耕作与水蚀引起坡耕地土壤有机碳空间变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十壤在全球碳循环中起着重要作用,并且对碳封存或释放到大气中具有巨大潜在力。由十壤侵蚀引起的土壤有机碳(SOC)再分布过程依然是争议的话题。在全球上,土壤侵蚀导致坡耕地大量有机碳发生横向再分布。在地形系列土壤或田块尺度中,人们普遍认为土壤流失导致SOC含量降低。然而,水库和其他沉积点中的沉积物种富含大量SOC。净源或大气中CO2沉降的结果尚不清楚。全球估计范围从每年大约1Pg C来源到沉降相同的量。基于此背景,本研究调查了中国黄土高原小农业坡地(面积0.07公顷)土壤再分布过程对SOC含量和通量的影响以及相应的碳源和库功能。通过分析3×3m栅格小区表层,包括耕层和底土层(知道0.6m深度)的土壤样品来研究SOC储量的空间格局。在相同的土壤样品中,示踪放射性核素137Cs和过剩的2loPb的空间分布分别用来两国过去50年和100年净侵蚀和净沉积。研究结果表明,SOC在低坡地位置大量累积和稳定化,且含有最高活度的137Cs和210Pb储量。同时强调了对于易受侵蚀农业用地底土碳预算的重要性。基于克里格同归法预测SOC、137Cs和210Pb分布图显示,坡上面SOC弄的减少和穿过坡中部到沿边界的试验地底部坡下部凹面SOC浓度的增加表明SOC和空间分布和137Cs、210Pb相同。为了空间综合分析小规模耕地土壤再分布对SOC动力学的影响,通过SOC浓度与总土壤再分布(TSR)相乘来计算,而总土壤再分布包括由37Cs和210Pb含量和耕作侵蚀预测模型(TEP)得出的耕作和水引起的土壤再分配。该计算方法被用于涵盖每年SOC和由137Cs和210Pb活度测量估计的土壤再分布平衡的两个时期,1911-1954年和1954-2011年。137Cs和210Pb的测量可以提供山坡景观中期(-50年)和长期(100-150年)侵蚀土壤和SOC再分布格局的溯源信息。研究结果表明,由于水力侵蚀的输出作用,SOC在横向大量流失。在1911-1954年和1954-2011年期间,耕作引起的土壤再分布增加了SOC,并且在1911-1954年和1954-2011年期间分别补偿了由水蚀导致SOC流失量的3%、10%。在1911-1954年期间,整个坡面SOC净流失量为6.77t C ha-1(0.157t C ha-1yr-1).在1954-2011年间,SOC净流失量12.58t C ha-1(0.221t C ha-1yr-1)。由于通过铧式犁耕作引起的土壤再分布使得坡麓和背坡底边界区域的SOC显著增加。通过高纯锗伽马谱仪检测的不同坡面深度137Cs和210Pb充分证明了在地边界区域的沉积。土地管理方式对SOC的横向和垂直分布有重要影响。长期耕作的结果是SOC横向输出减少、横向流动增加,导致负C平衡减少。在一个连续的生长期(如在2011年),对最活跃的区域进行关于土壤再分布的土壤呼吸的现场测量。对于测量周期,尚未发现土壤再分布或者其他参数(如土壤特性和地形)空间格局的普遍关系,这凸显了土壤呼吸的变异性。然而,土壤呼吸与耕作侵蚀呈显著线性关系。因此,侵蚀点的碳流失可能在沉积点正将矿化中得到部分补偿。总之,本研究大大提高了关于在小型种植场规模中土壤再分布对SOC含量和通量的影响的认识和理解。
Soils play a major role in the global carbon cycle and have a huge potential for either sequestering or releasing carbon (C) to the atmosphere. The fate of SOC redistribution caused by soil erosion is a controversial subject. Globally, large amounts of soil organic carbon (SOC) are laterally redistributed on sloped cultivated land by soil erosion. On the toposequence or a field scale, it is generally recognized that loss of soil results in reduction of SOC. However, significant amounts of carbon might be stored in sediments in reservoirs and other deposition sites. Whether this results in a net source or sink of atmospheric CO2is unclear. Global estimates range from a source of~1Pg C per year to a sink of the same magnitude. Against this background, this study investigates impacts of soil redistribution processes on SOC stocks and fluxes and the corresponding C source or sink function in a small agricultural hillslope (0.07ha) in Chinese Loess Plateau. Spatial patterns of SOC stocks were studied by analysis of soil samples of the top layer, including plough layer and subsoil layers (up to a depth of0.6m) taken in a3x3m grid. In same soil samples, spatial patterns of the radionuclide tracer caesium-137(137Cs) and unsupported lead-210(210Pbcx) were used to quantify net erosion and net deposition within the field over a50-year and100-year period, respectively. Results revealed a substantial accumulation and stabilization of SOC with highest activity of the137Cs and210Pbex inventory at lower slope position, stressing the importance of subsoil C for budgets on agricultural land prone to erosion. Predicted maps of SOC,137Cs and210Pbex based on regression kriging showed that reduced SOC concentrations on the slope convexities at the upper slope and an increase SOC concentrations within the slope concave which traverse the centre of the field, along the boundary of bottom of field, indicates spatial distribution of SOC,137Cs and210Pbex are very similar patterns. For a spatially integrated analysis of the impact of soil redistribution on SOC dynamics at the small cultivated field scale, soil organic carbon redistribution was calculated by multiplying SOC concentration by total soil redistribution (TSR) including both tillage and water-induced soil redistribution derived from137Cs and210Pbex inventories and from the tillage erosion prediction model (TEP). It was applied for two periods from1911to1954and1954to2011, covering periods of the equilibrium of annuals SOC associated to soil redistribution estimated from137Cs and210Pbex measurement, and these measurement provide retrospective information on the medium-term (-50years span) and long-term (100-150years span) redistribution patterns of the eroded soil and SOC within the hillslope landscape. Results indicated that a substantial amount of SOC was lost laterally due to the export by water erosion. Tillage-induced soil redistribution increased SOC and compensated for3%and16%of the SOC losses due to water erosion during1911-1954and1954-2011, respectively. During the period1911-1954, the net SOC loss from the entire slope was6.77t C ha-1(0.157t C ha-1yr-1). Within the period1954-2011, the net SOC loss was12.58t C ha-1(0.221t C ha-1yr-1). Significant increase of SOC at the lower field boundary on the convergent footslope and backslope resulted from tillage-induced soil redistribution by moldboard plowing. Deposition on the lower field boundary was successfully validated by depth profiles of137Cs and210Pbex measured by hyper pure germanium gamma spectrometer. Land management had a profound effect on the lateral and vertical SOC. The effect of long term tillage reduced the lateral SOC export and enhanced the vertical SOC fluxes, leading to a reduced negative C balance. In situ measurements of soil respiration were carried out in the most dynamic area with respect to soil redistribution in one consecutive growing period (2011). No universal relation to spatial patterns of soil redistribution or to other parameters (soil properties and terrain attributes) was found for measurement period, underlining the large variability of soil respiration. However, soil respiration was significantly linearly related to total erosion. Hence, a possible C sink at erosion sites might partly be compensated by enhanced mineralization at depositional sites. Overall, this study substantially improves the knowledge and understands about the impacts of soil redistribution on SOC stocks and fluxes at the small cultivated field scale.
