijkhuizen A. Among RFLP、RAPD isozyme, disease resistance and morphological markers in narrow and wide crosses of cucumber[J]. Theor.App1. Genet, 1994, 89: 42~48.
    54. Serquen F C, Bacher J. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers[J] . Molecular Breeding, 1997, 3: 257~268.
    55. Park Y H, Sensoy S, Wye C, et al. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs and loci conditioning resistance to Papaya ringspot and Zucchini yellow mosaic viruses[J]. Genome, 2000, 43:1003~1010.
    56. 张海英, 葛风伟, 王永健. 黄瓜分子遗传图谱的构建[J]. 园艺学报, 2004, 31(5): 617~622.
    57. Fazio G, Staub J E. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines[J]. T.A.G, 2003, 1075: 864~874.
    58. 王志坤. 黄瓜种质资源遗传多样性研究(硕士学位论文), 东北农业大学 2004.
    59. 孙玉河, 李文琴, 马德华. 我国黄瓜生产的现状、问题和发展趋势[J]. 天津农业科学, 2003, 9(3): 54~56
    60. Tsuanura Y., Ohba K., and Strause S.H, Diversity andinheritance ofinter-simple sequence polymorphisms in Douglas-fir (Psendotauga menxiesit) and Sugi (Cryptomeria japoneca)[J]. Theor. Appl. Genet., 1996, 92: 40~45.
    61. Culley T. M., Wolfe A.D., Population genetic structure of the cleistogamous plant species Viola pubescens Aiton(Violaceae),a indicated by allozyme and ISSR molecular markers[J]. Heredity, 2001, 86(Pt5): 545~556.
    62. Wolfe A.D., Xiang Q.Y., and Kephart S.R., Assessing hybridization in natural populations of Penstemon (Scrophu lariaceae)using hypervariable inter-simple sequence repeat (ISSR) bands[J]. Mol Ecol, 1998, 7(9): 1107~1125.
    63. 张立荣, 徐大庆, 杨文香, 等. 小麦抗叶锈基因 Lr37ISSR 分子标记[J]. 农业生物技术学报, 2004, (12)1: 86~89.
    64. 李海生. ISSR 分子标记技术及其在植物遗传多样性分析中的应用[J]. 生物学通报, 2004, 39(2): 19~21.
    65. 何予卿, 张宇, 孙梅, 等. 利用ISSR分子标记研究栽培稻和野生稻亲缘关系[J]. 农业生物技术学报, 2001, 9(2): 123~127.
    66. 马朝芝, 傅廷栋, Stine Tuevesson, 等. 用ISSR标记技术分析中国和瑞典甘蓝型油菜的遗传多样性[J]. 中国农业科学, 2003, 36(11): 1403~1408.
    67. 汪岚, 韩延闯, 彭欲率, 等. ISSR 标记技术在莲藕遗传研究中的运用[J]. 氨基酸和生物资源, 2004, 26(3): 20~22.
    68. 盖钧镒. 试验统计方法[M]. 北京: 中国农业出版社, 2000, 286~287.
    69. 王彦华, 侯喜林, 徐明宇. 正交设计优化不结球白菜 ISSR 反应体系研究[J]. 西北植物学报, 2004, 24(5): 899~902.
    70. 谢运海, 夏得安, 姜静, 等. 利用正交设计优化水曲柳 ISSR-PCR 反应体系[J]. 分子植物育种, 2005, 3(3): 445~450.
    71. Nagaoka.T., Ogihara.Y.. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers[J] .Theor. Appl. Genet, 1997,94: 597~602.
    72. Joshisp, Guptavs, Aggarwalrk, et al. Genetic diversity and phylogenetic relationship as reveale by inter-simple sequence repeat polymorphism in the genus Oryza[J] . Theor. Appl. Genet., 2000, 100: 1311~1320.
    73. Qiu Y.X., Fu C.X., Kong H.H. Inter-simple sequence repeat ISSR analysis of different cultivars in Myricarubra[J]. Journal of Agricultural Biotechnology, 2002, 10(4): 343~346.
