秦岭火地塘林区几种主要天然林碳素空间分布规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择秦岭火地塘林区天然油松林、锐齿栎林、华山松林3种主要森林植被类型不同组织含碳率、分析不同林分碳素在空间的分布规律(乔木层、灌木层、草本层和土壤中)及其同种林分不同龄级和不同海拔碳储量的变化,明确其碳库的分布特征及其变化规律。通过该项研究,探索基于全国森林资源调查数据和已有的研究数据估算区域不同森林生态系统碳库大小及碳汇能力,以及减少区域森林生态系统准确计算碳储量的不确定性的途径和可行法,为全球气候变换条件下中国区域生态环境建设和制定区域森林生态系统碳汇管理对策提供参考理论依据。主要结论如下:
     1.秦岭火地塘林区油松、锐齿栋和华山松3类林分的乔木层生物量依次为: 87.5787,244.7103和85.7981 t·hm~(-2);其中地上部分比例占80.74%—86.23%,地下部分比例占13.77%—19.26%。灌木层生物量依次为:3.2776,4.6540和4.2289 t·hm~(-2);其中地上部分比例占46.97%—63.38%,地下部分比例占36.62%—53.03%。草本层生物量依次为:0.3178,0.7901和0.5828 t·hm~(-2);其中地上部分比例占36.77%—58.65%,地下部分比例占41.35%—63.23%。
     2.3种林分类型乔木树种的平均含碳率分别为油松0.5122,锐齿栎0.4860,华山松0.4985;13种灌木的器官平均含碳率为0.4610,10种草本的器官平均含碳率为0.2664,3种林分枯落物平均含碳率为0.4874。3类林分各器官的平均含碳率分别为干0.4936,皮0.4972,枝0.4982,叶0.5194,根0.4862;针叶树林分平均含碳率为0.4927,3种树种林分平均含碳率为0.4989;油松皮的含碳率最高(0.5298),锐齿栎根的含碳率最低(0.4682)。
     3.油松林生态系统的生物量碳密度为183.26 t·hm~(-2),乔木层(包括根)为56.10 t·hm~(-2),占30.61%,灌木层(包括根)为1.94t·hm~(-2),占1.01%,草本层(包括根)为0.14 t·hm~(-2),占0.01%,枯落物层为0.88t·hm~(-2),占0.48%,土壤层总计124.20 t·hm~(-2),占67.77%。锐齿栎林生态系统的生物量碳密度为299.07t·hm~(-2),乔木层(包括根)为118.47t·hm~(-2),占39.61%,灌木层(包括根)为2.25t·hm~(-2),占0.75%,草本层(包括根)为0.11t·hm~(-2),占0.004%,枯落物层为5.03t·hm~(-2),占1.68%,土壤层生物量碳密度总计173.21t·hm~(-2),占57.91%。华山松林生态系统的生物量碳密度为133.59 t·hm~(-2),乔木层(包括根)为42.55 t·hm~(-2),占31.85%,灌木层(包括根)为1.91t·hm~(-2),占1.43%,草本层(包括根)为0.18 t·hm~(-2),占0.13%,枯落物层为12.32t·hm~(-2),占9.22%,土壤层总计76.63 t·hm~(-2),占57.36%。三种林分土壤层中的生物量碳密度所占比例为57.36%-占67.77%,这个结果与Houghton报道的全世界森林生态系统中枯落物层与土壤层中碳密度是森林地上部分的2.0倍的结果较吻合。
     4.在海拔1 500 m以下和1 900 m以上,油松林生态系统的生物量碳密度分布较小,分别为173.80 t·hm~(-2)和169.31 t·hm~(-2);在1 700~1 800m之间最大,达到196.53 t·hm~(-2)。锐齿栎林生物量碳密度在海拔<1 400m和>2 000m区域内分布较小,分别为255.4542 t·hm~(-2)和258.2736 t·hm~(-2),在1 600m~1 800m区域内最大,达到311.3579 t·hm~(-2)。华山松林碳密度研究数据表明,在海拔1 700 m以下和2 300 m以上,华山松林生态系统的生物量碳密度分布较小,分别为120.81t·hm~(-2)和107.21 t·hm~(-2);在1 800~1 900m之间最大,达到142.73 t·hm~(-2)。
     5.在海拔<1600 m的地段,主要分布有锐齿栎中龄林和油松中龄林,其碳密度分别为255.4542 t C/hm~(-2)和173.7978 t C/hm~(-2)。在海拔1600 m~1800 m范围内,分布有华山松中龄林、近熟林和成熟林,这一海拔高度是锐齿栎生长的最适海拔范围,它的碳储量也是随着龄级的增大而增加,近熟林的碳储量比中龄林碳储量大6.97 t /hm~(-2),该海拔带中,华山松的碳密度也是随龄级的增大而增加。在1800 m~2000 m海拔范围内,分布有华山松幼龄林、中龄林、近熟林、成熟林。华山松林四个龄级的碳密度依次增大,即在这一海拔范围,华山松林随龄级的增大固碳能力在能强。在>2000 m海拔范围内,分布有华山松中龄林、近熟林、成熟林。华山松三个龄级的碳密度相差不大,即这一海拔范围各龄级固碳能力没有显著差异。