引文
1. Bajracharya R.M., Lal R., Kimble J.M., Diurnal and seasonal CO2-C flux from soil as related to erosion phases in central Ohio. Soil Sci. Soc. Am. J.2000,64:286-293.
    2. Ahmed S., DeMarsily G., Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water Resources Research 1987,23: 1717-1737.
    3. Alba S.De., Lindstrom M., Scumacher T.E., Malo D.D., Soil landscape evolution due to soil redistribution by tillage:a new conceptual model of soil catenaevolution in agricultural landscapes. Catena 2004,58; 77-100.
    4. Bergstrom DW., Monreal C M., St Jacques E., Spatial dependence of soil organic carbon mass and its relationship to soil series and topography. Can J Soil Sci 2001,81(1):53-62.
    5. Berhe A.A., Harte J., Harden J.W., Torn M.S., The significance of the erosion-induced terrestrial carbon sink. BioScience 2007,57:337-346.
    6. Berhe A.A., Harden J.W., Torn M.S., Harte J., Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. Journal of Geophysical Research.2008,113:G04039.
    7. Beven K., Kirkby M., A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin,1979,24:43-69.
    8. Beyer L., Frund R., Schleuss U., Wachendorf C., Colluvisols under cultivation in Schleswig-Holstein.2. Carbon distribution and soil organic matter composition. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde.1993,156:213-217.
    9. Billings S.A., Buddemeier R.W., Richter D., Van Oost K., Bohling G., A simple method for estimating the influence of eroding profiles on atmospheric CO2. Global Biogeochemical Cycles.2010,24:doi:10.1029/2009GB003560.
    10. Blanco H., Lal R., Principles of soil conservation and management. Springer Science+Business Media B.V 2008.
    11. Bolstad P. (Ed.), GIS Fundamentals,3rd Edition. Atlas Books, Minnesota,2008, p.650.
    12. Borken W., Xu Y.J., Davidson E.A., Beese F., Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biol.2002,8: 1205-1216.
    13. Bouma T.J., Bryla D. R., On the assessment of root and soil respiration for soils of different textures:interactions with soil moisture contents and soil CO2 concentrations. Plant and Soil, 2000,227:215-221
    14. Brown L.R., Wolf E.C., Soil erosion:quiet crisis in the world economy, Worldwatch paper 60. Washington:Worldwatch Institute.1984.
    15. Cambray R.S., Playford K., Lewis G.N.J., Carpenter R.C., Radioactive fallout in air and rain: results to the end of 1988. AERE-R-13575.1989. Harwell:UK Atomic Energy Authority.
    16. Carter M.W., Moghissi A.A., Three decades nuclear testing. Health Physics,1977,33:55-71.
    17. Chaplot V.A.M., Rumpel C., Valentin C., Water erosion impact on soil and carbon redistributions within uplands of Mekong River. Global Biogeochemical Cycles.2005,19: GB4004.
    18. Chappell A., Using remote sensing and geostatistics to map 137Cs-derived net soil flux in south-west Niger. Journal of Arid Environments.1998,39:441-455.
    19. Chappell A., Warren A., Spatial scales of 137Cs-derived soil flux by wind in a 25 km2 arable area of eastern England. Catena.2003,52:(3-4),209-234.
    20. Chen F., Kissel D.E., West L.T., Adkins W., Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Sci. Soc. Am. J.2000,64:746-753.
    21. Chiles J. P., Delfiner P., Geostatistics:modeling spatial uncertainty. John Wiley & Sons, New York.1999, p.720.
    22. Christensen B.T., Physical fractionation of soil and organic matter in primary particle size and density separates. In B.A. Stewart (Ed.). Advances in soil science. Volume 20. Springer, New York.1992, pp.1-90.
    23. Cole J.J. Caraco N.F., Carbon in catchments:connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research.2001,52:101-110.
    24. Davidson E.A., Janssens I. A., Luo Y., On the variability of respiration in terrestrial ecosystems moving beyond Q10. Global Change Biol.2006,12:154-164.
    25. de Jong E., Wang C., Rees H. W., Soil redistribution on three cultivated New Brunswick hillslopes calculated from 137Cs measurements, solum data and the USLE. Can. J. Soil Sci. 1986,66:721-730.
    26. Derbyshire E., Dijkstra T.A., Billard A., Muxart T., Smalley I.J., Li Y.J., Thresholds in a sensitive landscape:the loess region of central China. In:Thomas, D.S.G. & R.J. Allison (Eds.) Landscape Sensitivity. Chichester:Wiley,1993, pp.97-127
    27. Dick W.A., Gregorich E.G., Developing and maintaining soil organic matter levels.. In: Schjonning, P., Elmholt, S., Chris tensen, B.T. (Eds.), Managing Soil Quality:Challenges in Modern Agriculture. CAB International, Wallingford, UK,2004, pp.103-120.
