低夜温逆境下黄瓜果实生长与同化物代谢运转特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效节能型日光温室是我国蔬菜栽培的主体设施,其典型的温度特征是白天温度正常,夜晚温度较低。这种温度模式对水苏糖运输型蔬菜黄瓜的果实生长和同化物运输的影响目前并不清楚。为此,我们以黄瓜耐低温品系NY-1和XC-1和不耐低温的品种津研4号为材料,设置了28℃/12℃(昼/夜)28℃/22℃(对照)两个夜温处理,研究了低夜温对黄瓜果实发育和同化物运输的影响,以期为黄瓜冬季设施专用品种的选育和冬季栽培技术的制定提供依据。
     常夜温下,黄瓜果实在下午和前半夜生长较快,后半夜和上午生长较慢。低夜温胁迫下,两个耐低温品系保持相对较快果实生长速率的机制完全不同。与津研4号相比,NY-1在低夜温处理当夜果实生长较快,而XC-1的果实则在低夜温处理后的第二天白天生长较快。此时2品系同化物向果实运输的昼夜变化趋势与果实的生长速度一致。上述结果表明,在选育黄瓜耐低温品种时应注意采取多种选择策略。低夜温条件下增加果实负载可以提高第二天黄瓜源叶的光合速率,表明反馈抑制是低夜温造成黄瓜第二天光合作用下降的原因之一。
     为了调查NY-1在低夜温处理时为何能保持较快的果实生长速率,观测了NY-1和津研4号低夜温下由源叶到果实路径中各组织相关糖的含量和酶的活性。结果表明,低夜温造成了2品系源叶中蔗糖、水苏糖和肌醇半乳糖苷的积累,但对果实中蔗糖、葡萄糖和果糖的含量无显著影响。黄瓜果柄是经韧皮部运输而来的水苏糖转化为蔗糖的关键部位,低夜温处理同时造成了黄瓜果柄中水苏糖含量的上升和蔗糖含量的下降,表明黄瓜果柄中由水苏糖分解为蔗糖的步骤是低夜温下黄瓜同化物向果实运输的关键障碍环节。低夜温下2品系单果株和双果株相似的果实生长速度进一步表明此时限制同化物向果实运输的关键障碍环节在库端而不是源端,同时也说明冬季黄瓜栽培时一株上应保留多个果实。进一步调查两品系果柄中由水苏糖分解为蔗糖代谢过程中各相关酶低温下的活性,未发现这些酶的耐低温能力在基因型之间存在显著差异。低夜温下NY-1果柄中ATP的含量显著高于津研4号,这可能是NY-1低夜温下能保持较快果实生长速率的重要原因。
     为了调查XC-1在低夜温处理后的第二天白天保持较快果实生长速率的机制,测定了3品系成熟叶片中的各种碳水化合物的含量和关键酶的活性。结果表明,低夜温处理造成了两品系源叶中碳水化合物的积累。但在低夜温处理后的第二天上午,XC-1源叶中积累的碳水化合物主要为可运输的糖(水苏糖和蔗糖),而NY-1和津研4号则主要以淀粉(不可运输)为主。这可能是低夜温处理后的第二天白天XC-1的果实生长速度为何较NY-1和津研4号快的重要原因。
Energy-Saving Sunlight Greenhouse is very popular in China. However, the patterns of fruit growth and carbohydrate translocation of cucumber, an important stachyose-transporting vegetable under a normal–day–low–night–temperature thermoperiod (similar to the condition in Energy-Saving Sunlight Greenhouse) still remain poorly understood. In this study, One cold-sensitive cultivar (Jinyan 4) and two cold-tolerant lines (NY-1 and XC-1) of cucumber (Cucumis sativus L.) were treated with temperatures of 28°C/22°C (day/night, control) or 28°C/12°C in a 10 h photoperiod (7:00-17:00) to investigate how chilling night effect cucumber fruit growth and carbohydrate translocation. Some information helpful for cold-tolerant cucumber breeding was obtained .