This paper does investigations on the main three natural forest vegetations in Huoditang Area of Qinling Mountains: Pinus tabulaeformis Carr., Quercus aliena war.Acuteserrata Maxim., and armandi Franch. It focused on analysis of the carbon content rates of different tissues, spatial distribution of carbon in different forest stands (tree story, shrub story, herb story, and soil), and changes of carbon storage of the same forest stand at different ages and altitudes, as well as exploration of the distribution characteristics and variation of Carbon. It is aimed to find an appropriate and feasible way to estimate the size of carbon and ability of carbon storage of different forest ecosystems, and to reduce the uncertainty of estimation based on National Forest Resource Inventory Data and existing research data in the hope of providing the foundation and reference for the regional environment construction and the establishment of regional forest ecosystem carbon storage management policy. Main efforts of study and conclusions of the article are as follows:
     1. Tree story biomass of the three forests, Pinus tabulaeformis Carr., Quercus aliena war.Acuteserrata Maxim., and Armandi Franch, are 87.5787, 244.7103, 85.7981 t·hm~(-2) respectively, with the overground part accounting for 80.74%-86.23% and underground part for 13.77%-19.26%. Shrub story biomass of the three forests are 3.2776, 4.6540, 4.2289 t·hm~(-2), with the overground part accounting for 46.97%-63.38% and underground part for 36.62%-53.03%. Herb story biomass of the three forests are 0.3178, 0.7901, 0.5828 t·hm~(-2), with the overground part accounting for 80.74%-59.56% and underground part for 10.14%-29.36%.
     2. Average content rate of tree story of the three forests, Pinus tabulaeformis Carr., Quercus aliena war.Acuteserrata Maxim., and armandi Franch, are 0.5122, 0.4860 and 0.4985 respectively; Average organic carbon content rate of thirteen shrubs, ten herbs, and seven forest floors are 0.4610,0.2664 and 0.4874 respectively. Average organic carbon content rate of the three forests are: trunk, 0.4936; barks, 0.4972; branch, 0.4982; leaf, 0.5194; root, 0.4862. Average carbon content rate of conifers is 0.4927.Average carbon content rate of the three forests is 0.4989, with the bark of Pinus tabulaeformis Carr. being the highest (0.5298) and the root of Quercus aliena war.Acuteserrata Maxim. being the lowest (0.4682).
