上海市公园绿地对城市热岛效应影响的多尺度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市热岛效应(Urban Heat Island Effect简称UHI)是指城市气温高于郊区的现象(Oke,1987),是城市气候最明显的特征之一,也是城市化的环境后果之一。城市热岛不仅改变了城市的局部气候特征(气温、湿度、对流、降水格局),还有影响动植物生理、物候、生态系统功能、居民身心健康乃至生命安全,加重污染,增加能耗等多种生态环境效应。城市绿地系统是城市生态系统的重要组成部分,城市公园作为城市绿地系统的主要组分,可以有效缓解城市热岛效应,改变城市热场分布。但是城市公园如何在多个时空尺度上对城市热岛产生影响,却很少有系统的研究。
     本文采用小气候定位观测、流动观测、遥感数据反演、景观格局分析等方法,从植物群落、公园景观斑块、公园、社区(公园+周边复合商住区)、城乡样带多个尺度上,研究城市公园绿地如何缓解城市热岛效应,定量分析了城市公园绿地(面积、斑块属性)及其结构的热环境效应,探讨了公园绿地周边的景观格局变化对公园降温效应的影响。得出的主要结论如下:
     (1)秋冬季的公园绿地的温度明显低于周围环境,作为较明显的“冷岛”,仍能有效缓解城市热岛效应。
     (2)城市公园绿地对热岛效应的缓解与其斑块特征有关:气温与公园面积呈显著负相关(R2=0.817,P<0.05),两者满足对数函数关系;内部气温与公园的周长呈负相关(R2=0.7473,P<0.05),两者呈幂指数关系,公园内气温与形状指数(周长面积比)呈显著正相关(R2=0.844,P<0.01),两者满足对数函数关系,即公园边界越复杂,内部气温越高。公园绿地内部平均地表温度与公园面积负相关,但不显著;地表温度与公园的周长存在负相关关系(R2=0.2792,P<0.01),两者满足幂指数关系;地表温度与周长面积比无显著相关关系。周围环境地表温度的差异与绿地斑块特征无明显相关性。
     (3)不同绿地景观类型的热环境效应不同。所有绿地类型的温度在白天和夜间均低于铺砌地面,乔灌草和乔草复合型绿地的降温增湿效应优于草地类型绿地。乔灌草类型比草地类型在白天和夜间降温效果分别高1.71%、0.8%,增湿效果分别高8.95%、2.34%;乔草类型比草地类型在白天和夜间降温效果分别高5.93%、0.18%,增湿效果分别高12.61%、3.41%。复合类型的林地降温增湿作用白天强于夜间;草地类型降温作用夜间强于白天,草地在夜晚明显增加空气湿度,白天反而略降低空气湿度。
     (4)公园绿地周围环境温度与周边景观格局有关,与距离公园的远近无明显的相关关系。高层的商业区和住宅比低层的住宅区温度稍低。公园微风扩散经高层建筑区达到低层建筑区时温度明显升高,而经过低层建筑区达到高层建筑区的时温度明显降低。
     (5)公园绿地的热环境效应在城乡梯度上随城市景观格局而变,城市绿地的温度效应与城市化水平有关。城市化程度较高的中心城区公园绿地的温度比城市化水平较低的区域明显较低,即随着城市用地结构的比例提高,绿地的降温作用增加。
Urban heat island (UHI) effect was defined as the temperature difference between urban and rural area (Oke,1987). UHI is one of the hot topics in urban climate research, and also one of the environmental consequences of urbanization. UHI not only alters the local microclimate conditions in urban area, but also influences the physiological activities, phenology of plants and animals living in urban area, ecosystem functions, and health even life of urban habitants. UHI can deteriorate urban pollution, increase the energy consumption. Urban green space, an essential component of urban ecosystem, can markedly mitigate urban heat island effect. The effect of urban park on urban heat island has been well documented, but how urban park mitigates urban heat island at multi-scale has not been well addressed.
     In this thesis, methods of microclimate in situ observation, mobile observation, land surface temperature retrieval from remotely sensed imagery, and landscape pattern analysis were employed to study how urban park mitigate urban heat island effect in Shanghai, to quantitatively analyze how urban park (e.g. area, patch characteristics) and their structure affect urban thermal environment, to explore how the adjacent urban landscape pattern influence the cooling effect of urban park. My findings are as followed:
     (1) The temperature of urban park was clearly lower than that of the ambient environment in the autumn and winter. Urban Park, as cool island, could effectively mitigate of urban heat island effect.