     Under control conditions, cucumber fruits grew fast during the afternoon and early night, and slow during the late night and morning. Under 28°C/12°C, two cold-tolerant lines adopted distinctively different mechanisms to keep relatively higher fruit growth rate. Compared to Jinyan 4, NY-1 had a higher fruit growth rate during cold nights while XC-1 fruit grew faster during the next day. Assimilate accumulation of fruits was in conformity with the growth rate under 28°C/12°C. The increase of net CO_2 assimilation rate by fruit set after a cold night indicated that feedback inhibition was partially responsible for the reduction of photosynthesis.
     To investigate why NY-1 fruit grew faster than that of Jinyan 4 during cold night, carbohydrates and related enzymes were assayed from 0 h to 4 h after the start of the dark period from source leaf to fruit sink. Compared to the normal night temperature (22°C, control), sucrose, stachyose and galactinol increased in mature leaves under cold-night treatment (12°C) while sucrose, glucose and fructose in fruits remained unchanged. In peduncles, where stachyose is catabolized to sucrose after long distance transport, cold nights simultaneously induced a significant increase of stachyose (substrate) and a decrease of sucrose (product), indicating that the metabolic step from stachyose to sucrose in peduncles is crucial to translocation inhibition in cold nights. This decrease was more pronounced in the cold-sensitive cultivar. Similar growth rates of fruits on one-fruit and two-fruit plants under cold-night treatment further confirmed that it is sink activity rather than source supply limiting the source-sink translocation. No significant genotypic differences in enzyme activities involved in the stachyose-sucrose conversion, including alkalineα-galactosidase, acidα-galactosidase, galactokinase, uridine diphosphate (UDP)-galactose pyrophosphorylase, UDP–glucose-4`epimerase and sucrose synthase, were observed when assayed in an adenosine triphosphate (ATP)-rich in vitro environment. However, the ATP concentration was much higher in peduncles of the cold-tolerant line, indicating that a limiting ATP supply may be partially responsible for the stronger inhibition of the stachyose-sucrose pathway observed in the cold-sensitive cultivar (Jinyan 4).
     To investigate why the fruit of XC-1 accumulate assimilate faster than that of Jinyan 4 and NY-1 in the next morning after a cold night, several carbohydrates and enzymes were assayed in mature leaves of fruit carrying nodes. Distinctly different partitioning of fixed carbon between starch and sugars (sucrose and stachyose) was observed among Jinyan 4, NY-1 and XC-1, indicating that the faster assimilate accumulation rate of XC-1 fruit in the morning after a cold night may be caused by the higher exportable carbohydrate level in the mature leaves. Higher sucrose-phosphate synthase (EC.2.4.1.14) activity constituted additional evidence that faster sucrose and stachyose biosynthesis in mature leaves was occurred in XC-1 than in Jinyan 4 and NY-1 at that time.
引文
[1]Markovskaya EF, Sysoeva MI, Khar-kina TG, et al. Influence of night temperature drop on the growth and cold tolerance of cucumber plants. Russian Journal of Plant Physiology, 2000, 47(4): 445~448
    [2]Marcelis LFM, Hewvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae, 1998, 74(1): 83~111
    [3]Toki T, Ogiwara S, Aoki H. Effect of varying night temperature on the growth and yields in cucumber. Acta Horticulture, 1978, 87: 233~237
