砒砂岩区主要树种AMF接种效应和AMF与土壤的相互影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过调查府谷清水川流域砒砂岩区主要造林树种沙棘(Hippophae rhamnoides)和刺槐(Robinia pseucdoacacia)根际丛枝菌根真菌(Arbuscular Mycorrhizal fungi,AMF)资源及AMF侵染情况,分析土壤因子对AMF在清水川流域砒砂岩区分布的影响;采用盆栽法接种AMF于刺槐苗木,研究在砒砂岩土壤中接种AMF刺槐苗期生长和生理生化指标的变化,探讨接种AMF和根瘤菌对刺槐根际砒砂岩土壤酶活性、土壤营养状况、球囊霉素含量的影响。得出以下结论:
     1. AMF资源及侵染情况。从府谷清水川流域砒砂岩区沙棘和刺槐根际土中共分离鉴定出Acaulospora.bireticulata、A.excavata、A.rehmii、Glomus.aggregatum、G.constrictum、G.fasciulatum、G.geosporum、G.intraradices、G.microaggregatum、G.mosseae、G.pustulatum、G.reticulatum和Scutellospora.heterogama13种AMF,其中摩西球囊霉和地球囊霉为该区域的优势种。AMF平均孢子密度为5.6个·g~(-1)干土,侵染率为90.6%,球囊霉素含量397.1mg·kg~(-1)。
     2.土壤因子对刺槐AMF的影响。刺槐和沙棘菌根侵染率与土壤有效磷、有效氮、有机质和pH呈正相关,其中pH达到显著水平(p<0.05)。刺槐球囊霉素含量与土壤有效磷和有效氮含量呈显著正相关(p<0.05),与pH和有机质含量呈负相关。4种土壤因子对刺槐菌根侵染率直接作用为pH>有效氮>有机质>有效磷,pH和有效氮起主要作用;对球囊霉素的直接作用的为有效氮>有机质>有效磷>pH,有效氮和有机质起主要作用。
     3.土壤因子对沙棘AMF的影响。沙棘菌根侵染率与有效磷、有效氮、有机质和pH呈正相关,其中pH达到显著水平(p<0.05)。AMF种类与有机质和pH呈正相关,与有效磷和有效氮呈负相关,其中有效氮差异极显著(p<0.01),有效磷和有机质差异显著(p<0.05);球囊霉素含量与有效磷极显著正相关(p<0.01)、与有效氮和有机质含量呈正相关,与pH呈负相关。对菌根侵染率的直接作用为pH>有效磷>有机质>有效氮,pH和有效磷起主要作用;对AMF种类的直接作用为有机质>pH>有效磷>有效氮,有机质和pH起主要作用;对球囊霉素的直接作用为有效氮>有效磷>有机质>pH,但以有效磷和pH的间接作用为主。
     4.接种AMF对刺槐生长的影响。接种G.mosseae和G.constrictum的刺槐干重分别比对照提高74.9%和64.3%,地径提高36.8%和26.3%,株高提高41.5%和33.1%,根系活力提高61.8%和42.8%,丙二醛含量分别降低27.1%和30.6%,游离脯氨酸含量降低46.1%和35.7%,SOD酶活性提高62.5%和50%, CAT酶活性提高218.6%和131.7%,POD酶活性提高152.8%和90.4%,均达到显著差异(p<0.05)。两种AMF相比,地径和株高差异不显著,对干重和根系活力的促进作用G.mosseae大于G.constrictum,差异极显著(p<0.01),说明在砒砂岩土壤中AMF的侵染增强了刺槐根系活力,提高抗氧化酶系活性,降低质膜氧化程度,有利于刺槐的生长。
     5.AMF和根瘤菌对刺槐根际土壤酶活性的影响。与对照相比,接种AMF根际土壤脲酶活性提高1.5倍、碱性磷酸酶活性提高2.7倍、蔗糖酶活性提高2.0倍,接种根瘤菌脲酶活性提高1.9倍、碱性磷酸酶活性提高2.2倍、蔗糖酶活性提高1.4倍,接种AMF和根瘤菌脲酶活性提高3.4倍、碱性磷酸酶活性提高4.0倍、蔗糖酶活性提高2.9倍,各种接种处理的土壤酶活性显著高于未接种的处理(p<0.05);接种处理的土壤脲酶活性为双接种>根瘤菌>AMF,碱性磷酸酶和蔗糖酶活性为双接种>AMF>根瘤菌,双接种处理显著高于单接种(p<0.05),更能提高砒砂岩土壤酶的活力。
     6.AMF和根瘤菌对刺槐根际土壤养分的影响。与对照相比,接种AMF土壤速效磷含量降低2.8%、速效氮提高6.4%、有机质提高4.8%,接种根瘤菌土壤速效磷降低3.1%、速效氮提高19.6%、有机质提高3.4%。双接种处理土壤速效磷降低6.0%、速效氮提高24.2%、有机质提高5.4%。各接种处理土壤pH有所降低,但差异不大。同时接种AMF和根瘤菌土壤速效氮、有机质含量较单接种显著提显著提高(p<0.05),根瘤菌的固氮作用和AMF利于宿主磷素的吸收形成互补优势。
     7.AMF、根瘤菌对刺槐根际球囊霉素含量的影响。接种AMF和双接种比未接种对照的球囊霉素分别提高112.2%和243.4%,差异显著(p<0.05)。AMF和双接种盆钵刺槐远高于野外刺槐,说明接种AMF和双接种能提高球囊霉素含量。球囊霉素含量与土壤酶活性、有效N、有机质和植株生长成正相关,与有效磷和pH呈负相关性;球囊霉素含量越高,越有利于土壤形成微团聚体,施加适量氮肥磷肥、接种AMF的同时接种根瘤菌将有效提高球囊霉素含量,改良砒砂岩土壤。
In this study, by investigating the main tree species Hippophae rhamnoides and Robinia pseucdoacacia rhizosphere AMF (Arbuscular Mycorrhiza Fungi) resources and infection in soft rock zone of Qingshuichuan valley of FuGu, analysised soil factors impact on distribution of AMF; Pot culture experiments were carried out to study the inoculation effects with the arbuscular mycorrhizal fungi on the growth and some physio-biochemical indexes of Hippophae rhamnoides seedlings under soft rock soil. Discussion impacts of AMF and Rhizobium inoculation on the Soft Rock R.pseucdoacacia rhizosphere soil enzyme activities, soil nutritional status, glomalin content. The results were as follows:
     1. AMF of resources and infection. 3 family 13 genera AMF were isolated and identified from the rhizosphere of R.pseucdoacacia and H.rhamnoides in soft rock zone of Qingshuichuan valley of FuGu: Acaulospora.bireticulata、A.excavata、A.rehmii、Glomus.aggregatum、G.constrictum、G.fasciulatum、G.geosporum、G.intraradices、G.microaggregatum、G.mosseae、G.pustulatum、G.reticulatum、Scutellospora.heterogama. G.constrictum and G.mosseae were the dominant ones in this region. the average total colonization rate of AM fungi was 90.6%, and the average spore density was 5.6g-1soil, the average glomalin content is 397.1 mg·kg-1.
     2. Soil factors on the impact of R.pseucdoacacia AMF. The AMF colonization of H. rhamnoides and R.pseucdoacacia had positive correlation with available P, available N, organic matter and pH, in which the level of pH was significant (p <0.05). R.pseucdoacacia glomalin content with soil available P and available N content was significant positive correlation (p <0.05), with pH and organic matter content was negatively correlated. Four kinds of soil factors on the mycorrhizal infection rate of R.pseucdoacacia for the direct effect: pH> available N > organic matter> available P, pH and available N played a major role. The direct effect on glomalin content: available N> organic matter> available P> pH, available N and organic matter played a major role.
     3. Soil factors on the impact of H.rhamnoides AMF. The AMF colonization of H. rhamnoides had positive correlation with available P, available N, organic matter and pH, in which the level of pH was significant (p <0.05). AMF species with organic matter and pH were positively correlated, with available P and available N were negatively correlated, in which the level of available N was highly significant (p <0.01) and the level of available P and organic matter were significant (p <0.05). Glomalin with the available P content was significantly positively correlated (p <0.01), and the available N and organic matter content were positively correlated, negatively correlated with pH. Soil factors on the mycorrhizal infection rate for the direct effect: pH> available P> organic matter> available N, pH and available P played a major role. Soil factors on AMF species for the direct effect:organic matter> pH> available P> available N, organic matter and pH played a major role. The direct effect on glomalin content: available N> available P> organic matter> pH, but available P and pH indirect role in the main.
     4. The impact on growth of R.pseucdoacacia inoculated with AMF. Plants inoculated with AMF (G.mosseae, G.constrictum) were in contrast non-inoculated, single plant dry biomass increased 74.9% and 64.3%, stem diameter increased 36.8% and 26.3%, root activity increased 61.8% and 42.8%, Malondialdehyde reduced 27.1% and 30.6%, free proline reduced 46.1% and 35.7%, the activity of SOD increased 62.5% and 50%, the activity of CAT increased 218.6% and 131.7%, the activity of POD increased 152.8% and 90.4%, have reached significant difference (p <0.05). Compared to the two AM fungi, height and stem diameter no significant difference, dry biomass and root activity of G.mosseae was higher than G.constrictum, Significant difference (p <0.01), It is suggested that AM fungi can improve the capability of R.pseucdoacacia to scavenge the reactive oxygen, and enables R.pseucdoacacia to adapt soft rock soil environment, and G.mosseae was better for inoculation.
