鄱阳湖区水位变化对血吸虫病传播的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国现有钉螺面积34.2亿m~2,其中江湖洲滩地区的有螺面积占94%以上。这类地区具有“春湿、夏淹、秋露、冬干”的特征,每年洪水上涨时,形成一片汪洋,秋季水退之后,洲滩暴露,植被丰茂,一般每年水淹3-5个月,地面长期保持潮湿,特别是芦苇杂草丛生的洲滩,非常适合钉螺孳生。
     钉螺的孳生对水有严格的要求,幼螺发育期间离不开水,成螺长期淹于水中则存活率下降,而且水的分布对钉螺生存必需的植被也有很大影响,干旱之处湖草难以丛生,而长期被水淹的地方湖草也可被毁,所以了解洲滩地区水位及水淹变化对于掌握钉螺的分布具有重要意义。
     随着遥感技术的发展,其在提取湖泊水域范围方面的应用也越来越多,而湖泊水域面积变化很大程度上受水位变化影响,因而在了解水位变化对螺情变化影响的基础上,可运用遥感技术预测洲滩钉螺的分布状况。
     第一部分试点区的血吸虫病流行状况
     马家湾及门前滩洲位于星子县蓼南乡渚溪村。该试点区05、06及07年活螺密度分别为4.74、0.85及3.37只/0.1m~2,感染螺密度05年为0.0018只/0.1m~2,06及07年未压出阳性螺,人群感染率分别为3.35%、1.59%及2.31%,耕牛感染率分别为12.31%、3.23%及3.03%。
     第二部分运用遥感技术分析鄱阳湖区水面面积变化
     本研究收集1998-2006年间的12景遥感影像,对其进行几何校正,提取MNDWI值,并设定阈值,建立掩膜,然后划定感兴趣区求取鄱阳湖的水面面积。
     对遥感影像中提取的鄱阳湖区的水域面积与星子、湖口及康山当日的水位进行相关性分析,相关性均较强,相关系数分别为0.957、0.893及0.939,然后以鄱阳湖区水域面积与对应的星子站当日水位建立模型,其中对数模型的拟合效果较好,R=0.959,R~2=0.920,校正R~2=0.912,模型为S=5181.5111n(h)-10261.9,其中S:鄱阳湖区水域面积,h:获取卫片当日星子水文站水位。利用2006年11月6日的TM遥感影像对鄱阳湖主体水域-水位模型进行验证。结果表明,采用模型计算出的水域面积与遥感图像测算的结果相差较小,运用影像提取的水域面积为1658.73km~2,用模型估算的水域面积为1648.20km~2,相差较小,误差小于0.64%。说明运用遥感技术提取的水域面积可以较好地反映鄱阳湖区水位变化趋势,从而为将遥感技术应用于洲滩钉螺分布的预测提供了保证。
     第三部分小范围研究水位变化对螺情的影响
     在血吸虫病的传播链中,水是必不可少的载体,且水与钉螺的孳生繁殖是密不可分的,水位的变化对于钉螺分布具有重要影响,有必要对水位变化对螺情的影响展开研究。
     本研究先从小范围上分析了水位变化对螺情状况的影响,收集星子水文站1997-2007年的水位资料,以分析水位变化对渚溪试点区及星子县钉螺分布状况的影响。
     经相关统计分析发现渚溪试点区活螺框出现率与星子站上一年度8月份月平均水位间呈负相关,相关系数r=-0.748,p=0.013<0.05,此外渚溪试点区活螺框出现率还与上一年度丰水期平均水位及年最高水位间呈负相关,结果分别为r=-0.652,p=0.041<0.05及r=-0.771,p=0.009<0.01。由此可推测丰水期水位越高,淹水时间越长,钉螺死亡率越高,活螺框出现率越低。
     此外,星子县湖沼型钉螺面积与星子站4月份月平均水位之间呈负相关,结果为:r=-0.761,p=0.011<0.05,说明洲滩初涨水期间提前涨水或水位升高,有螺面积减少。
     第四部分大范围上研究水位变化对有螺面积的影响
     为了进一步验证第二部分的结果,以星子站月平均水位代表鄱阳湖水位与江西省湖沼型钉螺面积之间进行相关性分析。结果发现江西省湖沼型钉螺面积与鄱阳湖4月份月平均水位呈负相关,r=-0.658,p=0.039<0.05,进一步说明四月份涨水越晚水位越低则钉螺面积越大。
     本研究第二部分对遥感影像提取的水域面积与实际的水位信息之间进行了论证,而第三四部分的结果表明查螺前一年8月份的月平均水位及查螺当年4月份的月平均水位高低影响着钉螺的分布及有螺面积,因此在实际应用中可收集4月份及8月份的卫片通过提取水域面积来预测钉螺分布及钉螺面积。
The total area of Oncomelania snail habitats in China is now 3.42billion m~2,and among which more than 94 percent is located in marshland and lake regions.These regions are wet in spring,submerged in summer,exposed in fall and dry in winter. Every year when flood rises,the bottomlands change into a vast ocean,and after water secedes in fall,the bottomland is exposed and vegetation is flourishing.In general,marshland submerged for 3-5 months and keeps wet for a long time, especially bottomland covered with reeds,is fit for snail surviving.
     The snail habitat is strictly limited with water.Young snails cannot live without water during growth,and the survival rate of adult snails will decline if the snails submerged in water for a long time.And the distribution of water can also influence vegetation,which is necessary for the survival of snails;grass cannot cover dry land or bottomland submerged in water for a long time.Therefore,it is important to find out the impact of water level on the distribution of snails at bottomland regions.