     3. Biomass carbon density (BCD) of the ecosystem of Pinus tabulaeformis Carr. is 183.26 t·hm~(-2), with tree story (including root) being 56.10 t·hm~(-2) (30.61%), shrub story (including root) being 1.94t·hm~(-2) (1.01%), herb story (including root) being 0.14 t·hm~(-2) (0.01%), forest floor being 0.88t·hm~(-2) (0.48%), and soil layer being 124.20 t·hm~(-2) (67.77%). BCD of the ecosystem of Quercus aliena war.Acuteserrata Maxim. is 299.07t·hm~(-2), with tree story (including root) being 118.47 t·hm~(-2) (39.61%), shrub story (including root) being 2.25 t·hm~(-2) (0.75%), herb story (including root) being 0.11 t·hm~(-2) (0.004%), forest floor being 5.03t·hm~(-2) (1.68%), and soil layer(0-100 cm) being 173.21 t·hm~(-2) (57.91%). BCD of the ecosystem of armandi Franch is 133.59 t·hm~(-2), with tree story (including root) being 42.55 t·hm~(-2) (31.85%), shrub story (including root) being 1.91t·hm~(-2) (1.43%), herb story (including root) being 0.18 t·hm~(-2) (0.13%), forest floor being 12.32 t·hm~(-2) (9.22%), and soil layer being 76.63 t·hm~(-2) (57.36%)
     4. With respect to Pinus tabulaeformis Carr.: for elevation below 1 500 m and above 1 900 m, BCD values were smaller, 50.26 t·hm~(-2)and 46.57 t·hm~(-2) respectively; the largest BCD values, 196.53 t·hm~(-2) t·hm~(-2), occurred at the elevation from 1 700 m to 1 800 m. With respect to Quercus aliena war.Acuteserrata Maxim., BCD values were smaller for elevation below 1 400 m and above 2 000 m, 255.45 t·hm~(-2) and 258.27 t·hm~(-2) respectively; the largest BCD values, 311.36 t·hm~(-2) t·hm~(-2), occurred at the elevation 1 600 m-1 800 m. With respect to Armandi Franch., BCD values were smaller for elevation below 1 700 m and above 2 300 m, 120.81 t·hm~(-2) and 107.21 t·hm~(-2) respectively; the largest BCD values, 142.73 t·hm~(-2), occurred at the elevation from 1 700 m to 2 300 m.
     5. For elevation below 1 600m, there are mainly middle age Quercus aliena war.Acuteserrata Maxim and Pinus tabulaeformis Carr.. with carbon density being 255.4542 t /hm~(-2) and 173.7978 t /hm~(-2) respectively. For elevation from 1 600 m to 1 800 m, there are mainly middle age, almost mature and mature forest of Pinus tabulaeformis Carr., and this is the optimum range for Quercus aliena war.Acuteserrata Maxim, with carbon storage increased by age. The almost mature forest of Quercus aliena war.Acuteserrata Maxim is
     6.97 t /hm~(-2) larger than its middle age forest. For elevation from 1 600 m~1 800 m, the carbon storage of Pinus tabulaeformis Carr. is also increased by age. For elevation 1 800 m~(-2) 000 m, there is mainly young, middle age, almost mature and mature forest of Pinus tabulaeformis Carr., with its carbon density increased by age. This indicates that its ability of carbon fixation increases by age during this elevation range. For elevation above 2 000 m, there is mainly middle age, almost mature, and mature forest of Pinus tabulaeformis Carr., with similar carbon density. This indicates that there is no significant difference for the ability of carbon fixation among this range for Pinus tabulaeformis Carr..
引文
[1] Araujo TM, Higuchi N, Carvalho JA.Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Para[J]. Brazil.Forest Ecology and Management, 1999, 117, 43-52.
    [2] Batjes NH.Total carbon and nitrogen in the soils of the world.European [J]. Journal of Soil Science,2000, 47 158-163.
    [3] Fal1khauserS.Valuing Climate Change [M].London: Earthscan Publieations Ltd.1995.
    [4] Mitehel.FB. The Greenhouse effect and climate change [J]. Reviews of Geophysics, 1989, 27(l): 115-139.
    [5] HoughtonJ.全球变暖[M].戴晓苏,石广玉,董敏等译.北京:气象出版社, 1998.
    [6] BateA.K.ClimateinCrisi; The greenhouse effect and what we can do (气候危机:温室效应与我们的对策)[M].苗润生,成志勤译.北京:中国环境科学出版社, 1992.
    [7] Arthur L M.Scenic assessment: an overview [J].Landscape Planning.1979, 4:109-130.
    [8] IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: Implications for the Kyoto Protoeol [J].Science, 1998, 280:1393-1394.
    [9] HoughtonRA. Terrestrial source sand sinks of carbon inferred from terrestrialdata [J].Tellus, 1996, 48: 420-32.
    [10]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J1.植物学报, 2001, 43(9): 967-973
    [11]方精云,刘国华,徐高龄.中国陆地生态系统碳循环及其全球意义[M].温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社, 1996, 129-139.
    [12] BohnHL. Estimate of organic earbon in world [J].5011Science soeiety of AmeneaJournal, 1976, 40:468-470.
    [13]于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积.北京:气象出版社, 2003.112-127.
    [14]王效科,冯宗炜,欧阳志云.中国森林生态系统植物碳储量和碳密度研究[J].应用生态学报, 2001,12(1):13-16.