     5.The impact on the activity of soil enzymes in R.pseucdoacacia rhizosphere soil inoculated with AMF and Rhizobiums robinia. Compared with CK, inoculated with AMF in rhizosphere soil urease activity increased 1.5 times, Alkaline phosphatase activity increased 2.7 times, Invertase activity increased 2.0 times; Inoculated with Rhizobiums robinia in rhizosphere soil urease activity increased 1.9 times, Alkaline phosphatase activity increased 2.2 times, Invertase activity increased 1.4 times; Dual-inoculation in rhizosphere soil urease activity increased 3.4 times, Alkaline phosphatase activity increased 4.0 times, Invertase activity increased 2.9 times. The soil enzyme activity of inoculation was significantly higher than non-inoculation (p <0.05); the soil urease activity for the double-inoculation > Rhizobium> AMF; Alkaline phosphatase and Invertase activity for double-inoculation > AMF > Rhizobium; Dual inoculation was significantly higher than that of single inoculation (p <0.05), that can enhance the vitality of soil enzymes of Soft Rock.
     6.The impact on soil nutrients in R.pseucdoacacia rhizosphere soil inoculated with AMF and Rhizobiums robinia. Compared with CK, inoculated with AM fungi in rhizosphere soil available P reduced 2.78%, available N increased 6.36%, organic matter increased 4.78%; inoculated with Rhizobiums robinia in rhizosphere soil available P reduced 3.12%, available N increased 19.6%, organic matter increased 3.35%; Dual-inoculation in rhizosphere soil available P reduced 6.04%, available N increased 24.2%, organic matter increased 5.35%, glomalin increased 243.4%.All of inoculation has decreased soil pH, but the difference were small. Dual-inoculation of soil available nitrogen, organic matter content significantly compared to single inoculation significantly increased (p <0.05), nitrogen fixation of rhizobia and AMF in favor of the formation of the host phosphorus absorption strengthed each other.
     7. The impact on glomalin content in R.pseucdoacacia rhizosphere soil inoculated with AMF and Rhizobiums robinia. AMF inoculation and double inoculation than the non-inoculated control glomalin content increased 243.4% and 112.2%, Significant difference (p <0.05). AMF inoculation and double inoculation were much higher than the wild R.pseucdoacacia, description inoculated AMF and dual inoculation can improve the contents of glomalin. Glomalin had positive correlation with the activity of soil enzyme, available N, organic matter and single plant growth, but had negative correlation with available P and pH. It suggested that content of glomalin in rhizosphere soil could reflect soil restoration, in other words, the more glomalin, the better soil restoration. So advised that we could impose adequate nitrogen fertilizer, AMF inoculation and Rhizobium inoculation at the same time will effectively increase glomalin content, improved soil quality in soft rock zone.
引文
[1]Allen M F. The Ecology of Mycorrhizae[M]. Cambridge University Press, 1991, Cambridge: 184
    [2]Alef K. Methods in applied soil microbiology and biochemistry[M]. In:New York:Academic Press, 1995, 229-355
    [3]Alkaraki G N, Hammad R, Rusan M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress[J]. Mycorrhiza, 2001, 11: 43-47
    [4]Amora-Lazcano E, Vazquez M M, Azcon R. Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi[J]. Biology Fertility of Soils, 1998, 27: 65-70
    [5]Buchanan R E, Gibbons N E. Bergey’s manual of determinative bacteriology (Eighth Edition)[M]. The Williams & Wilkins Company, 1984, 340-345
    [6] Bhatia N P, Adholeya A, Sharma A. Biomass production and changes in soil productivity during long term cultivation of Prosopis juliflora(Swartz)DC inoculated with VA mycorrhiza and Rhizobium spp.in asemi-arid wasteland[J]. Biology Fertility of Soils, 1998, 26: 208-214
    [7]Bhoopander G, Mukerji K G. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake[J]. Mycorrhiza, 2004, 14: 307-312.
    [8]Cavagnaro T R, Smith F A, Lorime M F, Hadkard K A, Ayling S M, Smith S E. Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum [J]. New Phytologist, 2001, 149: 105-113.
