风化型土质金矿尾矿植被恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类在发展进步的同时,对矿产资源进行了大规模的开发。金矿资源的开采对矿区生态环境和尾矿土壤性质造成严重的影响,制约了矿区社会经济的可持续发展。本文应用生态恢复与重建的相关理论,通过野外调查与理化分析,研究金矿开采对矿区的环境生态损害;通过植被调查、物种生物生态学特性和环境修复能力分析,选定了恢复树种与配置模式,建立了研究区植被恢复模式与环境生态损害防治体系;基于对重金属富集的盆栽试验,进行了尾矿农业再利用的土壤适农性分析。尾矿植被恢复研究对于今后更好的利用尾矿土地资源、维护和改善矿区生态环境具有重要的理论和现实意义。研究得出如下主要结论。
     (1)金矿开采对水土资源的损害方面:采矿占用了大量土地资源,因扰动地表,改变地形,破坏了原地表景观,加剧了矿区水土流失。调查监测结果表明,金矿开采共破坏和占用土地面积113.65hm2,2009年加剧水土流失5903.8t。对矿区土壤性质的影响主要表现为:导致土壤结构不良,粉粒含量减少,砂粒含量增加,尾矿土壤基质过于坚硬,容重增至1.61~1.74 g/cm3,土壤持水、保水、透水能力发生变化;pH增至8.18以上,土壤强碱化,养分流失,土壤极度贫瘠;尾矿土壤重金属含量增加,在所测的物种重金属(Cd、Pb、Cu、Ni、Zn)中,Cd、Ni两种重金属超过了国家标准,有毒物质氰化物残留。
     (2)金矿开采对植被损害的研究结果表明,尾矿区共24种植物,隶属于14科23属,比未开挖扰动自然植被区减少11科20属22种。除5种人工种植物种,自然生长植被以禾本科、菊科为主,占总数的41.6%。金矿开采对植被的损害是毁灭性的,造成了矿区植被的严重退化,生物多样性减少、丧失,群落结构简单化。
     (3)研究了植被恢复对基质土壤理化性质的改良作用,并讨论了现有植被恢复中存在的问题。基于矿区植被调查和物种生物生态学特性与环境修复能力分析的基础上,确定刺槐、紫穗槐、加杨、侧柏、构树、臭椿、木槿、海桐、苎麻、香根草、蜈蚣草、黑麦草、类芦用于尾矿的植被恢复物种和“乔灌草搭配、灌草先行”的配置模式。讨论建立了“人工修复”与“自然演替”相结合的尾矿植被恢复模式和“工程措施、植物措施和临时措施相结合”的矿区生态环境损害防治体系。
     (4)对尾矿土壤进行了基于Cd富集的盆栽试验研究,结果表明,在设施条件下,小白菜能在尾矿土壤上成活,发芽率在33.3~66.7%之间。发芽率和生物产量随尾矿年限增加,T09产量仅为CK的28.7%,且植株矮小,枯黄,出现病变。小白菜对Cd的吸收富集作用显著,T09尾矿小白菜叶片中Cd的含量和积累量最高,达1.65mg/kg,超过国家食品卫生标准临界值4.12倍。分析得出,尾矿土壤不宜或短期不宜作为农业用地进行农业复垦。
We have exploited the mineral resources on a large scale as we make progresses. The exploitation of gold resources have serious effects on the eco-environment of the mining area and soil of tailings. As a result, the social and economic sustainable development of mining area is greatly constrained. The thesis applies the theories on the recovery and reconstruction of ecology and studies the damages by mining gold resources on the eco-environment of the mining area through wild investigation and physical and chemical analysis; the thesis chooses the model of restoring tree species and allocation through vegetation research and analysis of biocenology and the self-restoring ability of environment; the thesis analyses the agricultural qualification of soil of tailings based on the pot experiment of heavy metals concentration; the thesis finally establishes vegetation self-restoring model and the eco-environment prevention and treatment systems. The studies of tailings vegetation have significant theoretical and realistic meaning for the better exploitation of tailings land resources and the maintenance and improvement of mining eco-environment. The conclusions are drawn as follows:
     (1)On the Water and soil resources damage of gold recourses exploitation. The exploiting projects occupies large quantities of land resources, deforms terrain, damages landscape, leads to the change of hydrology conditions and loss of biodiversity, aggravates water loss and soil erosion of the mining. The total area by destruction and occupation of gold mining area is 113.65hm2, it aggravated water and soil erosion 5903.8t in 2009.The influences on the soil of mining area are as follows:bad soil structure, reduction of silts contained, increase of sand particles, excessive solidity of tailings soil with density growing to 1.61-1.74 g/cm3,the change of the water-holding, water-retaining and water-tight capacity, pH increasing to over 8.18,soil alkalization, the loss of nutrition, the extreme leanness of soil, the growth of heavy metals in tailings soil with Cd、Ni exceeding national standard and the remaining toxic substance cyanide in the determination of five kinds(Cd、Pb、Cu、Ni、Zn).