    28. Dlugoβ V., Fiener P., Schneider K., Layer-specific analysis and spatial prediction of soil organic carbon using terrain attributes and erosion modeling. Soil Sci. Soc.Am. J.2010,74: 922-935.
    29. Duiker S.W., Lal R., Crop residue and tillage effects on C sequestration in a Luvisol in central Ohio. Soil Till. Res.1999,52:73-81.
    30. Elliott E.T., Paustian K., Frey S.D., Modeling the measurable or measuring the modelable:a hierarchical approach to isolating meaningful soil organic matter fractions. In, Evaluation of Soil Organic Matter Models Using Existing, Long-term Datasets. Powlson, D.S., P. Smith and J.U. Smith (Eds.). NATO ASI Series, Springer Verlag.1996.
    31. Epron D., Bosc A., Bonal D., Freycon V., Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana. Journal of Tropical Ecology 2006,22:565-574.
    32. Eshel G., Fine P., Total soil carbon and water quality:An implication for carbon sequestration. Soil Sci. Soc. Am. J.2007,71:397-405.
    33. ESRI,2009. ARC/INFO. Environmental Systems Research Institute, Redlands, CA 92373, USA.
    34. Fahnestock P., Lal R., Hall GF., Land use and erosional effects on two Ohio alfisols:1. Soil properties. J Sustain Agric 1995,7(2-3):63-84.
    35. Fang C., Moncrieff J. B., Gholz H. L., Clark K. L., Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil 1998,205:135-146.
    36. Fiener P., Dlugoβ V., Korres W., Schneider K., Spatial variability of soil respiration in a small agricultural watershed — Are patterns of soil redistribution important? Catena 2012,94:3-16.
    37. Fix R.E., Burt T.P., Global positioning system:an effective way to map a small area or catchment. Earth Surface Processes and Landforms 1995,20:817-827.
    38. Florinsky I.V., Eilers R.G., Manning G.R., Fuller I.G., Prediction of soil properties by digital elevation modelling. Enviremontal Modelling and Software.2002,17:295-311.
    39. Garcia Agudo E., Global distribution of 137Cs inputs for soil erosion and sediment studies. International Atomic Energy Agency Publication IAEA-TECDOC-1028.1998, pp.117-121.
    40. Gee G.W., Bauder J.W., Particle-size analysis.1986, p.383-411. In A.Klute (ed.) Methods of soil analysis. Pt.1.2nd ed. Agron. Monogr.9. ASA and SSSA, Madison, WI.
    41. Gessler P.E., Chadwick O.A., Chamran F., Althouse L., Holmes K., Modeling soil-landscape and ecosystem properties using terrain attributes. Soil. Sci. Soc. Am. J.2000,64:2046-2056.
    42. Golosov V.N., Panin A.V., Markelov M.V., Chernobyl 137Cs redistribution in the small basin of the Lokna River, Central Russia. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy.1999,24 (10):881-885.
    43. Goovaerts P., Geostatistics for Natural Resources Evaluation (Applied Geostatistics). Oxford University Press, New York.1997, p.496.
    44. Govers G., Vandaele K., Desmet P., Poesen J., Bunte K., The role of tillage in soil redistribution on hillslopes. Eur. J. Soil Sci.1994,45:469-478.
    45. Govers G., Lobb D.A., Quine T.A., Tillage erosion and translocation:emergence of a new paradigm in soil erosion research. Soil Till. Res.1999,51:167-174.
    46. Gregorich E. G., Greer K. J., Anderson D. W., Liang B. C, Carbon distribution and losses: Erosion and depositional effects, Soil Tillage Res.1998,47:291-302.
    47. Han G., Zhou G., Xu Z., Yang Y., Liu J., Shi K., Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biol. Biochem.2007,39:418-425.
    48. Hanson P.J., Wullschleger S.D., Bohlmann S.A., Todd D.E., Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiol.1993,13:1-15.
    49. Hao Y.L., Lal R., Izaurralde R.C., Ritchie J.C., Owens L.B., Hothem D.L., Historic assessment of agricultural impacts on soil and soil organic carbon erosion in an Ohio watershed. Soil Science.2001,166:116-126.
    50. Harden J W., Fries T.L., Pavich M.J., Cycling of beryllium and carbon through hillslope soils in Iowa. Biogeochem.2002,60:317-335.
    51. Harden J W., Sharpe J.M., Parton W.J., Ojima D.J., Fries T.L., Huntington T.G., Dabney S.M., Dynamic replacement and loss of soil carbon on eroding cropland. Glob Biogeochem Cycles. 1999,13(4):885-901.
    52. Hatcher P.G. and Spiker E.C., Selective degradation of plant biomolecules. In:Frimmel F.H. and Christman R.F. (eds) "Humic Substances and their Role in the Environment," J. Wiley & Sons, New York:1988,59-74.
    53. Hengl T., Heuvelink G.B.M., Stein A., A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma.2004,120:75-93.
    54. Hengl T., Heuvelink G.B.M., Rossiter d.D.G., About regression-kriging:From equations to case studies. Computers & Geosciences.2007,33:1301-1315.
    55. Hengl T., Minasny B., Gould M., A geostatistical analysis of geostatistics. Scientometrics. 2009a,80:491-514.
    56. Hengl T., Sierdsema H., Radovi'c A., Dilo A., Spatial pre-diction of species' distributions from occurrence-only records:combining point pattern analysis, ENFA and regression-kriging. Ecological Modelling.2009b,220:3499-3511.
    57. Herbst M., Hellebrand H.J., Bauer J., Huisman J.A., Simunek J., Weihermuller L., Graf A., Vanderborght J., Vereecken H., Multi-year heterotrophic soil respiration:evaluation of a coupled CO2 transport and carbon turnover model. Ecol. Mod.2008,214:271-283.