     With the development of remote sensing techniques,it has been more and more applied in distilling water extents of lakes,and the areas of water is influenced by changes of water level to a large extent.Thus on the basis of understanding the impact of water level on the situation of snails,we can apply remote sensing technology to forecast the distribution of snails at bottomland.
     Part 1:The epidemic situation of schistosomiasis in experimental area
     Majiawan and Menqian marshland is located in Zhuxi village,Liaonan township, Xingzi County.The density of live snails was 4.74,0.85 and 3.37/0.1m~2 in 2005, 2006 and 2007,respectively.The density of infected snails was 0.0 018/0.1m~2 in 2005, and no infected snails were checked out in 2006 and 2007.The infection rate of population was 3.35%,1.59%and 2.31%respectively in the three years,and the infection rate of cattle was 12.31%,3.23%and 3.03%,respectively.
     Part 2:Analyzing the change of areas of water surface of the Poyang Lake by applying remote sensing technique
     We collected 12 TM images between 1998 and 2006,performed geometric correction,extracted MNDWI value,set threshold value,built mask and then chose regions of interest(ROI) to calculate the areas of the Poyang Lake.We did correlation analysis between water areas of the Poyang Lake and water level of Xingzi,Hukou and Kangshan,and the correlation is strong,the coefficient of correlation is 0.957, 0.893 and 0.939,respectively.We built a model to describe the relationship of water areas of the Poyang Lake and water level of Xingzi,and the logarithm model is better, R=0.959,R~2=0.920,and adjusted R~2=0.912.The model is S=5 181.51lln(h)-10 261.9, S stands for the water areas of the Poyang Lake extracted by TM images,h stands for water level of Xingzi.We checked the model by water areas of the Poyang Lake extracted from TM image of December 6th,2006,and the result showed that the difference between water areas extracted from TM images and water areas calculated by the model is small.The former is 1 658.73km~2,and the latter is 1 648.20km~2,and the error is less than 0.64 percent.These suggested that water areas extracted from TM images can well reflect the change of water level in the Poyang Lake,which provided a base for the application of remote sensing technique on forecasting the distribution of snails at bottomland.
     Part 3:The impact of water level change on snail situation with a small scale
     Water is an essential carrier in the spread chain of schistosomiasis,which is also inseparable for the breeding and propagation of snails.The change of water level has an important influence on the distribution of snails.So it is necessary to study the influence on snails situation with the change of water level.