     (2) The mitigation effect of urban park on UHI could be correlated to characteristics of park patch. Air temperature was negatively correlated to park area and fitted well with logarithmic function (R2=0.817, P<0.05). Air temperature was negatively correlated to park perimeter, and fitted well with power function (R2=0.7473, P<0.05). Air temperature was positively correlated to park shape index and well fitted with logarithmic function (R2=0.844, P<0.01). That is to say, the more complex the patch perimeter was, the higher the air temperature within the park would be. The land surface temperature was negatively correlated to park area, but no significance. But it was negatively correlated to park perimeter and could be fitted well with power function (R2=0.2792, P<0.01). Surface temperature difference between park and ambient environment could not be correlated to park patch characteristics.
     (3) The various plant community structure of the park showed different thermal effects on air temperature, land surface temperature and relative humidity. The effect of decreasing temperature and increasing humidity of all plant community was remarkable better than that of sealed surface. Arbor-grass and Arbor-shrub-grass type were better than grass type in regulating microclimate. The cooling effect of arbor-shrub-grass was higher than that of grass type by 1.71% in the day and 0.8% at night. Humidification effect of arbor-shrub-grass type was better than that of grass type by 8.95% during daytime and 2.34% during nighttime. The cooling effect of arbor-grass was higher than that of grass type by 5.93% during daytime and 0.18% during nighttime. Humidification effect of arbor-shrub-grass type was higher than that of grass type by 12.61% during daytime and 3.41% during nighttime. The cooling and humidification effect of compound community type was stronger in daytime than that at night. Cooling effect of grass was weaker in daytime than that at night. Grassland could increase relative humidity at night but decrease relative humidity in daytime.
     (4) The ambient temperature of the park could be correlated to landscape pattern but not be correlated to the distance to urban park. Temperature in commercial and residential areas with high-rise buildings was lower than that in residential area with low-rise buildings. The air temperature decreased sharply when park wind blew from high-rise to low-rise building area, but increased when from low-rise to high-rise building area.
     (5)The thermal effect of urban park varied with landscape pattern along urban-rural gradient which was affected by urbanization degree. Both air and surface temperature of parks in the area with higher urbanization were lower than that with lower urbanization. The mitigation effect of park on urban heat island increased with patch coverage of urban land use.
引文
[1]Arnfield AJ. Two decades of urban climate research:a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology.2003,23:1-26
    [2]Akbari, Rosenfeld, Taha. Summer heat islands, urban trees, and white surfaces. Winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers.1990,45(19):359-367.
    [3]Avissar. Potential effects of vegetation on the urban thermal environment. Atmospheric Environment.1996,30(3):437-448
    [4]Cadenasso, Pickett, Schwarz. Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Frontiers in Ecology and the Environment.2007,5(2):80-88
    [5]Chang, Li, Chang. A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning.2007,80(4):386-395
    [6]Dimoudi, Nikolopoulou. Vegetation in the urban environment:microclimatic analysis and benefits. Energy and Buildings.2003,35(1):69-76
    [7]Dwyer. The significance of urban trees and forests:toward a deeper understanding of values. Journal of Arboriculture.1991,31(9):125-132
    [8]Eliasson. Urban geometry, surface temperature and air temperature.1991,25(12): 336-343
    [9]Eliasson. Urban nocturnal temperatures, street geometry and land use. Atmospheric Environment.1996,30(3):379-392
    [10]Eliasson, Holmer. Urban Heat Island Circulation in Goteborg, Sweden. Theoretical and Applied Climatology.1990,42(3):187-196
    [11]Eliasson, Upmanis. Nocturnal Airflow from Urban Parks-Implications for City Ventilation. Theoretical and Applied Climatology.2000,66(1):95-107
    [12]Emmanuel. Thermal comfort implications of urbanization in a warm-humid city: the Colombo Metropolitan Region (CMR), Sri Lanka. Building and Environment. 2005,40(12):1591-1601
    [13]Fung, Lam, Nichol. Derivation of Nighttime Urban Air Temperatures Using a Satellite Thermal Image. Journal of Applied Meteorology and Climatology.2009, 48(4):863-872
    [14]Gallo, McNab, Karl. The use of a vegetation index for assessment of the urban heat island effect. International Journal of Remote Sensing.1993,14(11):2223-2230
    [15]Gallo, Tarpley. The comparison of vegetation index and surface temperature composites for urban heat-island analysis. International Journal of Remote Sensing. 1996,17(15):3071-3076
    [16]Hien, Yu. Study of green areas and urban heat island in a tropical city. Habitat International.2005,29(3):547-558
    [17]Hillevi Upmanis. The influence of green areas on nocturnal temperatures in a high latitude city (Goteborg, Sweden). International Journal of Climatology.1998, 18(6):681-700
    [18]Honjo, Takakura. Simulation of thermal effects of urban green areas on their surrounding areas. Journal of Applied Meteorology and Climatology.1991, 31(2):369-375
    [19]Honjo, Takakura. Simulation of thermal effects of urban green areas on their surrounding areas. Energy and Buildings.1990,15(3-4):443-446
    [20]Huang, Akbari, Taha. The wind-shielding and shading effects of trees on residential heating and cooling requirements. Energy and Buildings.1990,16(3): 532-539
    [21]Huang, Akbari, Taha. The Potential of Vegetation in Reducing Summer Cooling Loads in Residential Buildings. Journal of Applied Meteorology.1987, 26(9):1103-1116
    [22]Jauregui. Influence of a large urban park on temperature and convective precipitation in a tropical city. Energy and Buildings.1990,15(3-4):457-463
    [23]Jenerette. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly developing city. International Journal of Remote Sensing.2007,19(5):645-651.