    [4]Handley LW, Pharr DM, Mc Feeters RF. Relationgship between galactinol synthase activity and sugar composition of leaves and seeds of several crop species. Journal of the American Society for Horticultural Science, 1983, 108(4): 600~605
    [5]Gao Z, Petreikov M, Zamski E, et al. Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo). Physiologia Plantarum, 1999, 106(1): 1~8
    [6]蒋亚华. 黄瓜碳水化合物代谢与运转特征研究. 扬州大学硕士学位论文, 2005
    [7]Tazuke A. Sugar concentration of cucumber fruits as affected by NaCl addition to nutrient solution. Environment Control in Biology, 2001, 39(4): 281~288
    [8]Chrost B, Schmitz K. Purification and characterization of multiple forms of alpha–galactosidase in cucumis melo plants. Journal of Plant Physiology, 2000, 156(4): 483~491
    [9]Birendra K, Yandav BP. Studies on metabolic changes like chlorophyll, sugars and amino acids contents induced by virus in cucumber leaf. Annals of Biology, 2002, 18(2): 147~151
    [10]Cabrera RM, Saltveit ME, Owens K. Cucumber cultivars differ in their response to chilling temperatures. Journal of the American Society for Horticultural Science, 1992, 117(5): 802~807
    [11]卢育华主编. 蔬菜栽培学各论(北方本)(第二版). 北京农业出版社, 1987: 190
    [12]Wang CY. Physiological and Biochemical response of plants to chilling stress. Hortscience, 1982, 17(2): 173~185
    [13]孙小镭. 黄瓜耐寒耐阴特性人工鉴定方法研究. 植物生理学报, 1994, 4(2): 60~ 63
    [14]王新华. 黄瓜低温适应性评价方法的研究. 东北农业大学硕士学位论文, 2000
    [15]Bulder HAM, Hasselt RV, Kuiper PJC. The effect of temperature on early growth of cucumber genotypes differing in genetic adaptation to low-energy conditions. Scientia Horticulturae, 1987, 4: 53~60
    [16]朱其杰. 黄瓜耐冷性鉴定指标及遗传规律的研究. 见:李树德主编. 中国主要蔬菜抗病育种进展, 北京:科学出版杜, 1998, 457~462
    [17]刘友良. 植物抗冻性测定技术的原理和比较. 植物生理学通讯, 1985, 1: 40~43
    [18]候峰, 沈文云. 黄瓜幼苗耐寒性鉴定方法研究. 见:李树德主编. 中国主要蔬菜抗病育种进展, 北京:科学出版社, 1995: 474~477
    [19]Cabrera RM. Characterization of fruit exudate on the chilling injury of cucumber fruits. Acta Horticulturae, 1993, 343: 290~292
    [20]丁钟荣. 用电阻法测定冬小麦品种抗寒性的研究. 植物生理学通讯, 1984, 1: 26~28
    [21]Ahn SJ, Im YJ, Chung GC, et al. Physiological responses of grafted-cucumber leaves and rootstock roots affected by low root temperature. Scientia Horticulturae, 1999, 81(4): 397~408
    [22]Hatfield JL, Burke JJ. Energy exchange and leaf temperature behavior of three plant species. Environmental and Experimental Botany, 1991, 31(3): 295 ~302
    [23]Yang XS, Short TH, Fox RD, et al. Transpiration, leaf temperature and stomatal resistance of a greenhouse cucumber crop. Agricultural and Forest Meteorology, 1990, 51: 197~209
    [24]Pike CS, Norman HA, Elizabeth C, et al. Effects of acclimation to low temperature and to water stress on photosynthesis and on physical and chemical properties of lipids from thylakoids of cucumber and cotton. plant science, 1990, 68(2): 189~196
    [25]王荣富. 植物抗寒指标的种类及其应用. 植物生理学通讯, 1987, 3: 49~55
    [26]Webb JA. The translocation of sugars in Cucurbita melopepo B. The effect of leaf blade temperature on assimilation and transport. canadan journal of botany, 1970, 48: 935~942
    [27]Du Y, Tachibana S. Effect of supraoptimal root temperature on the growth, respiration and sugar content of cucumber plants. Scientia Horticulturae, 1994, 58: 289~301
    [28]杨阿明, 沈征言. 低温锻炼提高黄瓜幼苗耐寒性效应. 园艺学报, 1992, 11: 61~ 66
    [29]王孝宣, 李树德. 番茄品种耐寒性与 ABA 和可溶性糖含量的关系. 园艺学报, 1998, 25(1): 56~60
    [30]庞金安. 黄瓜耐低温弱光生理生化机制及其鉴定指标的研究. 山东农业大学硕士研究生论文, 1996