    [9]Clegg S, Gobran G R. Rhizosphere Pand K in forest soil manipulated with ammonium sulfate water[J]. Canadian Journal of Soil Science, 1997, 77: 525-533
    [10]Comis D. Glomalin:Hiding place for a third of the world’s stored soil carbon [J]. Farm journal, 2004,14: 64-66
    [11]Danielson R M, Visser S. Effects of forest soil acidification on ectomycorrhizal and vesicular-arbuscular mycorrhizal development[J]. New Phytologist, 1989, 112(1): 41-47
    [13]Driver J D, Holben W E, Rillig M C. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology & Biochemistry, 2005, 37: 101-106
    [14]Dhillion S S, Ampompan L. The influence of inorganic nutrient fertilization on the growth, nutrient composition and vesicular-arbuscular mycorrhizal colonization of pretransplant (Oryza sativa L)plants[J]. Biology and Fertility of Soils, 1992, 13: 85-91
    [15]Ebbers B C, Anderson R C, Liberta A E. Aspects of the mycorrhizal ecology of prairie dropseed Sporobulus heterolepis (Poaceae)[J]. American Journal of Botany, l987, 74: 564-573
    [16]Feldman F, Idczak E. Inoculation of vesicular-arbuscular mycorrhizal fungi for use in tropical nurseries[J]. Methods in microbiology. London Academic Press, 1992, 339-357
    [17]Fitter A H, Gardaye J. Interaction between mycorrhizal fungi other organisms[J]. Plant and Soil, 1994, 159: 123-132
    [18]Fontenla S, Godoy R, Rosso P, Havrylenko M. Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas[J]. Mycorrhiza, 1998, 8: 29-33
    [19]Friedrich J M, Dawson J O. Soil nitrogen concentration and Juglans nigra growth in mixed plots with nitrogen fixing Alnus, Elaeagnus, Lespedeza and Robinia species[J]. Canadian Journal of Forest Research, 1984, 14: 864-868.
    [20]Gadkar V, Rillig M C. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60[J]. FEMS microbiology letters, 2006, 263: 93-101
    [21]Goicoechea N, Szalai G.Antolin M C, Sanchez-Diaz M. Influence of arbuscular mycorrhizae and rhizobium on free polyamines and proline levels in water-stressed alfalfa[J]. Plant Physoil, 1998, 153(5-6):706-711
    [22]Goicoechea N, Merino S, Sánchez-Díaz M. Arbusuclar mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoidesL. subjected to drought[J]. Journal of plant physiology, 2005, 162:27-35
    [23]Gupta R, Krishnamurthy K V. Response of mycorrhizal and nonmycorrhizal arach is hypogaea to NaCl and acid stress[J]. Mycorrhiza, 1996, 6:145-149
    [24]Guadarrama P, Alvarez-Sanchez F I. Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Varacruz, Mexico[J]. Mycorrhiza, 1999, 8:267-270
    [25]Grime J P, Machey J M L, Hiller S H. Floristic diversity in a model system using experimental microcosms[J]. Nature, 1987, 328:420-422
    [26]Haugen L M, Smith S E. The effects of high temperature and fallow period on infection of mung bean and cashew roots by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices[J]. Plant and Soil, 1992, 145:71-80
    [27]Harley J L.The significance of mycorrhiza[J].Mycological Research, 1989, 92:129-139
    [28]James D D, William E H, Matthias C R. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J], Soil Biology & Biochemistry, 2005, 37:101-106
    [29]Jastrow J D, Miller R M. Soil aggregate stabilization and carbon sequestration: feedbacks through organomineralas sociations.In Soil Processes and the Carbon Cycle[J]. CRC Press Boca Raton, 1997, 207-223
    [30]Jasper D A, Robson A D, Abbott L K. Revegetation in an ironore mine-nutrient requirements for plant growth and the potential role of vesicular-arbuscular(VA) mycorrhizal fungi.Australian[J]. Journal of Soil Research, 1988, 26: 501-507
    [31]Jeffrey D C, Peter G A, Rebecca B W. The role of phosphorus availability in the response of soil nitrogen cycling, understory vegetation and arbuscular mycorrhizal inoculum potential to elevated nitrogen input[J]. Water, Air, and Soil Pollution, 2003, 147:141-161
    [32]Jennings D H. The Physiology of Fungal Nutirtion[M]. Cambridge University press, Cambridge, UK, 1995
    [33]John W G, Shepard M Z, Todd S F. Stand characteristics of intercropped loblolly pine and black locust[J]. Forest Ecology and Management, 1997, 91:221-227
    [34]Kawai Y, Tezuka T, Yamamoto Y. Morphological characteristics and seasonal variation of VA mycorrhizal in grapevine[J]. Journal Japan Scientia Horticulturae, 1986, 55(1):22-26
    [35]Klironomos J N, Mcune J, Hart M. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity[J]. Ecology Letters, 2000, 3:137-141
    [36]Kiss S, Dracan B M, Radulesu D. Biological significance of enzymes accumulated in soil[J]. Advancesin Agronomy, 1975, 27:25-87
    [37]Knorr M A, Boerner R E, Rillig M C. Glomalin content of forest soils in relation to fire frequency and landscape position[J]. Mycorrhiza, 2003, 13:205-210
    [38]Liang Y G, Liang D, Ma K P. The role of mycorrhizal fungi in ecosystems[J]. Acta Phytoecologica Sinica, 2002, 26(6):739-745
    [39]Li X L, Marschner H, George E. Extension of the phosphorus depletion zine in VAM white clover in a calcareous soil[J]. Plant and Soil, 1991, 136:41-48
    [40]Linden D R. Life Attributes and Environment in the Soil Ecosystems[J]. Encyclopedia of Soil Science,2006, 10:1-4
    [41]Mathur N, Vyas A I. Influence of VAF[J]. Journal of plant physiology, 1995, 147(3/4):328-330
    [42]Matthias C.Rillig, Sara F, Wright Valerie T E. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species[J]. Plant and Soil, 2002, 238:325-333
    [43]Mancuso S, Rinaldelli E. Response of young mycorrhizal and non-mycorrhizal plants of olive tree(Olea europaea L.)to saline conditions.II.Dynamics of electrical impedance parameters of shoots and leaves[J]. Horticulturae Science, 1996, 10:135-145
    [44]Menge J A, Steirle D, Bayuara D J, Johnson E L V. Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection[J]. New phytologist, 1987, 80:575-578.