    [24]Katayama, Ishii, Hayashil. Field surveys on cooling effects of vegetation in an urban area. Journal of Thermal Biology.1993,18(5-6):571-576
    [25]Kawashima. Effect of vegetation on surface temperature in urban and suburban areas in winter,1991,26(9):271-277
    [26]Lee, Lee, Jin, et al. Effect of an urban park on air temperature differences in a central business district area. Landscape and Ecological Engineering.2009, 5(2):183-191
    [27]Li, Wang, Wang. Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecological Complexity.2009, 6(4):413-420
    [28]McPherson. Assessing the benefits and costs of the urban forest. Journal of Arboriculture.1992,27(2):589-596
    [29]McPherson. Effect of Street Tree Shade on Asphalt Concrete Pavement Performance. Journal of Arboriculture.2005,38(9):478-485
    [30]McPherson. Northeast community tree guide:benefits, costs, and strategic planting. USDA.2007.
    [31]Oke. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society.1982,108(455):1-24
    [32]Oke. The micrometeorology of urban forest. Phil Trans R soc Lod.1989, B324::335-349
    [33]Potchter, Cohen, Bitan. Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. International Journal of Climatology.2006,26(12):1695-1711
    [34]Potchter, Goldman, Kadishl. The oasis effect in an extremely hot and arid climate: The case of southern Israel. Journal of Arid Environments.2008,72(9):1721-1733
    [35]Rosenzweig. mitigation NY's UHI with urban forest, living roofs. NY UHI report. 2006
    [36]Saaroni, Bitan, Dor. The mixed results concerning the "oasis effect" in a rural settlement in the Negev Desert, Israel. Journal of Arid Environments.2004, 58(2):235-248
    [37]Shashua-Bar, Hoffman. Vegetation as a climatic component in the design of an urban street:An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings.2000,31(3):221-235
    [38]Shashua-Bar, Tzamir, Hoffman. Thermal effects of building geometry and spacing on the urban canopy layer microclimate in a hot-humid climate in summer. International Journal of Climatology.2004,24(13):1729-1742
    [39]Sobrino. Land surface temperature retrievel from LANDSAT TM5. Remote Sensing of Environment.2004,90:434-440
    [40]Sobrino. Significance of the remotely sensed thermal infrared measurement obtained over a citrus orchard. ISPRS Photogrammetric engineering and remote sensing.1990,44:343-354
    [41]Spronken-Smith, Oke. The thermal regime of urban parks in two cities with different summer climates. International Journal of Remote Sensing.1998, 19(11):2085-2104
    [42]Taha. Urban climates and heat islands:albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings.1997,25(2):99-103
    [43]Taha, Akbari, Rosenfeld. Heat island and oasis effects of vegetative canopies: Micro-meteorological field-measurements. Theoretical and Applied Climatology. 1991,44(2):123-138
    [44]Taha, Douglas, Haney. Mesoscale meteorological and air quality impacts of increased urban albedo and vegetation. Energy and Buildings.1997,25(2):169-177