    74. 陈学好, 于杰, 徐强, 等. Spd和MGBG对黄瓜子房内源多胺和蛋白质组成的影响及与单性结实的关系[J]. 园艺学报, 2005, 32 (4): 632~637.
    75. 张显, 王鸣, 张进升, 等. 西瓜隐性核雄性不育基因的 RAPD 标记[J]. 园艺学报, 2005, 32 (3): 438~442.
    76. 常彩涛, 王春国, 陈成彬, 等. 细胞质雄性不育辣椒育性恢复基因特异分子标记的筛选[J]. 实验生物学报, 2005, 38(3): 227~232.
    77. 雷剑, 柳俊. 一个与马铃薯青枯病抗性连锁的 SRAP 标记筛选[J]. 中国马铃薯, 2006, 20(3): 150~152.
    78. 娄群峰, 陈劲枫, Molly Jahn, 等. 黄瓜全雌性基因连锁的 AFLP 和 SCAR 分子标记[J], 园艺学报, 2005, 32 (2):256~261.
    79. 顾兴芳, 张素勤, 张圣平. 黄瓜果实苦味 Bt 基因的 AFLP 分子标记[J]. 园艺学报, 2006, 33 (1): 140~142.
    80. 吴旭红. 甜菜抗根腐病基因 ISSR 分子标记的初步研究[J]. 齐齐哈尔大学学报, 2005, 21(2): 30~32.
    81. 景润春, 何予卿, 黄青阳, 等. 水稻野败型细胞质雄性不育恢复基因的 ISSR 和 SSLP 标记分析[J], 中国农业科学, 2000, 33(2):10~15.
    82. 张海霞, 张海英,于广建, 等. 与黄瓜抗枯萎病基因连锁的 RAPD 标记[J]. 华北农学报, 2006, 21(2):121~123.
    83. 王军卫, 张改生, 刘宏伟, 等.小麦显性多子房基因的 RAPD 标记[J]. 农业生物技术学报, 2005, 13 (5): 553~556.
    84. 刘斌美, 童继平, 吴敬德, 等. 水稻显性半矮秆突变基因的分子鉴定[J], 分子植物育种, 2004, 2(3):326~330.
    85. 王志刚, 韩明玉, 赵彩平, 等. 油桃果肉颜色性状的 RAPD 分子标记研究[J]. 西北植物学报, 2006, 26(2): 0300~0304.
    86. 周延清, 李敏, 贾敬芬, 等. 河南大豆遗传多样性的 ISSR 分析[J]. 西北植物学报, 2006, 26(9): 1883~1887.
    87. 葛永奇, 邱英雄, 丁炳扬, 等. 孑遗植物银杏群体遗传多样性的 ISSR 分析[J]. 生物多样性, 2003, 11(4): 276~287.
    88. 陈劲枫, 娄群峰, 余纪柱, 等. 黄瓜性别基因连锁的分子标记筛选[J]. 上海农业学报, 2003, 19(4): 11~14.
    89. 高慧敏, 张颖君, 宋炳彦, 等. 分子标记在蔬菜种质资源和育种上的应用[J]. 河北农业科学, 2005, 9(2): 79~81.
    90. 钱前. 真假水稻II优63的RAPD鉴定[J]. 中国水稻科学, 1996, 10(4): 241 ~ 242.
    91. 赵久然, 郭景伦, 孔艳芳, 等. 利用 DNA 指纹鉴定玉米杂交种纯度及其真伪技术的研究[J]. 玉米科学, 1999, 7(1): 9~13.
    92. 栾雨时, 苏乔, 李海涛, 等. 利用 RAPD 技术快速鉴定番茄杂种纯度[J]. 园艺学报, 1998, 25(3): 247~251.
    93. Ballester J. G.. Determination of F hybrid seed purity in pepper using PCR-based markers[J]. Euphytica, 1998, 10(3): 223~266.
    94. 饶勇, 李超, 陈静, 等. RAPD 标记在油菜核不育两系及其杂种纯度检验上的研究[J]. 2005, 24(10): 11~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700