    58. Herbst M., Diekkruger B., Vereecken H., Geostatistical co-regionalization of soil hydraulic properties in a micro-scale catchment using terrain attributes. Geoderma,2006,132:206-221.
    59. Herbst M., Prolingheuer N., Graf A., Huisman J.A., Weihermuller L., Vanderborght J., Characterization and understanding of bare soil respiration spatial variability at plot scale. Soil Sci. Soc. Am. J.2009,8:762-771.
    60. Houghton J.T., Meira Filho L.G., Callander B.A., Harris N., Kattenberg A., Maskell K. (Eds.). Climate Change 1995:The Science of Climate Change. Cambridge University Press, Cambridge, UK.1996.
    61. Houghton R. A., Boone R. D., Fruci J. R., Hobbie J. E., Melillo J. M., Palm C. A., Peterson B. J., Shaver G.R., Woodwell G. M., Moore B., Skole D. L., Myers N., The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use:Geographic distribution of the global flux. Tellus.1987,39B:122-139.
    62. Huang C.C., Pang J., Zhao J., Chinese loess and the evolution of the east Asian monsoon. Progress in Physical Geography.2000,24:75-96
    63. IPCC.,Climate Change 2007:The Physical Science Basis-Summary for Policymakers.2007, 4:1-18.
    64. Isaaks E.H. Srivastava R.M., Applied geostatistics. Oxford University Press, New York.1989.
    65. Jacinthe P.A., Lal R., Spatial variability of soil properties and trace gas fluxes in reclaimed mine land of southern Ohio. Geoderma.2006,136:598-608.
    66. Jacinthe P.A., Lal R., A mass balance approach to assess carbon dioxide evolution during erosional events. Land Degradation & Development.2001,12:329-339.
    67. Jacinthe P.A., Lal R., Owens L.B., Hothem D.L., Transport of labile carbon in runoff as affected by land use and rainfall characteristics. Soil & Tillage Research.2004,77:111-123.
    68. Janzen H.H., The soil carbon dilemma:Shall we hoard it or use it? Soil Biology & Biochemistry.2006,38:419-424.
    69. Kang S., Doh S., Lee D., Lee D., Jin V.L., Kimball J.S., Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest-slopes, Korea. Global Change Biol. 2003,9:1427-1437.
    70. Kang S., Kim S., Oh S., Lee D., Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. Forest Ecol. Manage.2000,136: 173-184.
    71. Kerry R., Oliver M.A., Determining the effect of asymmetric data on the variogram. Ⅰ. Underlying asymmetry. Computers & Geosciences.2007a,33:1212-1232.
    72. Kerry R., Oliver M.A., Determining the effect of asymmetric data on the variogram. Ⅱ. Outliers. Computers & Geosciences.2007b,33:1233-1260.
    73. Kuhn N.J., Erosion and climate. Nature Geoscience.2010,3:738.
    74. Kuhn N.J., Hoffmann T., Schwanghart W., Dotterweich M., Agricultural soil erosion and global carbon cycle:controversy over? Earth Surface Processes and Landforms.2009,34: 1033-1038.
    75. Kukla G., An Z., Loess stratigraphy in central China. Palaeogeography, Palaeoclimatology, Palaeaoecology.1989,72:203-225
    76. Kutsch W.L., Bahn M., Heinemeyer A., Soil carbon relations:an overview. In W.L.Kutsch, M. Bahn, and A. Heinemeyer (Eds.). Soil carbon dynamics. An integrated methodology. Cambridge University Press, Cambridge.2009, pp.1-15.
    77. Lal R., (Ed.). Soil erosion. Ankeny, IA:Soil and Water Conservation Society.1994.
    78. Lal R., Soil degradation by erosion. Land Degradation & Development.2001,12:519-539.
    79. Lal R., Soil erosion and the global carbon budget. Environment International.2003a,29: 437-450.
    80. Lal R., Importance of inorganic carbon in sequestering carbon in soils of the dry regions. Current Science.2003b,84:864-865.
    81. Lal R., Soil carbon sequestration impacts on global climate change and food security. Science. 2004a,304:1623-1627.
    82. Lal R., Soil carbon sequestration to mitigate climate change. Geoderma.2004b,123:1-22.
    83. Lal R., Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutrient Cycling in Agroecosystems,2008,81:113-127.
    84. Lal R., Challenges and opportunities in soil organic matter research. European Journal of Soil Science.2009,60:158-169.
    85. Li Y., Poesen J., Yang J. C., Fu B., Zhang J. H., Evaluating gully erosion using 137Cs and 210Pb/137Cs ratio in a reservoir catchment, Soil Tillage Res.2003,69:107-115.
    86. Li Y., Lindstrom M.J., Evaluating soil quality-soil redistribution relationship on terraces and steep hillslope. Soil Sci. Soc. Am. J.2001,65:1500-1508.
    87. Li Y., Zhang Q.W., Reicosky D.C., Lindstrom M.J., Bai L.Y., Li L., Changes in soil organic carbon induced by tillage and water erosion on a steep cultivated hillslope in the Chinese Loess Plateau from 1898-1954 and 1954-1998. J. Geophys. Res.2007,112:G01021, doi:10.1029/2005 JG000107
    88. Li Y., Zhang Q. W., Reicosky D. C, Bai L. Y., Lindstrom M. J., Li L., Using 137Cs and 210Pbex for quantifying soil organic carbon redistribution affected by intensive tillage on steep slopes, Soil Tillage Res.2006,86:176-184.
    89. Lin Z., Liang W., Engineering properties and zoning of loess and loess-like soils in China. Canadian Geotechnical Journal.1982,19:76-91
    90. Lindsay J., Development of the Terrain Analysis System (TAS) GIS.2003. http://www.uoguelph.ca/~hydrogeo/Whitebox/
    91. Lindstrom M.J., Tillage erosion, Description and process of. Encyclopedia of Soil Science. 2002 Marcel Dekker. pp.1324-1326
    92. Lindstrom M. J., Schumacher J. A., Schumacher T. E., TEP:A tillage erosion prediction model to calculate soil translocation rates from tillage, J. Soil Water Conserv.2000,55: 105-108.