    [45]Tang, Miao. Numerical studies on urban heat island associated with urbanization in yangtze delta region. Advances in Atmospheric Sciences.1998,15(3):393-403
    [46]Upmanis, Eliassbn, Lindqvist. The influence of green areas on nocturnal temperatures in a high latitude city (Goteborg, Sweden). International Journal of Climatology.1998,18(6):681-700
    [47]Weng, Lu, Schubring. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment. 2004,89(4):467-483
    [48]Wiens, Stenseth, Home. Ecological mechanisms and landscape ecology. Oikos. 1993,66:369-380
    [49]Yokohari, Brown, Kato. The cooling effect of paddy fields on summertime air temperature in residential Tokyo, Japan. Landscape and Urban Planning.2001, 53(1-4):17-27
    [50]Yu, Hien. Thermal benefits of city parks. Energy and Buildings.2006, 38(2):105-120
    [51]Yuan, Bauer. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment.2007,106(3):375-386
    [52]李丹燕.广州城市公园绿地系统特征及其效益分析.生态经济.1999(05):43-45
    [53]贾刘强,邱健.基于遥感的城市绿地斑块热环境效应研究——以成都市为例.中国园林.2009(12):97-101
    [54]张志恩.上海城市公园与都市旅游.中国园林.1998(04):13-16
    [55]王新军,敬东,张凤娥.上海城市热岛效应与绿地系统建设研究.华中建筑.2008(12):113-117
    [56]王艳霞,董建文,王衍桢.城市绿地与城市热岛效应关系探讨.亚热带植物科学.2005(04):55-59
    [57]周淑贞.上海城市气候中的“五岛”效应.中国科学b辑.1990,11(01):1227-1234
    [58]周淑贞.上海下垫面温度与城市热岛——气象卫星在城市气候研究中的应用之一.环境科学学报.1987(03)
    [59]周淑贞.上海城市气候中的“五岛”效应.中国科学b辑.1988(11)
    [60]周淑贞.上海城市发展对气温的影响.地理学报.1983(04)
    [61]周淑贞.上海近数十年城市发展对气候的影响.华东师范大学学报(自然科学版).1990(04)
    [62]邱建,贾刘强,王勇.基于遥感的青岛市热岛与绿地的空间相关性.西南交通大学学报.2008,43(4):427-433
    [63]胡云骅.园林绿化对缓解上海城市热岛效应的机理和成效.上海城市管理职业技术学院学报.2008(01):44-45
    [64]唐曦,束炯,乐群.基于遥感的上海城市热岛效应与植被的关系研究.华东师范大学学报(自然科学版).2008(01):119-128
    [65]郭红,龚文峰,李雁.哈尔滨市热岛效应与植被的关系——基于rs和gis的定量研究.自然灾害学报.2007(2):22-26
    [66]彭少麟,周凯,叶有华,粟娟.城市热岛效应研究进展.生态环境,2005,14(4):574-579
    [67]程承旗.城市热岛强度与植被覆盖关系研究的理论技术路线和北京案例分析.水土保持研究.2004,11(3):172-174
    [68]戴晓燕,张利权,过仲阳.上海城市热岛效应形成机制及空间格局.生态学报.2009(07):3995-4004
    [69]严平,王相文.合肥城市热岛强度及绿化效应.合肥工业大学学报:自然科学版.2000(3):348-352
    [70]刘淑丽,卢军,陈静.将城市热到效应分析融入GIS中应用于城市规划.测绘信息与工程.2003,28(4):47-50
    [71]刘娇妹,杨志峰,李树华.北京城市园林绿地冬季效应的研究.河北林果研究.2008(01):90-93
    [72]刘维斯,颜玉娟,黄宇.长沙城市公园绿地植物群落基本类型及物种多样性研究.南方园艺.2009(02):169-175
    [73]张朝阳,周凤霞,许桂芳.长沙市绿地植物群落结构特征与优化构建.林业调查规划.2009(03)
    [74]张鹏.城市绿地系统与城市热岛效应关系研究综述.山西建筑.2008,34(33):341-342
    [75]赖震刚.基于遥感的城市热岛与城市绿地分析.江苏省测绘学会2007年会.2008:154-155
    [76]赵深,刘克旺,毕丽霞.长沙不同绿地对缓解热岛效应的作用.江西农业学报.2007,19(9):50-52
    [77]武小刚,蔺银鼎,闫海冰,郝兴宇.城市绿地降温增湿效应与其结构特征相关性研究.中国农业生态学报.2008,16(6):1469-1473.
    [78]邓月光,刘静,周远.消除城市热岛效应的大尺度热管理技术.科技导报.2008(08):84-92
    [79]李俊祥,王玉洁,沈晓虹,宋永昌.上海市城乡梯度景观格局分析.2004,24(9):1973-1980.
    [80]马勇刚,塔西甫拉提.特依拜,黄粤.城市景观格局变化对城市热岛效应的影响——以乌鲁木齐市为例.干旱区研究.2006,23(1):172-176
    [81]马雪梅,张友静,黄浩.城市热场与绿地景观相关性定量分析.国土资源遥感.2005,18(2):10-15
    [82]上海统计年鉴编委会.上海统计年鉴.2009
    [83]覃志豪,Zhang Minghua, Arnon Karnieli, Pedro Berliner.用陆地卫星TM6数据演算地表温度的单窗算法.地理学报,2001,56(4):456-466.
    [84]邓莲堂,束炯,李朝颐.上海城市热岛的变化特征分析.热带气象学报.2001,17(3):274-279.
    [85]傅徽楠,严玲璋,张连全,高峻.上海城市园林植物群落生态结构的研究.中国园林.2000,16(68):22-25.
    [86]张科平.改善上海城市热岛效应的对策研究.上海铁道大学学报.1998,19(8):49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700