    [31]Tachibana S. Effect of root temperature on rate of water and nutrient absorption in cycynber cultivars and figleaf gourd. Journal of the Japanese Society for Horticultural Science, 1987, 55(4): 461~467
    [32]Kano Y, Goto H. Relationship between the occurrence of bitter fruit in cucumber (Cucumis sativus L.) and the contents of total nitrogen, amino acid nitrogen, protein and HMG-CoA reductase activity. Scientia Horticulturae, 2003, 98(1): 1~8
    [33]Yin ZM, Rorat T, Szabala BM, et al. Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. plant science, 2006, 170(6): 1164~1172
    [34]Aarati P, Krishnaprasad BT, Ganeshkumar SM, et al. Expression of an ABAresponsive 21 kDa protein in finger millet (Eleusine coracana Gaertn.) under stress and its relevance in stress tolerance. plant science, 2003, 164(1): 25~34
    [35]王毅. 园艺植物冷害和抗冷性的研究. 园艺学报, 1994, 21(3): 239~244
    [36]Drozdov SN, Balagurova NI, Titov AF, et al. Methods of evaluating cold resistance in cucumber plants. Soviet Plant Physiology, 1980, 27(3): 653~656
    [37]Staub JE. Electro phoretic variation and enzymes toragest ability in cucumber. Journal of the American Society for Horticultural Science, 1985, 110(3): 426~431
    [38]Omran RG. Peroxide levels and the activties of catalase, peroxidase and indole acetic acidoxidase during and after chilling cucumber seedlings. Plant Physiology, 1980, 69(2): 407~408
    [39]庞金安, 沈文云, 马德华. 黄瓜幼苗耐低温指标研究初报. 天津农业科学, 1998, 4(2): 53~55
    [40]Primak AP, Kaoinina LM. Effect of cold-resistant cucumber forms and the adoption of energy consetvation cultivation technologies. Vestnik Selskokhozyaistvennoi Nauki Moscow Ussr, 1987, 8: 51~55
    [41]Mao LC, Pang HQ, Wang GZ, et al. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biology and Technology, 2007, 44(1): 42~47
    [42]Lee DH, Lee CB. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. plant science, 2000, 159(1): 75~85
    [43]王毅. 黄瓜幼苗低温锻炼对叶片细胞叶绿体结构的影响. 园艺学报, 1995, 22(3): 299~300
    [44]Sonoike K. The different roles of chilling temperatures in the photoinhibition of photosystem I and photosystem II. Journal of Photo-chemistry and Photobiology B Biology, 1999, 48: 136~141
    [45]Sonoike K, Terashima I, Iwaki M, et al. Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures. FEBS Letters, 1995, 362(2): 235~238
    [46]王永健. 黄瓜低温弱光耐受性评价指标体系以及弱光耐受性 QTL 定位的研究. 中国农业科学院博士后流动站博士后研究工作报告, 2003
    [47]Wise RR. Chilling-enhance photo oxidation. Plant Physiology, 1987, 83: 278~282
    [48]Hasselt PK, Berlo HAC. Photo oxidation damage to the photo-synthetic apparatus during chilling. physiologia plantarum, 1980, 50: 52~56
    [49]王以柔, 刘鸿先. 在光照和黑暗条件下低温对水稻幼苗光合器官膜脂过氧化作用的影响. 植物生理学报, 1986, 12(3): 244~251
    [50]刘鸿先. 低温对不同耐冷力的黄瓜幼苗呼吸代谢的影响. 植物生理学报, 1984, 8: 191~199
    [51]曾韶西, 王以柔. 低温对黄瓜幼苗子叶光合强度和叶绿素荧光的影响. 植物生理通讯, 1989, 4: 12~15
    [52]Wilson JM. Leaf respiration of ATP levels at chilling temperatures. new phytologist, 1978, 80: 325~334
    [53]Hu WH, Shi K, Song XS, et al. Different effects of chilling on respiration in leaves and roots of cucumber (Cucumis sativus L.). Plant Physiology and Biochemistry, 2006, 44: 837~843
    [54]Hakim A, Purvis AC, Mullinix BG. Differences in chilling sensitivity of cucumber varieties depends on storage temperature and the physiological dysfunction evaluated. Postharvest Biology and Technology, 1999, 17(2): 97~104
    [55]Weiser CJ. Cold resistance and injury in wood plant. Science, 1970, 169: 1269 ~1278
    [56]于叔文主编. 植物对温度逆境的适应. 植物生理与分子生物学, 北京科学出版社, 1992: 359
    [57]Ahn SJ, Im YJ, Chung GC, et al. Sensitivity of plasma membrane H+-ATPase of cucumber root system in response to low root temperature. Plant Cell Reports, 2000, 19(8): 831~835