    [45]Micheline S. Relationship between environmental factors and levels of mycorrhizal infection of citrus on four islands in the Eastern Caribbean[J]. Tropical Agriculture, 1993,70(20):135-140.
    [46]Miller J C, Rajapakse S, Garber R K. Vesicular-arbuscular mycorrhizae in vegetable crops[J]. HortScience, 1986, 21(4):974-984
    [47]Miller R M, Jasrtow J D. The role of mycorrhizal fungi in soil conservation[J]. Ameican Society of Agriculture, 1992, 29-44
    [48]Miller R M, Jastrow J D. Mycorrhizal fungi influence soil structure[A]. Arbuscular Mycorrhizas:Physiology and Function[M]. Dordrecht:Kluwer Academic Press, 2000, 4-18
    [49]Olah B, Briere C, Becard G. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway[J]. Plant Journal, 2005, 44:195-207
    [50]Olsson P A, Thingstrup I, Jakobsen I. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field[J].Soil Biology and Biochemistry. 1999, 31:1879-1887
    [51]Oliveira R S, Vosatka M, Dodd J C, Castro P M L.Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment[J]. Mycorrhiza, 2005, 16(1):1-9
    [52]Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55:158-161
    [53]Porcel R, Aroca R, Cano C, Bago A, Ruiz L. Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding for a 14-3-3 protein that is up-regulated by drought stress during the AM symbiosis[J]. Microbial Ecology, 2006, 53: 575-582
    [54]Rai S P, Luthra R, Kumar S. Salt tolerant mutants in glycophytic salinity response (GRS)genes in Catharanthus roseus[J]. Theoretical and applied genetics, 2003, 106:221-230.
    [55]Read D J. Plant-microbe mutualism and community structure[A]. Biodiversity and Ecosystem Function[C]. Springer Verlag Publish, 1994, 181-209
    [56]Read D J. Mycorrhizal fungi—the ties that bind[J]. Nature, 1997, 388:517-518.
    [57]Requena N, Jimenez I, Toro M. Interactions between plant growth promoting rhizobacteria(PGPR), arbuscular mycorrhizal fungi and Rhizobium spp.in the rhizosphere of Anthyllis cytisoides, amodel legume for revegetation in mediterranean semiarid ecosystems[J]. New Phytologist, 1997, 136:667-677
    [58]Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea J M. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Applied and Environmental Microbiology, 2001, 67(2):495-498
    [59]Rillig M C. Arbuscular mycorrhizae and terrestrial ecosystem processes[J]. Ecology Letters, 2004a,7:740-754.
    [60]Rillig M C. Arbuscular mycorrhizae, glomalin and soil quality[J]. Canadian Journal of Soil Science,2004b, 84:355-363
    [61]Rillig M C, Mummey D L. Mycorrhizas and soil structure[J]. New Phytologist, 2006, 171:41-53
    [62]Rillig M C, Hernandez G Y, Newton P C D. Arbuscular mycorrhizae respond to elevated atmospheric CO2 after longterm exposure: Evidence from a CO2 spring in New Zealand supports the resource balance model[J]. Ecology Letters, 2000, 3:475-478
    [63]Rillig M C, Wright S F, Nichols K A, Schmidet W F. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant Soil, 2001, 233:167-177
    [64]Rillig M C, Ramsey P W, Moriis S, Paul E. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change[J].Plant and Soil, 2003, 253:293-299
    [65]Ruizlozano J M, Azcon R. Mycorrhizal colonization and drought stress as facts affecting nitrate reductase activity in lettuce plants[J]. Agriculture Ecosystems and Environment, 1996, 60(2-3):175-181
    [66]Ruizlozano J M, Azcon R, Gomez M. Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants[J]. Physiologia Plantarum, 1996, 98:767-772.