    [15] B E Law,O J Sun,J Campbell,et al.Changes in carbon storage and fluxes in a chronosequence of ponderosa pine[J].Global Change Biology,2003,9:510-524.
    [16] Kurts P, E Nies.Euskir C, et al.Carbon cycling and storage in world forests: biome patterns related to forest age[J].Global Change Biology,2004,10:2052-2077.
    [17]叶笃正.中国的全球变化预研究[M].北京:气象出版社, 1992, 1-3.
    [18] IPCC.Climate Change.In The Science of Climate Change [D].Houghton J T, et al. (eds.) Cambridge: Cambridge University Press.1996, 153-162.
    [19] Fankhauser S.Valuing Climate Change [M].London: Earths can Publication Ltd.1995.
    [20]张新时,周广胜,高琼,等.中国全球变化与陆地生态系统关系研究[J].地学前沿.1997,4(1-2): 137-144.
    [21] Malhi Y, D. D Baldocchi,P G Jarvis. The Carbon balance of tropical, temperate and Borealforests [J].Plant Cell and Environment, 1999, 22:715-740.
    [22] Dixon R K, S Brown, Houghton R A, et al. Carbon Pools and flux of Global forest ecosystems [J]. Science.1994, 263: 185-190
    [23]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报.2000,20(5):733-740.
    [24]方精云.中国陆地生态系统碳库.自:王如松.现代生态学的热点问题研究[M].北京:中国科学技术出版社, 19%.251-267.
    [25]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报, 2001, 12 (1), 13-16.
    [26] Satoo T. Physical basis of growth of forest trees[J]. In: Recent Advance inSilvicultural Sciences, 1 955. 116-141.
    [27] R emezon, N .P. Method studying the biological cycles of elements in forest. Soviet Soil Science. 1 959.1, 59-67.
    [28] Rennie P.1. The uptake of nutrients by mature forest growth. Plant and Soil, 1955.7, 49-95.
    [29]. Ovinghton, J.D. The form, weights and productivity of tree species growth of tree Species grown in close stand, New Phytology, 1956, 55, 28 9-304.
    [30]. Reichle, D. E Ecosystems, Franklin, J. Washington D.C: F., Good well, D.E. Productivity of World National Academy of Sciences, 1975, 43,132-136
    [31]. Leith, H, Whitaker, R.H. Primary Productivity Biosphere. Berlin of Sprinter-Verlag, 1975, 45,234-242
    [32] Cannell, M.G.R. World forest biomass and production data. Academic Press, London UK, 1982, 23,143-146
    [33] Lan R. Noble and Rodolfo Dirzo. Forest as Human Dominated Ecosystems [J]. Science, 1997, 277: 522-525.
    [34]赵其国.土壤圈在全球变化中的意义与研究内容[J].地学前缘,1997, 4 (1- 2) : 153-161.
    [35]潘维铸,李利村,高正衡等.杉木人工林生态系统中的生物产量及其生产力的研究[J].中南林业科技. .1978, (2):2-14.
    [36]冯宗炜,张家武,邓仕坚.杉木人工林生物产量的研究[J].桃园综合考察报告集.河南科学技术出版社, 1980.322-333.
    [37]李文华,邓坤枚,李飞.长白山主要森林生态系统生物量生产量的研究[J].森林生态系统研究, 1981, (试刊).34-50.
    [38]马钦彦,谢征鸣.中国油松林储碳量基本估计[J].北京林业大学学报, 1996, 18(3):31-34.
    [39]康蕙宁,马钦彦,袁嘉祖.1996,中国森林碳汇功能基本估计[J].应用生态学报, 1999 163):42-45
    [40]罗天祥,李文华,赵士洞.中国油松林生产力分布格局与模拟[J].应用生态学报, 1999, 10,257-261.
    [41]王效科,冯宗炜,欧阳志云中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报, 2001, 12 (1), 13-16.
    [42] Fang JY, G H.Liu & S L.X u.1 996a.Soil carbon pool in China and its global significance. Journal of Environmental Science (China).8:249-254.
    [43] Fang, J. Y. (方精云), G.H .Liu (刘国华) & S.L.Xu (徐篙龄)..The carbon circulation of the Chinese land ecosystem and its contribution to the global cycle[J]. 1996,8: 49-53.