     (2) Study on the vegetation damage of gold mining results show that the tailing areas have 24 species of plant, they belonged 14 families and 23 genera, contrasting with the natural vegetation areas without excavating, decreased of 11 families,20 genera and 22 species.In addition to five kinds of cultivated species, the main natural growth of vegetation is grasses, especially Asteraceae and Gramineae as the most important, accounting for 41.6%.Gold mining on vegetation damage is devastating, causing severe degradation of vegetation, loss of biodiversity, loss of community structure simplified.
     (3)Study of vegetation restoration on soil physical and chemical properties of modified matrix effect, and discussed the existing problems in restoration. On the basis of investigating vegetation of the mining, area and analyzing biocenology traits and environment self-restoring capacity, the thesis identifies Rabbinic pseudoacacia, Amorpha fruticosa, populous X Canadensis, Broussonetia kazinoki, Ailanthus altissima, Hibiscus, Pittosporum pentandrum, Boehmeria nivea, Vetiveria zizanioides, Ciliate desert-grass, and Neyraudia reynaudiana are used as vegetation restoration species and the allocation model of "mixing arbor, shrub and grass together but shrub and grass going ahead". The thesis discusses the establishment of vegetation restoration model combining "artificial restoration" and "natural evolution" and the eco-environment prevention and treatment systems "combining engineering measures, plant measures and temporary measures".
     (4) The pot experiment study of tailings soil based on Cd concentration shows that pak-choi can survive in tailings soil with seed germination rate between 33.3% and 66.7%.The seed germination rate increases with the life length of tailings soil.The output of T09 is only 28.7% of CK. The plant is short and yellow with diseases. The concentration effect of pakchoi absorbing Cd is so significant that pakchoi T09 contains the highest level of Cd reaching 1.65mg/kg 4.12 times more than national food hygienic standard critical point. The analysis shows that tailings soil is not proper, if in short time, for cultivating as agricultural land.
引文
1.卞正富,张国良.矿山土复垦利用试验.中国环境科学,1999,19(1):81-84
    2.曹桂香.废水氰化物的测定影响因素.辽宁科技学院学报,2008,10(2):17-18
    3.曹明德.环境侵权法.北京:法律出版社,2000
    4.陈芳清,卢斌,王祥荣.樟村坪磷矿废弃地植物群落的形成与演替.生态学报,2001,21(8):1347-1353
    5.陈芳清,张丽萍,卢斌.隔河岩水电站废弃地植被的初始生态恢复.三峡大学学报(自然科学版),2003,25(2):180-184
    6.陈全生.环境侵害概念初探.科技与法律,1994,(3):51-55
    7.代宏文.澳大利亚矿山复垦现状.中国土地科学,1995:9(4):44-47
    8.丁青坡,王秋兵,魏忠义等.抚顺矿山不同复垦年限土壤的养分及有机碳特性研究.土壤通报,2007,38(2):262-267
    9.段昌群,王焕校,曲仲湘.重金属对蚕豆根尖的核酸含量及核酸酶活性影响的研究.环境科学,1992,13(5):31-35
    10.高国雄,高保山,周心澄等.国外工矿区土地复垦动态研究.水土保持研究,2001,8(1):98-103
    11.占锦汉,冯光钦,梁亦肖等.矿山迹地恢复树种选择技术研究.湖南林业科技,2006,33(5):18-20
    12.郭逍宇,张金屯,宫辉力等.安太堡矿山恢复过程主要种生态位梯度变化研究.西北植物学报,2004,24(12):2329-2334
    13.郝蓉,白中科,赵景速等.黄土区大型露天煤矿废弃地恢复过程中的植被动态.生态学报,2003,23(8):1470-1476
    14.郝战庆,郭水良.长白山北坡草本植物分布与环境关系的典范对应分析.生态学报,2003,23(10):2000-2008
    15.胡振琪,戚家忠,司继涛.不同复垦时间的粉煤灰充填复垦土壤重金属污染与评价.农业工程学报,2003,19(2):214-218
    16.胡振琪,张光灿.煤矸石山的植物种群生长及其土壤理化特性的影响.中国矿业大学学报,2003,32(5):491-495
    17.黄铭洪,骆永明.矿区土地修复与生态恢复.土壤学报,2003,40(2):161-169