    [58]康国斌, 许勇, 王永健, 等. 低温诱导的黄瓜 ccr18 基因的 cDNA 克隆及其表达特性分析. 植物学报, 2001, 43(9): 955~959
    [59]李晓萍, 陈贻竹. 冷锻炼对黄瓜幼苗光合特性与耐冷力的影响. 见: 中国科学院华南植物研究所集刊(第 7 集), 北京: 科学出版社, 1991: 69~74
    [60]Lu MH, Li XM, Chen JF, et al. Chilling tolerance of cucumber during germination is related to expression of lysine decarboxylase gene. Agricultural Sciences in China, 2005, 38(12): 2492~2495
    [61]Steponkus PL, Uemura M. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Plant Biologyogy, 1998, 95(2): 14570~ 14575
    [62]张兴国. 抗寒相关基因导入黄瓜的研究. 西南农业大学硕士学位论文, 2004
    [63]顾兴芳, 封林林, 张春震, 等. 黄瓜低温发芽能力遗传分析. 中国蔬菜, 2002, 3: 5~7
    [64]Cai ZH, Zhu QJ, Xu Y. Studies on inheritance of chilling tolerance in cucumber seedling stage. Acta Horticulturae, 1995, 402: 206~213
    [65]Provvidenti R. Inheritance of a particle chlorophyll deficiency in watermelon activated by low temperature at seedlings stage. Hort Science, 1994, 9: 1062 ~1063
    [66]许勇, 欧阳新星, 张海英, 等. 西瓜野生种质耐冷性基因连锁的 RAPD 标记. 园艺学报, 1998, 25: 397~398
    [67]Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the pllymerase chain reactin. Science, 1992, 257: 967~971
    [68]逯明辉, 娄群峰, 陈劲枫. 黄瓜的冷害及耐冷性. 植物学通报, 2004, 21(5): 578 ~586
    [69]Serreniuk P, Moline HE, Abbott JA. A comparison of the effects of ABA and an antitranspirant on chilling injury of coleus cucumbers and dieffen-bachia. Journal of the American Society for Horticultural Science, 1986, 111(6): 866~868
    [70]Klimov SV, Popov VN, Dubinina IM, et al. The decreased cold-resistance of chilling-sensitive plants is related to suppressed CO2 assimilation in leaves and sugar accumulation in roots. Russian Journal of Plant Physiology, 2002, 49(6): 776~781
    [71]Lower RL. Measurement and selection for cold tolerance in cucumber. pakistan journal of agricultural science, 1975, 4: 1~8
    [72]Wehner TC. Screening for low–temperature germination ability in cucumber. Hortscience, 1981, 16(3): 379~384
    [73]Wehner TC. Genetic Variation for low temperature germination ability in cucumber cucurbit Genet. Report, Cucumber Genetics Cooperative, 1982, 5: 16~17
    [74]Rab A, Saltveit ME. Sensitivity of seedling radicles to chilling and heat-shock induced chilling tolerance. Journal of the American Society for Horticultural Science, 1996a, 121(4): 711~715
    [75]Lee SH, Chung GC, Steudle S. Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and tolerant figleaf gourd. Journal of Experimental Botany, 2005, 56(413): 985~995
    [76]Lee SH, Chung GC, Steudle E. Low temperature and mechanical stresses differently gate aquaporins of root cortical cells of chilling-sensitive cucumber and figleaf gourd. Plant Cell and Environment, 2005, 28(9): 1191-1202
    [77]Lee SH, Chung GC. Sensitivity of root system to low temperature appears to be associated with the root hydraulic properties through aquaporin activity. Scientia Horticulturae, 2005, 105(1): 1~11
    [78]Rab A, Saltveit ME. Differential chilling sensitivity in cucumber (Cucumis sativus) seedlings. physiologia plantarum, 1996b, 96(3): 375~382
    [79]Hodges DM, Delong JM, Forney CE, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207(4): 604~611
    [80]Yu JQ, Zhou YH, Ye SF, et al. 24-epibrassinolide and abscisic acid protect cucmber seedlings frcmchilling injury. Journal of Hortie Science Biotechnic, 2002, 77: 470~ 473
    [81]杨玲. 不同低温处理对黄瓜子叶极性脂组成的影响. 园艺学报, 2001, 28: 36~40
    [82]Kates M, Pugh EL, Ferrante C. Regulation of membrane fluidity by lipid desaturases. Biomembranes, 1984, 12: 379~395