    [44] J. Y. Fang (方精云), L.Gao(高林)& Z .W .Feng冯宗炜)eds. Research on the popular problem about the modern ecology. Beijing: Chinese Science and Technology[J] 2002, 11 (2):143- 146
    [45]吴仲民,李意德,曾庆波等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报, 1998, 9(4):341-344
    [46]李意德等.我国热带天然林植被C贮存量的估算[J].林业科学研究, 1999, 11 (2):156- 162
    [47]季劲钧,余莉.地表面物理过程与生物地球化学过程祸合反谈机理的模拟研究[J].大气科学, 1999, 2 3( 4):4 39--448
    [48]赵士洞,汪业助,于振良等.中国森林生态系统碳循环研究.见:中国生态学会编.中国生态学会通讯, 2000,特刊.50-52.
    [49]周玉荣,于振良,赵士洞等.我国主要森林生态系统的碳储量和碳平衡[J].植物生态学报, 2000,2 4(5):518- 522.
    [50] SchlesingerW H. Carbon balance in terrestrial detritus. Annua Review of Ecology and Systematics, 1977, 8: 51-81.
    [51] PostW M, EmanuelW R, Zinke P J, et al. Soil carbon pools and world life zones. Nature, 1982, 298: 156-159.
    [52] Science Society of America Journal, 1993, 57: 192-194.
    [53] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263: 185-190.
    [54] Raich JW, SchlesingerW H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44B:81-89.
    [55] Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 2001, 33: 155-165.
    [56] Jenkinson D S, AdamsD E, Wild A. Model estimates of CO2 emissions from soil in response to globalwarming. Nature, 1991, 351: 304-306.
    [57] Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of globalwarming on soil organic C storage.Soil Biology &Biochemistry, 1995, 27 (6): 753-760.
    [58] Elberlinga B, Brandt K K. Uncoup ling of microbial CO2 p roduction and release in frozen soil and its imp lications for field studies of arctic Ccycling. Soil Biology & Biochemistry, 2003, 35: 263-272.
    [59] Raich JW, Tufekcioglu A. Vegetation and soil resp iration: correlation and controls. Biogeochemistry, 2000, 48: 71-90.
    [60] Raich JW, SchlesingerW H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44B:81-89.
    [61] Li Y Q, XuM, Zou XM, et al. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico. Global Change Biology, 2005, 11: 239-248
    [62] Fang J Y, Liu G H, Xu S L. The carbon cycle of terrestrial ecosystems in China and its global significance in china. In: Monitoring and relevant process of greenhouse gas concentration and emission. eds. In: Wang G C, Wen P Y eds. Beijing: Chinese Environmental Science PublishingHouse, 1996, 129-139.
    [63] Conant R T, Klopatek J M, Klopatek C C. Environmental factors controlling soil resp iration in three semiarid ecosystems. Soil Science Society of America Journal, 2000, 64: 383-390.
    [64] Maestre F T, Cortina J. Small scale spatial variation in soil CO2 efflux in Mediterranean semiarid steppe. Applied Soil Ecology, 2003, 23: 199-209.
    [65] Rustad L E, Huntington T G, Boone R D. Controls on soil respiration: implications for climate change. Biogeochemistry, 2000, 48: 1-6.
    [66]李克让土地利用变化和温室气体净排放与陆地生态系统碳循环[M]. 2002气象出版社.
    [67]李忠佩,唐永良,石华,等.不同轮作措施下瘩薄红壤中碳氮积累特征[J].中国农业科学, 2002,35(10):12 36-1242.
    [68]骆土寿,陈步峰,陈永富等.海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量[J].林业科学研究, 2000, 13(2):123-128.
    [69]李跃林,彭少麟,赵平等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报, 2002, 20(5):5 48-552.
    [70]王淑平,周广胜,吕育财等.中国东北样带土壤碳、氮、磷的梯度分布及其与气候因子的关系[J].植物生态学报, 2002, 26(5): 513 -517.
    [71]吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学, 2002, 38(4): 19-29.
    [72]吴建国,张小全,徐德应.土地利用变化对生态系统碳汇功能影响的综合评价[J].中国科学, 2003, 5(9): 65-71.
    [73]吴建国,张小全,徐德应.土地利用变化对土壤有机碳储量的影响[J].应用生态学报, 2004, 15 (4 ): 593-599.
    [74]王效科等.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志, 2000, 19 (4) : 72-74.
    [75]张小全,陈先刚,武曙红.测定与监测中的方法学问题[J].生态学报, 2004,9(24):2068-2073.