    18.蒋承落.完善环境地质学科促进环境地质工作.地质通报,2004,23(8):732-736
    19.蒋万春.微量元素Cd与动物营养.国外畜牧学:饲料,1991(4):26-28
    20.李海英,顾尚义,吴志强.矿山废弃土地复垦技术研究进展.贵州地质,2006,23(4):302-305
    21.李晋川,王文英,卢崇恩.安太堡露天煤矿新垦土地恢复的探讨.河南科学, 1999(17):92-95
    22.李青丰,曹江营.准格尔煤田露天矿植被恢复研究.中国草地,1997(2):23-25
    23.李鑫.生态位理论研究进展.重庆工商大学学报(自然科学版),2008,25(3):307-309
    24.李永庚,蒋高明.矿山废弃地生态重建研究进展.生态学报,2004,24(1):95-100
    25.梁永清,郭慧理.金精矿中氰化物的测定.黄金,2006,27(12):63-64
    26.刘钟龄,王炜,郝敦元等.内蒙古草原退化与恢复演替机理的探讨.干旱区资源与环境,2002(1):84-91
    27.龙花楼.采矿迹地景观生态重建的理论与实践.地理科学进展,1997,16(4):68-74
    28.马彦卿.矿山土地复垦与生态恢复.有色金属,1999,51(3):23-25
    29.莫测辉,蔡全英,全江海.城市污泥在矿山废弃地复垦的应用探讨.生态学杂志,2001,20(2):44-47
    30.聂湘平,蓝崇钮,张志权等.铜对大叶相思-根瘤菌共生固氮体系的影响.应用生态学报,2002,13(2):137-140
    31.彭高辉,陈守余.矿区土地复垦与对策.安全与环境工程,2003,10(1):22-25
    32.彭建,蒋一军,吴健生等.我国矿山开采的生态环境效应及土地复垦典型技术.地理科学进展,2005,22(2):38-48
    33.彭少麟.恢复生态学与热带雨林的恢复.世界科技研究与发展,1997,19(3):58-61
    34.彭少麟.退化生态系统恢复与恢复生态学.中国基础科学,2001(3):18-24
    35.彭少麟,陆宏芳.恢复生态学焦点问题.生态学报,2003,23(7):1249-1257
    36.任海,彭少麟.恢复生态学导论.北京:科学出版社,2001
    37.任继平,李德发,张丽.锡毒性研究进展.动物营养学报,2003,15(1):1-6
    38.宋焕斌,张文彬.加强矿山复垦保护土地资源.中国矿业,1998,7(3):72-75
    39.束文圣,蓝崇任,张志权.凡口铅锌尾矿影响植物定居的主要因素分析.1997,8(3):314-318
    40.苏光全,何书金,郭焕成.矿山废弃土地资源适宜性评价.地理科学进展,1998,17(4):39-45
    41.孙泰森,师学义,杨玉敏等.五阳矿区采煤塌陷地复垦土壤的质量变化研究.水土保持学报,2003,17(4):35-37
    42.唐文杰,李明顺.广西锰矿区废弃地优势植物重金属含量及富集特征.农业环境科学学报,2008,27(5):1757-1763
    43.汪青.环境中氰化物测定方法评述.环境污染与防治,2005,27(4):259-262
    44.武雄,韩兵,管清花等.北京市固体矿山生态环境现状及修复对策.地学前缘,2008,15(5):324-329
    45.夏汉平,蔡锡安.采矿地的生态恢复技术.应用生态学报,2002,13(11):1471-1477
    46.徐友宁.矿山地质环境调查研究现状及展望.地质通报,2008,27(8):1235-1244
    47.杨居荣,鲍子平,张素芹.Cd、Pb在植物细胞内的分布及其可溶性结合形态.中国环境科学,1993,13(4):263-268
    48.杨修,高林.德兴铜矿山废弃地恢复与重建研究.生态学报,2001,21(11):1932-1940
    49.于君宝,刘景双,王金达等.矿山复垦土壤典型元素时空变化研究.中国环境科学,2001,21(3):235-239
    50.张光灿,刘霞,王燕.煤矿山生态重建过程中风化矸石山植被生长及土壤水文效应.水土保持学报,2002,16(5):20-23
    51.张建彪,闫美芳,上官铁梁.山西采煤的主要生态问题及恢复和重建对策.安徽农业科学,2008,36(24):10668-03
    52.张蕾娜,冯永军.采煤塌陷区复垦土地的肥力状况研究.福建水土保持,2001,13(1):57-60
    53.张应红,文志岳.矿山环境综合治理政策研究.中国地质矿产经济,2003(6):9-11
    54.张志权,束文胜.豆科植物与矿业废弃地植被恢复.生态学杂志,2002,21(2):47-52
    55.赵方莹.北京铁矿废弃地植被恢复技术与效应研究.北京林业大学,2008
    56.竺效.论我国“生态损害”的立法定义模式.浙江学刊,2007(3):166-171
    57.Bagdanariciene Z etc. Problems of utilization of urban sewage sludge. Ecology, 1990(4):101-109
    58. Blaga G.20 years of experiments on the reclamation by surface mining in Transylvania. Buletinul university destiinte cluj Napoca sreia Agriculture Si Horticulture.1994,48(1):107-114
    59. Bradshaw A D, Chadwick M J. The Restoration of Land, Oxford, Blackwell Scientific Publication,1980,15-57
    60.Bradshaw A D.Restoration of mined lands:using natural Processes. Ecological Engineering,1997, (8):255-269
    61. Brian JW, Catherine P. Biodiversity and ecosystem functioning:importance of species evenness in an old field. Ecology,2000,81 (4):887-892
    62.Burton CM etc. Determining the optimal sowing density for a mixture of native plants used to revegetate degraded ecosystems. Restoration Ecology,2006, 14(3):379-390
    63.Cairns Jr J. Restoration ecology. Encyclopedia of Environmental Biology,1995(3): 223-235
    64.Dadhwal KS.Studies on placing and mixing of a normal soil in limestone mine spoil on the performance of two tree spices. Indian-Forester,1993(12):1011-1019