    [67]RuizLozano J M, Collados C, Barea J M. Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants[J]. New Phytologist, 2001, 151:493-502
    [68]Schenck N C, Perez Y. Manual for the Identification of VA Mycorrhizal Fungi 2nd edition,Gainesville:INVAM, 1988, 91-97
    [69]Sengupta A, Chaudhuri S. Vesicular arbusculra mycorrhiza(VAM) in pioneer salt malsh plants of the Ganges River delta in West Bengal (India)[J]. P1ant Soil, l990, 122:111-113
    [70]Siguenza C, Espejel I, Allen E B. Seasonality of mycorrhizae in coastal sand dunes of Baja California[J]. Mycorrhiza, 1996, 6:151-l57
    [71]Smith M D, Hartnett D C, Wilson G W T. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tall grass prairie[J]. Oecologia, 1999, 121(4):574-582
    [72]Sonia Purin, Rillig M C. Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices[J].Soil Biology & Biochemistry, 2008, 10:1016
    [73]Soderstrom B. The ecological potential of the ectomycorrhizal mycelium[A]. Cambidge University Press, 1992, 77-83
    [74]Sonia Purina, Rillig M C. The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function[J]. Pedobiologia, 2007, 51:123-130
    [75]Sreenivasulu N, Ramanjulu S, Ramachandra-Kini K. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance[J]. Plant Science,1999,141:1-5
    [76]Staddon P L, Ramsey C B, Ostle N. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C[J]. Science, 2003, 300:1138-1140
    [77]Steinberg P D, Rillig M C. Diferential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin[J]. Soil Biology and Biochemisty, 2003, 35:191-194
    [78]Stutz J C, Copeman R, Martin C A. Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa[J]. Canadian Journal of Botany, 2000, 78:237-245
    [79]Sylvia D M. Nursery inoculation of sea oats with vesicular-arbuscular mycorrhizal fungi and out planting performance on Floriada Beaches[J].Jorunal of Coastal Research, 1989, 5(4):747-754
    [80]Tawaraya K, Salto M, Morioka M. Effect of phosphate application to arbuscular mycorrhizal onion on the development and succimate dehydrogenase activity of internal haphe[J]. Soil Science and Plant Nutrition, 1994, 40(4):667-673
    [81]Tian C J, He X Y, Zhong Y. Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust Robinia pseudoacacia[J]. New Forest, 2003, 25:12-131
    [82]Taylor J P, Wilson B, Mills M S, Burns R G. Comparison Of microbial Numbers and enzymatic activities in surface and subsoils using various techniques[J]. Soil Biology and Biochemistry, 2002, 34:387-401
    [83]Tisdall J M. Fungal hyphae and structural stability of soil[J]. Soil Res, 1991, 29:729-743
    [84]Van R P, Fang Y, Galili S. Expression of early noddin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium induced nodulesmay be conserved[J]. Plant Biologists, 1997, 94:5467-5472
    [85]Vassilev N, Vassileva M, Azcon R. Interactions of an arbuscular mycorrhizal fungus with free or coencapsulated cells of Rhizobium trifoli and Yarowia lipolytica inoculated into a soil—plant system[J]. Biotechno1 Letter, 2001, 23:149-15
    [86]Vodnik D. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil[J]. Science Total Environ, 2007, 10:1016
    [87]Wilson G W T, Hartnett D C. Effects of mycorrhizae on plant growth and dynamics in experimental tall grass prairie microcosms[J]. American Journal of Botany, 1997, 84:478-482
    [88]Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin:a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant Soil, 1998a, 97-107
    [89] Wright S F, Upadhyaya A, Buyer J S. Comparison of Nlinked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis[J].Soil Biology and Biochemistry,1998b, 30:1853-1857
    [90]Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996, 161:575-586
    [91]Wright S F. A fluorescent antibody assay for hyphae and glomalin from arbuscular mycorrhizal fungi[J]. Plant Soil, 2000a, 226:171-177
    [92] Wright S F, Anderson R L. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains[J]. Biology Fertillity Soils, 2000b, 31:249-253.