    93. Liu S. G., Bliss N., Sundquist E., Huntington T.G., Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition, Global Biogeochem. Cy.2003,17: 1074, doi:10.1029/2002GB002010.
    94. Lobb D.A., Kachanoski R.G., Modelling tillage erosion in topographically complex landscapes of southwestern Ontario, Canada. Soil Tillage Res.1999a,51:261-278.
    95. Lobb D.A., Kachanoski R.G., Modelling tillage translocation using step, linear-plateau and exponential functions. Soil Tillage Res.1999b,51:317-330.
    96. Mabit L., Bernard C., Makhlouf M., Laverdiere M.R., Spatial variability of erosion and soil organic matter content estimated from 137Cs measurements and geostatistics. Geoderma. 2008b,145:245-251.
    97. Mabit L., Bernard C., Relationship between soil 137Cs inventories and chemical properties in a small intensively cropped watershed, Earth Planet. Sci. Lett.,1998,327(8):527-532.
    98. Mabit L., Bernard C., Laverdiere M.R.,Wicherek S., Spatialization andmapping of erosion risks at the watershed scale using a radio-isotope (Cs). Etude et Gestion des Sols.1998,5 (3): 171-180
    99. Mabit L., Fulajtar E., The use of 137Cs to assess soil erosion and sedimentation processes: advantages and limitations. In:Book of the Extended Synopses of the International Conference on Environmental Radioactivity:From Measurements and Assessments to Regulation. IAEA Publication. Iaea-cn-145,2007, pp.338-339.
    100. McCarty G.W., Ritchie J.C., Impact of soil movement on carbon sequestration in agricultural ecosystems. Environmental Pollution.2002,116:423-430.
    101. Meade R.H., Yuzyk T.R., Day T.J., Movement and storage of sediment in rivers of the United States and Canada, in Wolman, M.G., and Riggs, H.C., editors, Surface Water Hydrology, v. 0-1, The Geology of North America:Boulder, Colorado, Geological Society of America.1990, p.255-280.
    102. Messing I., Liding C., Hessel R., Soil conditions in a small catchment on the Loess Plateau in China. Catena.2003 a.
    103. Messing I., Hoang Fagerstrom M.H., Liding C., Fu B., Criteria for land suitability evaluation in a small catchment on the Loess Plateau in China. Catena.2003b.
    104. Montgomery D.R., Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America.2007,104:13268-13272.
    105. Moore I.D., Turner A.K., Wilson J.P., Jenson., S.K., Band L.E., GIS and land surface-subsurface modeling. In M.F. Goodchild, B.O. Parks, and L.T. Steyaert (eds.), Environment Modeling With GIS. New York:Oxford University Press,1993f,196-230.
    106. Moore I. D., Grayson R. B., Ladson A. R., Digital terrain modelling:A review of hydrological, geomorphological and biological applications. Hyd.Proc.1991,5:3-30.
    107. Moore I.D., Gessler P.E., Nielsen G.A., Peterson G.A., Soil attribute prediction using terrain analysis. Soil Science Society of America Journal.1993,57:443-452.
    108. Mueller T.G., Pierce F.J., Soil carbon maps:Enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Science Society of America Journal.2003,67:258-267
    109. Mueller T.G., Pusuluri N.B., Mathias K.K., Cornelius P.L., Barnhisel R.I., Site specific soil fertility management:A model for map quality. Soil Science Society of America Journal. 2004,68:2031-2041.
    110. Nearing M.A., Pruski F.F., O'Neal M.R., Expected climate change impacts on soil erosion rates:A review. Journal of Soil and Water Conservation.2004,59:43-50.
    111. Nelson D.W., Sommers L.E., Total carbon, organic carbon, and organic matter, in Methods of Soil Analysis, Part Ⅱ, Chemical and Microbiological Properties,2nd ed., edited by A. L. Page et al., pp.539-580, Am. Soc. of Agron., Madison, Wis.1982.
    112. Nicou R., The problemof caking with drying out of sandy and sandy-clay soils in arid tropical zone. Agron. Trop.1974,30:325-343.
    113. O'Neal M.R., Nearing M.A., Vining R.C., Southworth J., Pfeifer R., Climate change impacts on soil erosion in Midwest United States with changes in crop management. Catena,2005,61: 165-184.
    114. Odeh I.O.A., Chittleborough D.J., McBratney A.B., Elucidation of soil-landform interrelationships by canonical ordination analysis. Geoderma.1991a,49:1-32.
    115. Odeh I.O.A., McBratney A.B., Chittleborough D.J., Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma.1994,63:197-214.
    116. Odeh I.O.A., McBratney A.B., Chittleborough D.J., Further results on prediction of soil properties from terrain attributes:heterotopic cokriging and regression-kriging. Geoderma. 1995,67:215-226.
    117. Oldeman L.R., Hakkeling R.T.A., Sombroek W.G., World map of the status of human-induced soil degradation. Global Assessment of soil degradation. ISRIC and UNEP, Wageningen. 1991b.
    118. Oskarsson H., Arnalds O., Gudmundsson J., Gudbergsson G., Organic carbon in Icelandic Andosols:geographic variation and impact of erosion. Catena.2004,56:225-238.
    119. Parkin T.B., Kaspar T.C., Senwo Z., Prueger J.H., Hatfield J.L., Relationship of soil respiration to crop and landscape in the Walnut Creek watershed. J. Hydrometeorol.2005,6: 812-824.
    120. Pebesma E.J., Mutivariable geostatistics in S:the gstat package. Computers & Geosciences. 2004,30:683-691.
    121. Pennock D.J., Anderson D.W., de Jong E., Landscape-scale changes in indicators of soil quality due to cultivation in Saskatchewan, Canada. Geoderma.1994,64:1-19.
    122. Pennock D.J., Corre M.D., Development and application of landform segmentation procedures. Soil Till. Res.2000,58:151-162.
    123. Pennock D.J., de Jong E., Spatial pattern of soil redistribution in Boroll landscapes, southern Saskatchewan, Canada. Soil Sci.1990a,150:867-873.