     We firstly analyzed the influence on the snails situation with the change of water level in small scale.We collected data about water level from 1997 to 2007,to analyse the impact on the distribution of snails in Zhuxi pilot and Xingzi County with the change of water level.
     The result of statistical analysis showed that there was a negative correlation between the percent of frames with living snails in Zhuxi pilot and average water level of last August(r=-0.748,p=0.013<0.05).Besides,there is also a negative correlation between the percent of frames with living snails in Zhuxi pilot and average water level during wet period/the highest water level of last year(r=-0.652, p=0.041<0.05/r=-0.771,p=0.009<0.01).Thus,we can speculate that the higher water level is in wet period and the longer the flooding period lasts,the higher the mortality rate of snails is and the lower the percent of frames with living snails is.
     In addition,there is a negative correlation between areas of snails in marshland and lake regions of Xingzi county and the average water level of April(r=-0.761, p=0.011<0.05),which suggests that if bottomland is submerged in advance or water level rises during spring tide period,the areas of snails in marshland and lake regions may reduce.
     Part 4:The impact of water level change on the areas of snails in large scales
     In order to further verify the results of part 2,we chose the average monthly water level of Xingzi Hydrometric Station to represent the average water level of the Poyang Lake,and did correlation analysis between the average monthly water level and the snails areas in marshland and lake regions in Jiangxi province.The results showed that there is a negative correlation between areas of snail habitats in marshland and lake regions and the average water level of April(r=-0.658, p=0.039<0.05),which further suggested that the later the bottomland submerged and the lower the average water level of April was,the larger the areas of snails extended.
     In the second part,we analyzed the relationship between water areas extracted from TM images and the actual water level data.The results of the third and fourth part suggested that the average water level of last August and April this year influenced the distribution of snails and areas of snail habitats.Thus in practical application,we can collect images of April and August to forecast the distribution and diffusion of snails.
引文
1 蔡凯平,卓尚炯,田子英,等.水位季节性变化对洲垸地区钉螺分布与感染的影响.实用预防医学,1992,6(6):434-435.
    2 汪天平,张世清,汪奇志,等.春季提前水淹对长江洲滩钉螺存活影响的观察.实用寄生虫病杂志,1999,7(1):31-32.
    3 梁幼生,肖荣炜,宋鸿焘.冬季水淹对洲滩钉螺生存繁殖影响的观察.动物学杂志,1994,29(1):5-7.
    4 Ofoezi IE,Asaolu SO.Water level regulation and control of schistomiasis transmission:a case study in Oyan Reservoir,Ogun State,Nigeria.Bull World Health Organ,1997,75(5):435-441.
    5 Bavia ME,Malone JB,Hale L,et al.Use of thermal and vegetation index data from earth observing satellites to evaluate the risk of schistosomiasis in Bahia,Brazil.Acta Tropica,2001 79(1):79-85.
    6 Abdel-Rahman MS,El-Baby MM,Malone JB,et al.Geographic information systems as a tool for control program management for schistosomiasis in Egypt.Acta Tropica 2001 79(1):49-57.
    7 Kristensen TK,Malone JB,McCarroll JC.Use of satellite remote sensing and geographic information systems to model the distribution and abundance of snail intermediate host in Africa:a preliminary model for Biomphalaria pfeifferi in Ethiopia.Acta Tropica 79(1):73-78.
    8 郭家钢,林丹丹,胡广汉,等.应用遥感技术快速确定鄱阳湖区钉螺孳生地的研究.中国流行病学杂志,2002,23:99-101.
    9 周晓农,孙宁生,胡晓抒,等.地理信息系统应用于血吸虫病的监测—Ⅲ.长江洲滩钉螺孳生地的监测.中国血吸虫病防治杂志,1999,11:199-202.
    10 林丹丹,周晓农,刘跃民,等.鄱阳湖区应用卫星遥感资料预测1998年洪水后钉螺分布状况.中国血吸虫病防治杂志,2002,14:119-121.
    11 张世清,姜庆五,汪天平,等.遥感技术用于洪水期间监测钉螺孳生地和钉螺扩散的研究.热带病与寄生虫学,2001,30:5-8.