    [93] Wu Q S, Xia R X, Zou Y N. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress[J]. European journal of soil biology, 2008, 44:122-128
    [94]Yun S J. Induction of maize acid phosphatase activities under phosphorous starvation[J]. Plant Soil, 2001, 237: 109-115
    [95]安秀娟,贺学礼.土壤因子对毛乌素沙地豆科植物AM真菌侵染的影响[J].河北农业大学学报,2007,30(1):45-49
    [96]毕慈芬,邰源临,王富贵.防止砒砂岩地区土壤侵蚀的水土保持综合技术探讨[J].泥沙研究,2003,6(3):63-65
    [97]毕银丽,吴福勇,武玉坤.丛枝菌根在煤矿区生态重建中的应用[J].生态学报,2005,25(8):2069-2073
    [98]白春明,贺学礼,山宝琴,赵丽莉.漠境沙打旺根围AM真菌与土壤酶活性的关系[J].西北农林科技大学学报(自然科学版),2009,37(1):84-90
    [99]程丽娟,薛泉宏,韦革宏.微生物学实验技术[M].世界图书出版公司.2000,209-212
    [100]蔡晓布,彭岳林,冯固等.西藏高原草地植物AM真菌多样性及其环境影响因子研究[J].土壤学报, 2005,42(4):642-651
    [101]崔力拓,李志伟.紫花苜蓿-菌根真菌-根瘤菌对多氯联苯污染土壤的修复作用[J].农业环境科学学报,2008,27(1):0226-0229
    [102]董昌金,赵斌.影响丛枝菌根真菌孢子萌发的几种因素研究[J].植物营养和肥料学报,2003,9(4):489-494
    [103]董昌金,赵斌.类黄酮物质apigenin和daidzein诱导AM真菌侵染十字花科植物芥菜[J].科学通报,2004a,10:953-960
    [104]董昌金,赵斌.丛枝菌根真菌与根瘤菌互作及类黄酮对互作效果的影响[J].应用生态学报。2004b,l5(9):1585-158
    [105]谈嫣蓉,蒲小鹏,张德是.不同退化程度高寒草地土壤酶活性的研究[J].草原与草坪,2006,3:20-22
    [106]滕应,骆永明,高军,李振高.多氯联苯污染土壤菌根真菌-紫花苜蓿-根瘤菌联合修复效应[J].环境科学,2008,29(10):2925-2930
    [107]冯固,张玉凤,李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响[J].水土保持学报,2001,15(4):99-102
    [108]方孝东,林栖凤,屈良鹄.植物耐盐机制及植物耐盐基因工程[J].植物科学进展,2000,3(1):155-165
    [109]范洁群,冯固,李晓林.有机磷杀虫剂-灭克磷对丛枝菌根真菌Glomus mosseae生长的效应[J].菌物学报,2006,25(1):125-130
    [110]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    [111]高俊凤.植物生理学实验技术[M].世界图书出版社,2000
    [112]郭秀珍,毕国昌.林木菌根及应用技术[M].北京:中国林业出版社,1989,1-271
    [113]黄世臣,李熙英.温度和光照强度对内生菌根菌根内泡囊量的影响[J].延边大学农学学报,2006,28(4):283-286
    [114]何兴元,赵淑清,杨思河,等.固氮树种在混交林中的作用研究Ⅲ——固氮树种凋落物分解及N的释放[J].应用生态学报,1999,10(4):404-406
    [115]贺学礼,Stanislov mouratov.荒漠植物根际AM真菌的空间分布和定殖[J].植物生态学报,2002,26(2):223-229
    [116]胡小平,王长发.SAS基础及统计实例教程[M].西安:西安地图出版社,2001
    [117]孔凡美,史衍玺,林爱军.不同磷肥水平下丛枝菌根菌对玉米修复芘污染土壤的影响[J].植物营养与肥料学报,2009,15(1):127-132
    [118]李科江,张素芳,贾文竹等.半干旱区长期施肥对作物产量和土壤肥力的影响[J].植物营养与肥料学报,1999,5(1) :21-25
    [119]李海燕,刘润进,束怀瑞.丛枝菌根真菌与葡萄南方根结线虫的相互作用及其对寄主的影响[J].园艺学报,2002,29(6):510-514
    [120]刘进法,夏仁学,王明元,王鹏.丛枝菌根促进植物根系吸收难溶态磷的研究进展[J].亚热带农业,2007,36(4):62-66
    [121]劳家柽.土壤农化分析手册[M].北京:农业出版社,1988
    [122]陆梅.高原湿地纳帕海退化上壤养分与酶活性研究[J].西南林学院学报,2004,24(l):34-37
    [123]李强,赵秀兰,胡彩荣.ISO 10390:2005土壤质量pH的测定[J].污染防治技术,2006,19(1):53-55
    [124]龙良鲲,姚青,艾云灿.丛枝菌根真菌伴生细菌的研究进展[J].生态学报,2007,27(12):5345-5350
    [125]李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社.2001
    [126]刘晓蕾.球囊霉素测定方法的研究及初步应用[D].中国农业大学硕士学位论.2006
    [127]刘润进,郝文英.VA菌根真菌对植物水分代谢的影响[J].土壤学报,1994,31(增刊):46-53
    [128]彭生斌,沈崇尧.北京地区大葱和玉米根际VA菌根的季节变化及其与环境因子之间的关系[J].植物学报,1990,32(2):141-145
    [129]苏友波,林春,王三根. AM菌根磷酸酶对玉米菌根际土壤磷的影响及其细胞化学定位[J].西南农业大学学报, 2003,25(2): 115-119.