    124. Pennock D.J., Frick A.H., The role of field studies in landscape-scale applications of process models:an example of soil redistribution and soil organic carbon modelling using CENTURY. Soil and Tillage Research.2001,58:183-191.
    125. Pennock D.J., Terrain attributes, landform segmentation, and soil redistribution. Soil & Tillage Research.2003,69:15-26
    126. Pimentel D.J., Soil erosion and the threat to food security and the environment. Ecosystem Health.2000,6:221-226.
    127. Pimentel D., Soil erosion:A food and environmental threat. Environment, Development and Sustainability.2006,8:119-137.
    128. Ping J.L., Dobermann A., Variation in the precision of soil organic carbon maps due to different laboratory and spatial prediction methods. Soil Science.2006,171:374-387.
    129. Playford K., Toole J., Adsley I., Radioactive fallout in air and rain:results to the end of 1991. AEA-EE-0498.1993. Harwell:UK Atomic Energy Authority.
    130. Polyakov V., Lal R., Modeling soil organic matter dynamics as affected by soil water erosion. Environment International.2004,30:547-556.
    131. Porto P., Walling D.E., Callegari G., Using 137Cs measurements to establish catchment sediment budgets and explore scale effects. Hydrol. Process.2011,25:886-900.
    132. Preiss N., Me'lie'res M.A., Pourchet M., A compilation of data on lead-210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces. Journal of Geophysical Research.1996,101:28847-28862.
    133. Pruski F.F., Nearing M.A., Runoff and soil-loss responses to changes in precipitation:a computer simulation study. Journal of Soil and Water Conservation.2002,57:7-16.
    134. Puget P., Lal R., Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land uses. Soil Till. Res.2004,80 (1-2):201-213.
    135. Quine TA, Van Oost K., Quantifying carbon sequestration as a result of soil erosion and deposition:retrospective assessment using caesium-137 and carbon inventories. Global Change Biology.2007,13:2610-2625.
    136. Quine T.A., Walling D.E., Chakela Q.K., Mandiringana O.T., Zhang Z., Rates and patterns of tillage and water erosion on terraces and contour strips:evidence from caesium-137 measurements. Catena.1999,36:115-142.
    137. Quinton J.N., Govers G., Van Oost K., Bardgett R.D., The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience.2010,3:311-314.
    138. Quinton J.N., Catt J.A., Wood G.A., Steer J., Soil carbon losses by water erosion: Experimentation and modeling at field and national scales in the UK. Agriculture Ecosystems & Environment.2006,112:87-102.
    139. R Development Core Team,2009. R:A language and environment for statistical computing. http://www.R-project.org.
    140. Raich J.W., Schlesinger W.H., The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 1992,44B:81-99.
    141. Reicosky D.C., Long-term effect of moldboard plowing on tillage-induced CO2 loss. In: Kimble, J.M., Lal, R., Follett, R.F. (Eds.), Agricultural Practices and Policies for Carbon Sequestration in Soil. CRC/Lewis Publishers, Boca Raton, FL.2002, pp.87-97.
    142. Renwick W.H., Smith S.V., Sleezer R.O., Buddemeier R.W., Comment on "Managing soil carbon" (Ⅱ). Science.2004,305:5690.
    143. Reth S., Gockede M., Falge E., CO2 flux from agricultural soil in eastern Germany: comparison of a close chamber system with eddy covariance measurements. Theor. Appl. Climatol.2005a,80:105-120.
    144. Reth S., Reichstein M., Falge E., The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux-a modified model. Plant Soil 2005b,268: 21-33.
    145. Ritchie J.C., McHenry J.R., Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns:a review. Journal of Environmental Quality,1990,19:215-233.
    146. Ritchie J.C., Ritchie C.A., Bibliography of publications of 137Cs studies related to soil erosion and sediment deposition. http://hydrolab.arsusda.gov/cesium/.2000.
    147. Ritchie J.C., McCarty G.W., Venteris E.R., Kaspar T.C., Soil and soil organic carbon redistribution on the landscape. Geomorphology.2007,89:163-171.
    148. Ritchie J.C., McCarty G.W., Using 137cesium to understand soil carbon redistribution on agricultural watersheds. Soil and Tillage Research.2003,69:45-51.
    149. Robbins R.A., Geochemical and geophysical application of radioactive lead. In:Nriagu, J.O. (Ed.), The Biogeochemistry of Lead in the Environment. Elsevier, Amsterdam.1978, pp. 286-383.
    150. Rodeghiero M., Cescatti A., Spatial variabilty and optimal sampling strategy of soil respiration. Forest Ecol. Manage.2008,255:106-112.
    151. Rosenbloom N.A., Doney S.C., Schimel D.S., Geomorphic evolution of soil texture and organic matter in eroding landscapes. Global Biogeochemical Cycles.2001,15:365-381.
    152. Saiz G., Green C., Butterbach-Bahl K., Kiese R., Avitabile V., Farrell E.P., Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soil.2006,287: 161-176.
    153. Salome C., Nunan N., Pouteau V., Lerch T.Z., Chenu C., Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biology.2010, 16:416-426.
    154. Schiettecatte W., Gabriels D., Cornelis W.M., Hofman G., Enrichment of organic carbon in sediment transport by interrill and rill erosion processes. Soil Science Society of America Journal.2008,72:50-55.
    155. Schimel D., Stillwell MA., Woodmansee R.G., Biogeochemistry of C, N,and P in a soil catena of the shortgrass steppe. Ecology.1985a,66(1):276-82.
    156. Schlesinger W.H., Changes in soil carbon storage and associated properties with disturbance and recovery. In:Trabalka J.R., Reichle D.E (eds.), The changing Carbon Cycle:A Global Analysis:Proceedings of the Sixth Annual Oak Ridge National Laboratories Life Sciences Symposium. Springer-Verlag. New York.1986.