    12 姜庆五,刘建翔,林涛,等.利用TM卫星遥感图像对鄱阳湖血吸虫病流行区 水体识别的研究.中国公共卫生,2001,17:289-290.
    13 Edmund Seto,Bing Xu,Song Liang,et al.The use of remote sensing for predictive modeling of schistosomiasis in China.Photogrammetric Engineering & Remote Sensing,2002,68(2):167-174.
    14 赵小敏,袁梦仙,王瑚,等.鄱阳湖地区湖滩草洲遥感调查与综合利用研究.江西农业大学学报,2003,1(25):84-87.
    15 McFeeters S K.The Use of Normalized Difference Water Index(NDW I) in the Delineation of Open Water Features[J].International Journal of Remote Sensing,1996,17(7):1425-1432.
    16 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究.遥感学报,2005,9(5):589-595.
    17 易善桢,王志辉.不同方法在水体遥感提取中的应用实现[J].红外,2007,(04):1-4.
    18 王志辉,易善桢.不同指数模型法在水体遥感提取中的比较研究[J].科学技术与工程,2007,(04):534-537.
    19 谭衢霖,刘正军,胡吉平,等.应用多源遥感影像提取鄱阳湖形态参数.北京交通大学学报,2006,30(4):26-30.
    20 丁莉东.基于MODIS的鄱阳湖区水位遥感估算研究.安徽农业科学,2008,36(2):825-826.
    21 张世清,葛继华,陈金生,等。凤仪洲1998年洪水溃堤后血吸虫病疫情分析。实用预防医学,2001,5(8):323-324.
    22 周晓农.实用钉螺学[M].第1版.北京:科学出版社,2005,149.
    23 夏全斌,谢长松,陈美丽.春季提早水淹对钉螺卵胚发育影响的实验观察.湖南医学院学报.1983,4(8):367.
    24 余冬保,夏全斌,肖荣炜,等.春季水淹对钉螺卵发育影响观察.中国血吸虫病防治杂志,1995,7(3):134.
    25 王小红,王溪云,邹慧,等。鄱阳湖草洲植被与钉螺血吸虫感染性年间变异的分析。中国血吸虫病防治杂志,2002,5(12):342-346.
    26 宁安,陈年高,钟久河,等。鄱阳湖洲滩钉螺分布与水位变化的关系。中国 血吸虫病防治杂志,2003,6(15):429-433.
    27 吕大兵,汪天平,张邦炬,等。洲滩钉螺消长与气温、降雨量及水位的相关性研究。中国寄生虫病防治杂志,1998,11(2):154.
    28 郑英杰,钟久河,陈秀纶,等.水淹对钉螺生存的影响,中国血吸虫病防治杂志,2002,14(1).
    29 Marti HP,Tanner M,Degremont AA,et al.Studies on the ecology of Bulinus globosus,the intermediate host of Schistosoma haematobium in the Ifakara area,Tanzania,1985,42(2):171-187.
    30 曹奇,顾伯良,周晓农,等.江滩钉螺在不同深度江水中生存情况的初步实验观察[J].中国寄生虫学与寄生虫病杂志,1987,5(4):31.
    31 唐超,何昌浩,马亮。武汉天兴洲血吸虫病地理医学研究[J].中国血吸虫病防治杂志,1998,10(1):1-6.
    32 杨晓希,顾伯良,曹奇。江苏省近10年血吸虫病急性感染情况分析及防治对策探讨。中国血吸虫病防治杂志,1994,6(3):156.
    33 李涛,余秉圭,戴裕海。长江洪水对急性血吸虫病流行的影响及防治对策研究。中国血吸虫病防治杂志,2000,5(12):268-272.
    34 毛守白主编.血吸虫生物学与血吸虫病的防治.第一版.北京:人民卫生出版社,1990.62.
    35 涂敏,王庆云。湖沼钉螺孳生环境分布的遥感调查研究。长江流域资源与环境,1995,1(4):81-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700