    [83]苏维埃. 植物对温度逆境的适应. 见:余叔文, 汤章诚主编. 植物生理学与分子生物学(第二版), 北京:科学出版社, 2001: 721~738
    [84]Kang HM, Saltveit ME. Reduced chilling tolerance in elongating cucurber seedlings radicles is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity. physiologia plantarum, 2002a, 115: 244~250
    [85]Kang HM, Saltveit ME. Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity of high and low-vigor cucumber seedling radicles. Plant Cell and Environment, 2002b, 25: 1233~1238
    [86]马德华, 庞金安, 霍振荣. 黄瓜耐低温研究进展. 天津农业科学, 1997, 3(4): 1~ 8
    [87]王以柔, 曾韶西, 刘鸿先. 冷锻炼对水稻和黄瓜幼苗 SOD、GR 活性及 GSH、AsA、GS 含量的影响. 植物学报, 1995, 37: 776~780
    [88]李建吾. 逆境条件下黄瓜苗期性状配合力和遗传规律的研究. 河南农业大学硕士学位论文, 2004
    [89]Equiza MA, Mirave JP, Tognetti GA. Differential inhibition of shoot vs Root Grow that low temperature and its relationship with carbohydrate accumulation in different wheat Cultivars. Annals of Botany, 1997, 80(5): 657~663
    [90]Handley LW, Pharr DM, Feeters RF. Carbohydrate changes during maturation of cucumber fruit. Plant physiology, 1983, 72: 498~502
    [91]刘以前. 番茄叶片和果实中糖代谢及其遗传研究. 中国农业大学硕士研究生论文, 2005
    [92]Cooper AJ, Thornley JHM. Response of dry matter partitioning, growth and carbon and nitrogen levels in the tomato plant to changes in root temperature:experiment and theory. Annals of Botany, 1976, 40(170): 1139~1152
    [93]Vorobev NV. Effect of low temperature on carbohydrate metabolism in germinating seeds and seedlings of rice. Trudy Vsesoyuznogo Instituta Risa, 1973, 3: 67~73
    [94]刘颖慧, 贾海坤, 高琼. 植物同化物分配及其模型研究综述. 生态学报, 2006, 26(6): 1981~1992
    [95]Rosa M, Hilal M, Gonzalez JA, et al. Changes in soluble carbohydrates and related enzymes induced by low temperature during early development stages of quinoa (Chenopodium quinoa) seedlings. Journal of plant physiology, 2004, 161(6): 683~689
    [96]Sasaki H, Ichimura K, Imada S, et al. Sucrose synthase and sucrose phosphate synthase, but not acid invertase, are regulated by cold acclimation and deacclimation in cabbage seedlings. Journal of Plant Physiology, 2001, 158, 7: 847~852
    [97]Pharr DM, Huber SC, Sox HN. Leaf carbogydarte status and enzymes of translocate synthesis in fruiting and vegetative plant of Cucumis sativus L. Journal of Plant Physiology, 1985, 77 (10): 4~8
    [98]姜亦巍, 王永健, 吴国胜, 等. 低温弱光对不同品种黄瓜苗期-14C-同化物运输分配的影响. 华北农学报, 1997, 13(1): 133~135
    [99]Weidner TM. Translocation of photosynthetically labeled 14C compounds in bean, cucumber and white ash ph D. Thesis Ohio State University Columbus, 1964
    [100]Pharr DM, Sox HN, Smart EL, et al. Identification and distribution of soluble saccharides in pickling cucumber plants and their fate in fermentation. Journal of the American Society for Horticultural Science, 1977, 102(40): 6~9
    [101]Verkleij FN, Challa H. Diurnal export and carbon economy in an expanding source leaf of cucumber at contrasting source and sink temperature. physiologia plantarum, 1988, 74 (2): 84~93
    [102]Kanahamam K, Hori Y. Time course of export of 14C-assimilates and their distribution pattern as affected by feeding time and night temperature in cucumber plants. Tohoku Journal of Agricultural Research, 1980, 30(4): 142~152
    [103]Murakami T, Inayama M. The effect of temperature on the tanslocation of photosynthates in cucumber plantsⅡEffect of the night temperature on the translocation of 14C-photosynthates in cucumber seedlings. Journal of the American Society for Horticultural Science, 1974, 43: 43~54