    [130]申鸿,刘于,白淑兰.AM真菌对锌污染土壤中玉米微量元素营养的影响[J].西南农业大学学报,2006,28(2):205-211
    [131]石兆勇,王发园,陈应龙.五指山常见热带树种的丛枝菌根真菌多样性[J].生态学报,2007,27(7):2896-2903
    [132]涂俊芳,王兴明,刘登义等.不同浓度铜对紫背萍和青萍色素含量及抗氧化酶系统的影响[J].应用生态学报,2006,17(3):502-506
    [133]唐明,陈辉,商鸿生.丛枝菌根真菌(AMF)对沙棘抗旱性的影响[J].林业科学,1999,35(3):48-52
    [134]唐明,黄艳辉,盛敏等.内蒙古盐碱土中AM真菌的多样性和分布[J].土壤学报,2007,44(6):1105-1110
    [135]唐振尧,何首林.菌根促进柑桔吸收难溶性磷肥的机理研究[J].中国柑桔,1991,20(2):7-10
    [136]王娟,谷雪景,赵吉.羊草草原土壤酶活性对土壤肥力的指示作用[J].农业环境科学学报,2006,25(4):934-938
    [137]王淼焱,刘树堂,刘润进.长期定位施肥土壤中AM真菌耐磷性的比较[J].土壤学报,2006,43(6):1056-1059
    [138]乌恩,菅原和夫,云锦凤.施肥、刈割和土壤镇压对鸭茅丛枝菌根形成的影响[J].干旱区资源与环境.2006,20(3):196-200
    [139]王愿昌,吴永红,寇权.砒砂岩分布范围界定与类型区划分[J].中国水土保持科学,2007,5(1):14-18
    [140]王昶,王晓娟,侯扶江,常生华,陕海平,朱彩玲,金樑.AM真菌与地上草食动物的互作及其对宿主植物的影响[J].土壤,2009,41 (2):172-179
    [141]薛会英,张永青,彭岳林.藏北草原主要植物AM真菌的初步研究[J].山地学报,2007,25(3):351-358
    [142]熊礼明,史瑞和.蒸气灭菌的土壤对植物的毒害作用及VA菌根的减毒效应[J].土壤学报,1994,31:234-239
    [143]邢晓科,郭顺星.菌寄生真菌与寄主相互作用的生化研究进展[J].菌物系统,2002,21(1):141-146
    [144]杨秀梅,陈保冬,朱永官.丛枝菌根真菌(Glomus intraradices)对铜污染土壤上玉米生长的影响[J].生态学报,2008,28(3):1052-1058
    [145]杨宏宇,赵丽莉,贺学礼.丛枝菌根在退化生态系统恢复和重建中的作用[J].干旱区地理,2005,28(6):836-842
    [146]杨文亭,冯远娇,王建武.丛枝菌根真菌在寄主植物抵御生物和非生物胁迫中的作用[J].生态科学,2008, 27(4):267-271
    [147]严昶升.土壤肥力研究方法[M].农业出版社.1988
    [148]赵丹丹,李涛,赵之伟.丛枝菌根真菌一豆科植物一根瘤菌共生体系的研究进展[J].生态学杂志,2006,25(3):327-333
    [149]中国科学院南京土壤研究所.土壤理化分析[M].1998
    [150]周礼恺.土壤酶学[M].北京:科学出版社,1987
    [151]朱红惠,姚青.pH值对Gigaspora margarita孢子萌发、菌丝生长与聚磷酸盐含量的影响[J].菌物学报,2006,25(1):120-126
    [152]张俊伶,李晓林,杨志福.三叶草根间菌丝桥在32P传递中的作用[J].植物营养与肥料科学,1997,3(2):129-136
    [153]张崇邦,王江,王美丽.尾矿砂堆积地五节芒自然定居对土壤微生物生物量、呼吸速率及酶活性的影响[J].植物营养与肥料学报,2009,15(2): 386-394
    [154]张国红.土壤紧实程度对其某些相关理化性状和土壤酶活性的影响[J].土壤通报,2006, 37(6):1054-1057
    [155]张美庆,王幼珊,刑礼军.AM真菌在我国东南沿海地区各土壤气候带的分布[J].菌物系统,1999,18:145-148
    [156]张美庆,王幼珊,刑礼军.我国东南沿海地区AM真菌群落生态分布研究[J].菌物系统,1998,17(3):274-277
    [157]张美庆,王幼珊,张弛.我国北方VA菌根真菌某些属和种的生态分布[J].真菌学报,1994,13(3):166-172
    [158]张美庆,王幼珊,刑礼军.环境因子和AM真菌分布的关系[J].菌物系统,1999,18(2):145-148
    [159]张文敏,张美庆,孟娜等.VA菌根用于矿山复垦的基础研究[J].矿冶,1996,5(3):17-21
    [160]张福锁,李晓林.环境胁迫与植物根际营养[M].北京:中国农业出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700