    157. Schlesinger W.H., Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature.1990,354:232-234.
    158. Schlesinger W.H., Soil respiration and changes in soil carbon stocks. In G.M. Woodwell and F.T. Mackenzie (Eds.). Biotic feedbacks in the global climate system:Will the warming feed the warming? Oxford University Press, New York.1995, pp.159-168.
    159. Schlesinger W.H., The global carbon cycle and climate change. Advances in the Economics of Environmental Resources.2005,5:31-53.
    160. Schlesinger W.H., Andrews J.A., Soil respiration and the global carbon cycle. Biogeochemistry.2000,48:7-20.
    161. Scholz G., Quinton J.N., Strauss P., Soil erosion from sugar beet in Central Europe in response to climate change induces seasonal precipitation variations. Catena.2008,72:91-105.
    162. Schwendenmann L., Veldkamp E., Brenes T., O'Brien J.J., Mackensen J., Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rainforest, La Selva, Costa Rica. Biogeochem.2003,64:111-128.
    163. Scott-Denton L.E., Sparks K.L., Monson R.K., Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biol. Biochem.2003,35:525-534.
    164. Simbahan G.C., Dobermann A., Goovaerts P., Ping J., Haddix M.L., Fine-resolution mapping of soil organic carbon based on multivariate secondary data. Geoderma.2006,132:471-489.
    165. Slater C.S., Carleton E.A., The effect of erosion on losses of soil organic matter. Proc-Soil Sci Soc Am.1938,3:123-8.
    166. Smith P., Martino D., Cai Z., Gwary D., Janzen H.H., Kumar P., McCarl B., Ogle S., O'Mara F., Rice C.W., Scholes B., Sirotenko O., Agriculture. In B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, and L.A. Meyer (Eds.). Climate Change 2007:Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.2007, pp.497-540.
    167. Smith P., Falloon P., Kutsch W.L., The role of soils in the Kyoto Protocol. In W.L. Kutsch, M. Bahn, and A. Heinemeyer (Eds.). Soil carbon dynamics. An integrated methodology. Cambridge University Press, Cambridge.2009, pp.245-256.
    168. Smith S.V., Sleezer R.O., Renwick W.H., Buddemeier R.W., Fates of eroded soil organic carbon:Mississippi basin case study. Ecological Applications.2005,15:1929-1940.
    169. Smith S.V., Renwick W.H., Buddemeier R.W., Crossland C.J., Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochemical Cycles.2001,15:697-707.
    170. Soe A.R.B., Buchmann N., Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiol.2005,25: 1427-1436.
    171. Stallard R. F. Terrestrial sedimentation and the carbon cycle:coupling weathering and erosion to carbon burial. Glob Biogeochem Cycles 1998; 12(2):231-57.
    172. Starr G.C., Lal R., Malone R., Hothem D., Owens L., Kimble J., Modeling soil carbon transported by water erosion processes. Land Degradation & Development.2000,11:83-91.
    173. Schumacher T. E., Lindstrom M. J., Schumacher J. A., Lemme G. D., Modeling spatial variation and productivity due to tillage and water erosion, Soil Tillage Res.1999,51: 331-339.
    174. Sumfleth K., Duttmann R., Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecological Indicators.2008,8: 485-501.
    175. Takata Y., Funakawa S., Akshalov K., Ishida N., Kosaki T., Spatial prediction of soil organic matter in northern Kazakhstan based on topographic and vegetation information. Soil Science & Plant Nutrition.2007,53:289-299.
    176. Tans P.P., Fung I.Y., Takahashi T., Observational constraints on the global atmospheric CO2 budget. Science.1990,247:1431-1438.
    177. Terra J.A., Shew J.N., Reeves D.W., Raper R.L., van Santer E., Mask P.L., Soil carbon relationships with terrain attributes, electrical conductivity, and a soil survey in a coastal plain landscape. Soil Science.2004,169:819-831.
    178. Trumbore S., Carbon respired by terrestrial ecosystems — recent progress and challenges. Global Change Biol.2006,141-153.
    179. Turekian K.K., Nozaki Y., Benniger L.K., Geochemistry of atmospheric radon and radon products. Annual Review of Earth and Planetary Sciences.1977,5:227-255.
    180. UNEP., Global assessment of soil degradation. Waginingen:ISRIC, and Nairobi:UNEP. 1992.
    181. UNSCEAR., Radio-active contamination of the environment by nuclear tests. In:Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. General Assembly. 24th Session. United Nations, New York.1969, pp.3-4. Suppl.13 (A/7163) (Chapter Ⅱ).
    182. Van Hemelryck H., Fiener P., Van Oost K., Govers G., Merckx R., The effect of soil redistribution on soil organic carbon:an experimental study. Biogeosci.2010a,7:3971-3986.
    183. Van Hemelryck H., Govers G., Van Oost K., Merckx R., Evaluating the impact of soil redistribution on the in situ mineralization of soil organic carbon. Earth Surf. Process. Landforms.2010b. doi:10.1002/esp.2055.
    184. Van Oost K., Govers G., Desmet P., Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecol.2000,15,577-589.
    185. Van Oost K., Govers G., Van Muysen W., A process-based conversion model for caesium-137 derived erosion rates on agricultural land:An integrated spatial approach. Earth Surface Processes and Landforms.2003,28:187-207.
    186. Van Oost K., Govers G., Quine T., Heckarth G., Olesen J.E., De Gryze S., Merckx R., Landscape-scale modeling of carbon cycling under the impact of soil redistribution:The role of tillage erosion. Global Biogeochemical Cycles.2005a,19:GB4014.
    187. Van Oost K., Govers G., Quine T.A., Heckrath G., Comments on managing soil carbon. Science.2004,305:1567.
    188. Van Oost K., Van Hemelryck H., Harden J.W., Erosion of soil organic carbon:Implications for carbon sequestration. In B.J. McPherson and E.T. Sundquist (Eds.). Carbon sequestration and its role in the global carbon cycle. American Geophysical Union, Washington DC.2009, pp.189-202.