    [76]陈吉泉,李博,马志军,赵斌.生态学家面临的挑战一问题与途径[M].北京:高等教育出版社, 2005:69.
    [77] Makhi, Y, D.Baldocchi and P.Jarvis. The carbon balance of tropical, temperate and boreal forests [J].Plant, Cell and Environment, 1999, 22:715-740.
    [78] Dixon, R, K.Brown, R.Houghton, A.Solomon, M.Trexler and J.Wisniewski. Carbon Pools and flux of global forest ecosystems [J].Science, 1994, 263:185-190. [79」Melillo, M. Effects on ecosystems. In: Houghton, T, G.Jenkins and J.EPhraumseds Climate change-the IPCC scientific assessment: report Prepared for IPCC by working Group [M] .Cambridge: Cambridge University Press.1990, 283-310.
    [80]陈育峰.自然植被对气候变化响应的研究:综述[J].地理科学进展, 1997, 16(2):70-77.
    [39]王效科等.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志, 2000, 19 (4) : 72-74.
    [81] Sehlesinger W H. Biogeochemistry: an analysis of global change [M].SanDiego, California: Academic Press, 1997.
    [82] Sehimel D et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems In the United States [J].Science, 2000, 287:2004-2006.
    [83] Goreau T. Balancing atmospheric carbon dioxide [J] ambio, 1990, 19:230-236.
    [84] Boysen Jensen P. Studier over skoVtraemes for hold till yset Tidsskr [J].ESkooaessen, 1910, 22:11-61.
    [85] LawlerA. Research clime light falls on carbon cycle [J]. Science, 1998, 280:1683-1684.
    [86] IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: Implications for the Kyoto Protoeol [J].Science, 1998, 280:1393-1394.
    [87]赵士洞,汪业爵,于振良,等.中国森林生态系统碳循环研究[J].见:中国生态学会编,中国生态学会通讯, 2000(特刊): 50-52.
    [88]赵其国.土壤圈在全球变化中的意义与研究内容[J].地学前缘, 1997, 4(1-2):153-161.
    [89] Hanski.L. Landscape fragmentation, biodiversity loss and the societal response[J]. EMBO reports, 2005, 6(5):388-392.
    [90]陈存根,彭鸿.秦岭火地塘林区主要森林类型的现存量和生产力[J].西北林学院学报,1996,11(增):92-102
    [91]杨茂生.火地塘1962~1985年气象资料[J].西林科技,1986,1:61-65.
    [92]陕西省林业厅重点林区土壤普查队.陕西省宁东林区的土壤[M].1986.
    [93]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社, 1999.
    [94]冯仲科.精准林业[M].北京:中国林业出版社, 2002.
    [95]陈遐林.华北主要森林类型的碳汇功能研究[D].北京:北京林业大学, 2003.
    [96]马钦彦.油松生物量及第一性生产力的研究[D].北京:北京林业大学, 1988.
    [97] Cao M and Wbodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to Global climate change [J].Nature, 1998, 393:249-252.
    [98]董鸣.陆地生物群落调查观测与分析「M].北京:中国标准出版社, 1997.
    [99]杭州大学化学系分析化学教研室编.分析化学手册(第二分册:化学分析)[M].北京:化学工业出版社, 1982.
    [100]赵敏,周广胜.中国森林生态系统的植物碳储量及其影响因子分析[J].地理科学, 2004, 24(1):50-54.
    [101]黄良文.统计学原理[M],北京:中国统计出版社, 2000.
    [102]李意德,等.我国热带天然林植被C贮存量的估算[J].林业科学研究, 1999, 26(2):156-162.
    [103] HoughtonJ.全球变暖[M].戴晓苏,石广玉,董敏等译.北京:气象出版社, 1998.
    [104]刘华,雷瑞德.秦岭火地塘林区景观格局和主要森林类型碳储量变化的研究[D].西北农林科技大学, 2005.
    [105] Houghton R A,J L Hackler,K T Lawrence.The US carbon budget:contributions from land-usechange[J].Science,1999,285:574-578.
    [106]周广胜.全球碳循环[M].北京:气象出版社,2003.
    [107]李俊,于强,孙晓敏,等.华北平原农田生态系统碳交换及其环境调控机制.中国科学,D辑,2006(增刊l):2, 220一223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700