    65.Darina Hodacova, Karel Prach. Spoil Heaps from Brown Coal Minings:Technical Re-clamationVersus Spontaneous Revegetation. Restoration Ecology,2003,8(2): 103-111
    66.Diamond J.Reflections on goals and on the relationship between theory and practice. In:W R Jordan Ⅲ, M E Gilpin, J D Aber. Restoration Ecology:a Synthetic Approach to Ecological Research. Cambridge:Cambridge University Press.1987, 329-336
    67.Gemmell R P. Conlonisation of Industrial Wasteland. London:Arnold,1977,21-47
    68.Gentcheva-kostadinova S etc. Reclamation of coal mining lands:UK and Bulgaria. Industry and Environment,1993,16(3):36
    69.Hobbs R J, Norton D A. Towards a conceptual framework for restoration ecology. Restoration Ecology,.1996,4(2):93-110
    70.Jackson L, Lopoukhine N, Hillyard D. Ecological restoration:a definition and comments. Restoration Ecology,1995,3(2):71-75
    71.Jaffre T. Revegetation mining sites in New Caledonia. Bois-et-Forests-des-Tropiques.1994(42):45-57
    72.Jordan Ⅲ W R. "Sunflower forest":ecological restoration as the basis for a new environmental paradigm.In:D A Baldwin Jr, J de Luce, C Pletsch. Beyond Reservation:Restoring and Inventing Landscape. Minneapolis University of Minneota Press.1994,17-34
    73. Karen D,Holl.Long-term vegetation recovery on reclaimed coal surface mines in the Eastern USA. Journal of Applied Ecology,2002,39(6):960-970
    74.Margus Pensa, Arne Sellin. An Analysis of Vegetation Restoration on Opencast Oil Shale Mines in Estonia. Restoration Ecology,2004,12(2):200-206
    75.Martine-Ruiz C, FernandezSantos B. Effect of substrate coarseness and exposure on plant succession in uranium-mining waste. Plant Ecology,2001,155(1):79-89
    76. Mench M, Bussiere S,Boisson J et al. Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments.Plant and Soil,2003, 249(1):187-202
    77.Orrock, Brent J. Seed predation, not seed dispersal, explains the landscape-level abundance of an early-successional plant. Journal of Ecology,2006,94(4):838-845
    78.Pamukcu, C. Simsir. F. Example of reclamation attempts at a set of quarries located in IzmirTurkey. Journal of Mining Science,2006,42(3):304-308
    79. Panago poulos T etc. Early growth of Pinus nigra and Robinia pseudoaeacia stands. Landscape and urban planning.1995,32(1):19-29
    80. Petersen, S. L. Roundy, B.A. Bryant Revegetation Methods for High-Elevation Roadsides at Bryce Canyon National Park, Utah. Restoration Ecology,2004,12(2): 248-257
    81.Schuman GE etc. Revegetation bentonite mine-spoils with sawmill by-products and gypsum. Agriculture utilization of urban and industrial by-products proceeds.1995, 261-274.
    82. Soni P etc. Revegetation and ecological monitoring of an open cast rock phosphate mine. Proceedings of the conference.'Reclamation a global perspective'. Calgary, Alberta,1989(1):327-332
    83.Sopper WE etc. Proceedings of the international symposium Rapid ecological restoration of mined using Municipal sewage sludge. Land reclamation advance in research and technology.1992.317-326
    84. Ulfig K. Keratinophilic fungi in wastewater sediments. Rocznik Panstwowege Zaklada Higieny.1991,42(3):309-315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700