    189. Van Oost K., Quine T.A., Govers G., De Gryze S., Six J., Harden J.W., Ritchie J.C., McCarty G.W., Heckrath G., Kosmas C., Giraldez J.V., Marques da Silva J.R., Merckx R., The impact of agricultural soil erosion on the global carbon cycle. Science.2007,318: doi:10.1126/science.1145724.
    190. VandenBygaart A.J., Erosion and deposition history derived by depth-stratigraphy of 137Cs and soil organic carbon. Soil & Tillage Research.2001,61:187-192.
    191. Wackernagel H., Multivariate geostatistics:an introduction with applications,2nd Edition. Springer-Verlag.2003, p.381.
    192. Walling D.E., Quine T.A., The use of fallout radionuclide measurements in soil erosion investigations in IAEA. In Nuclear techniques in soil-plant studies for sustainable agriculture and environment preservation. STI/PUB/947.1995. (pp.597-619). Vienna:IAEA.
    193. Walling D.E., He Q., Methods for converting 137Cs measurements to estimate of soil redistribution rates on cultivated and uncultivated soils. IAEA, Veinna, Australia.1997.
    194. Walling D.E., Linking land use, erosion and sediment yields in river basins. Hydrology,2000, 410:223-240.
    195. Walling D.E., The struggle against water erosion and a perspective on recent researchin. In K. Ivanov and D. Pechinov (Eds.), Water erosion, UNESCO technical document in hydrology, SC-89/WS-57 1989, (pp.39-60). Paris:UNESCO.
    196. Walling D.E., Use of 137Cs and other fallout radionuclides in soil erosion investigations: Progress, problems and prospects. In Use of 137Cs in the study of soil erosion and sedimentation. IAEA-TECDOC-1028,1998, pp.39-62. Vienna:IAEA.
    197. Walling D.E., Zhang Y., He Q., Models for Converting Measurements of Environmental Radionuclide Inventories (137Cs, Excess 210Pb, and 7Be) to Estimates of Soil Erosion and Deposition Rates (Including Software for Model Implementation). International Atomic Energy Agency.2010. Available online at: http://www-naweb.iaea.org/nafa/swmn/Helpfile.pdf.
    198. Walling D.E., Collins A.L., Sichingabula H.M., Using unsupported lead-210 measurements to investigate soil erosion and sediment delivery in a small Zambian catchment. Geomorphology. 2003,52:193-213.
    199. Walling D.E., He Q., Use of fallout 137Cs in investigations of overbank sediment deposition on river floodplains. Catena.1997,29:263-282.
    200. Walling D.E., He Q., Quine T.A., Use of caesium-137 and lead-210 as tracers in soil erosion invenstigations. Tracer Technologies for Hydrological Systems. IAHS Publ. no.229.1995.
    201. Wang Z., Govers G., Steegen A., Clymans W., Van den Putte A., Langhans C., Merckx R., Van Oost K., Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area. Geomorphology.2010,124:65-74.
    202. Webber L. R., Soil physical properties and erosion control, J. Soil Water Conserv.1964,19: 28-30.
    203. Webster R., Oliver M.A., Geostatistics for environmental scientists. Wiley, Chichester.2001.
    204. West T.O., Post W.M., Soil organic carbon sequestration rates by tillage and crop rotation:a global data analyses. Soil Sci. Soc. Am. J.2002,66:1930-1946.
    205. Wilson J.P., Gallant J.C., (eds), Terrain Analysis:Principles and Applications. New York, John Wiley and Sons.2000.
    206. Wilson J.P., Lorang M.S., Spatial models of soil erosion and GIS. In Fotheringham A S and Wegener M (eds), Spatial Models and GIS:New Potential and New Models. London, Taylor and Francis.1999a,83-108
    207. Wischmeier W.H., Smith D.D., Predicting rainfall erosion losses-a guide to conservation planning. U.S. Gov. Print Office, Washington, DC.1978.
    208. Xianmo Z., Lutu Soil. Chinese agricultural publish house, Beijing.1962,3 p.
    209. Xianmo Z., Soil and Agriculture in Loess Plateau. Beijing:Agriculture Press.1989,2-26, 474-481. (in Chinese)
    210. Jiongxin X., Zonal distribution of river basin erosion and sediment yield in China, Chinese Science Bulletin.1994,39:1356-1361.
    211. Xu M., Qi Y., Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biol.2001,7:667-677.
    212. Yadav V., Malanson G.P., Modeling impacts of erosion and deposition on soil organic carbon in the Big Creek Basin of southern Illinois. Geomorphology.2009,106:304-314.
    213. Yasunari T. J., Stohl A., Hayano R.S., Burkhart J.F., Eckhardt S., Yasunari T., Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. doi: 10.1073/pnas.1112058108 PNAS December 6,2011 vol.108 no.49 19530-19534
    214. Yoo K.., Amundson R., Heimsath A.M., Dietrich W.E., Spatial patterns of soil organic carbon on hillslopes:integrating geomorphic processes and the biological C cycle. Geoderma.2006, 130:47-65.
    215. Yoo K., Amundson R., Heimsath A.M., Dietrich W.E., Erosion of upland hillslope soil organic carbon:Coupling field measurements with a sediment transport model. Global Biogeochemical Cycles.2005,19:GB 3003.
    216. Zapata F., (Ed.), Handbook for the Assessment of Soil Erosion and Sedimentation using Environmental Radionuclides. Kluwer Ac. Publ., Dordrecht, the Netherlands.2002.
    217. Zhang J.H., Spatial variability of soil wetness in sloping fields of hilly areas. Proceedings of the 16th World Congress of Soil Science, Montpellier, France.1998.
    218. Zhang J.H., Quine T.A., Ni S.J., Ge F.L., Stocks and dynamics of SOC in relation to soil redistribution by water and tillage erosion. Global Change Biology 2006,12:1834-1841, doi: 10.1111/j.1365-2486.2006.01206.x
    219. Zhang X., Quine T.A., Walling D.E., Soil erosion rates on sloping cultivated land on the Loess Plateau near Ansai, Shaanxi Province, China:An investigation using 137Cs and rill measurements. Hydrolog. Process,1998,12:171-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700