    [104]Kurets VK, Drozdov SN, Popov EG, et al. Effect of thermoperiod on net photosynthesis and night respiraton of cucumber plants. Russia Journal of Plant Physiology, 1999, 46: 163~167
    [105]李化龙, 陈端生, 杨合法. 日光温室黄瓜叶片和果实相关参数的模拟. 中国农业大学学报, 2003, 8: 76~79
    [106]Marcelis LFM. Fruit shape in cucumber as influenced by position within the plant fruit load and temperature. Scientia Horticulturae, 1994, 56: 299 ~308
    [107]Marcelis LFM. Non destructive measurements and gralysis of the cucumber fruit. Journal of Horticultural Science, 1992, 67(4): 457~464
    [108]Verkleij FN, Hofman Eijer LB. Diumal export of carbon and fruit growth in cucumber. Plant Physiology, 1988, 133: 345~348
    [109]Yang JJ, Zhang J, Wang Z, et al. Postanthesis water deficits enhance grain filling in two-line gybrid rice. Crop Science, 2003, 43: 2099~2108
    [110]Zhou Y, Huang L, Du YS. Greenhouse and field cucumber genotypes use different mechanisms to protect against dark chilling. Functional Plant Biology, 2004, 31(12): 1215~1223
    [111]Bertamini M, Muthuchelian K, Rubinigg M, et al. Nedunchezhian Low-night temperature (LNT) induced changes of photosynthesis in grapevine (Vitis vinifera L.) plants. Plant Physiology, 2005, 43: 693~699
    [112]Ying J, Lee EA, Tollenaar M. Response of maize leaf photosynthesis to low temperature during the grain-filling period. Field Crop Research, 2000, 68: 87~96
    [113]杜永成. 高温对黄瓜根系可溶性糖含量和 a-半乳糖营酶活性影响. 见:侯喜林,常有宏主编. 园艺学进展(II), 南京:东南大学出版社, 1998: 448~451
    [114]Modore MA, Mitchell DE, Boyd CM. Stachyose synthesis in source leaf tissues of the CAM plant Xerosicy danguyi H Humb. Plant Physiology, 1988, 87(5): 88~91
    [115]Miron D, Schaffer AA. Sucrose phosphate synthase,sucrose synthase,and invertase activities in developing fruit of Lycopersicon esculentum Mill and the sucrose accumulating Lycopersicon hirsutum Humb and Bonpl. Plant Physiology, 1991, 95(62): 3~7
    [116]Michelle BV, Haigler CH. Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems. Plant Physiology, 2001, 127(12): 34~42
    [117]Marowith J, Richter C, Hoddinott J. The influence of plant temperature on photosynthesis and translocation rates in bean and soybean. Canadian Journal of Botany, 1985, 64(23): 37~42
    [118]Potvin C, Strain BR, Coeschl JD. Low night temperature effect on photosynthate translocation of two 4-carbonpathway photosynthesis grasses. Oecologia, 1985, 67(30): 5~9
    [119]Mitchell DE, Madore MA. Patterns of assimilate production and translocation inmuskmelon (Cucumis melo L.)ⅡLow temperature effects. Plant Physiology, 1992, 99(9): 66~71
    [120]Paul MJ, Driscoll SP, Lawlor DW. The effect of cooling on photosynthesis, amounts of carbogydrate and assimilate expert in sunflower. Journal of Experimental Botany, 1991, 42(8): 45~52
    [121]Gross KC, Pharr DM. A potential pathway for galactose metabolism in Cucumis sativus L. A stachyose transporting species. Plant Physiology, 1982, 69(1): 17~21
    [122]Spoelstra P, Joosen RVL, Van LHW. The distribution of ATP within tomato (Lycopersicon esculentum Mill) embryos correlates with germinaton whereas total ATP concentration does not. Seed Science Reseach, 2002, 12(23): 1~8
    [123]Robbins NS, Pharr DM. Regulation of photosynthetic carbon metabolism in cucumber by light intensity and photosynthetic period. Plant Physiology, 1987, 85: 592~597
    [124]Karner U, Peterbauer T, Raboy V, et al. Myo-inositol and sucrose concentrations affect the accumulation of raffinose family oligosac charides in seeds. Journal of Experimental Botany, 2004, 55(405): 1981~1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700