哈尔滨城区土壤高光谱特性与TM遥感的定量反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机质为土壤营养的重要来源,不仅为植物提供所需的各种营养元素,同时对土壤结构的形成、改善土壤物理性质、提高土壤保肥能力和缓冲性能有决定性作用。如何快速、准确地获得土壤信息是目前各国学者关注的焦点。高光谱遥感技术以其光谱分辨率高、波段连续性强等特点,能够及时、准确、动态地监测分析作物的健康状况和影响作物产量的土壤环境因素,这对农业生产、土壤质量监测、生态环境的维护与治理具有现实意义。
     通过GPS定位、野外采样分析和室内高光谱测定的方法,研究了土壤有机质和游离态氧化铁含量、土壤成分的高光谱曲线特征,以及利用matlab7.1对土壤有机质,氧化铁与土壤反射率的数学变换形式进行相关性分析。以光谱反射率(反射率倒数,反射率对数,反射率一阶微分等)作为自变量,有机质和游离态氧化铁作为因变量,运用多元线性回归、BP神经网络方法建立数学模型。研究结果显示:
     (1)不同土地利用类型(农用地、林用地、城市绿地、松花江沿岸流域、湿地)土壤有机质含量和游离态氧化铁含量差异较大,它们的变化幅度分别为12.24-274.24g/kg和0.65-10.59mg/kg。它们的平均含量排序分别为农用地>林用地>湿地>松花江沿岸流域>城市绿地和松花江沿岸流域>农用地>城市绿地>林地>湿地。
     (2)土壤颜色、机械组成,以及有机质含量、氧化铁含量的不同,影响土壤光谱曲线的差异。土壤随着黏粒、有机质含量的增加,土壤反射率将低。反之随着砂粒增加,颜色变浅,以及有机质含量的减少土壤反射率相对增加。
     (3)运用反射率对数,反射率倒数的对数,反射率对数的一阶微分,反射率倒数一阶微分等4种方法,分析了土壤光谱反射率与土壤有机质含量的关系,以及土壤光谱反射率与土壤游离态氧化铁含量的关系。发现对有机质含量做对数变换可提高与土壤反射率的相关性。采用多元线性回归统计法和BP神经网络法分别建立了预测土壤有机质含量和土壤游离态氧化铁含量的多元回归模型、BP神经网络模型。由BP神经网络法建立的土壤有机质含量模型预测结果较好,由反射率平方根的一阶微分建立的游离态氧化铁含量的BP神经网络模型的精度高于多元线性回归模型。
     (4)通过土壤光谱和土壤特性参数建立的反演模型,对TM遥感图像进行了土壤有机质和游离态氧化铁的含量的专题制图,建立较为精细的土壤参数空间分布图。
Organic matter is an important source of soil nutrition. It can not only provide almost all necessary nutrient elements with plants, but also takes determinant roles in the formation of soil structure, and the improvement of soil physical properties and increased capacity of soil fertility conservation and buffering properties. Quick and accurate acquirement of soil information is widely paid more attention to by researchers. Hyperspectral remote sensing technique has special advantages of high spectral resolution and strong band continuity and so on. It can monitor and analyze crops vigor and soil environmental factors that affect crops production in timely, accurate and dynamical way. These possess practical significance for agricultural product and soil quality monitoring, eco-environment management and maintenance.
     The content of soil organic matter and free ferric oxide, the characteristics of hyperspectral curve of soil composition were studied by methods of GPS positioning, field sampling and analysis, hyperspectral measurement. Correlation analysis between soil organic matter, ferric oxide and soil reflectance was made in their mathematical transformation forms by Matlab 7.1. Mathematical models were built among spectral reflectance as independent variables and organic matter and ferric oxide as the dependent variable by multivariate linear regression and BP neural network. Research results showed:
     (1) For the content of soil organic matter and free ferric oxide, there were greater differences between different types of land use (farmland, forest land, urban green land, Song Hua Jiang River, wetland). They ranged from 12.24 to 274.24 g/kg, and 0.65-10.59 mg/kg, respectively. Their average value was farmland>forest land> wetland>Song Hua Jiang River>urban green land, Song Hua Jiang River>farmland>urban green land>forest land>wetland, respectively.
     (2) The differences in soil color, soil mechanical composition, the content of soil organic matter and ferric oxide influenced soil spectra curve. Soil reflectance decreased with increased content of soil clay and soil organic matter. Slight loss of soil color, increased content of sand particles and decreased content of soil organic matter resulted in increased soil reflectance, comparatively.
     (3) Using reflectance logarithms, the countdown reflectance logarithms, reflectance of one-order differential, the relationship between soil spectral reflectance and the content of soil organic matter, and between soil spectral reflectance and the content of free ferric oxide were analyzed. It was found that logarithm transformation of soil organic matter content could increase their correlation. The models of multivariate linear regression and BP neural network were established in order to predict their content of soil organic matter and free ferric oxide. The prediction result from BP neural network model was better. The prediction accuracy for the content of free ferric oxide from BP neural network model was higher than that from multivariate linear regression model.
     (4) Spatial distribution maps in detail were drawn according to inversion models established between soil spectrum and characteristic parameters, and the mapping for soil organic matter and free ferric oxide by TM remote sensing image.
引文
[1]梅安新,彭望琭,秦其明,等.遥感导论.北京:高等教育出版社,2001:2~3
    [2]陈彭述,童庆禧,郭东华.遥感信息机理研究.北京:科学出版社,1988:35~36
    [3]刘伟东.高光谱遥感土壤信息提取与挖掘研究.北京:中国科学院博士论文.2002.25
    [4]张立福,张良培,村松加奈子等.利用MODIS数据计算陆地植被指数VIUPD.武汉大学学报[信息科学版].2005,30(7):371~376
    [5]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用.北京电子工业出版社.2006:2~4
    [6]浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000:1~228
    [7]Condit H.R.. The spectral reflectance of American soil. Photogramm.Eng.1970,36:955~ 966
    [8]Stone E R,and Baungardner M F.Characteristic variations in reflectance of surface soils. Soil Science Society of America,1981,45:1161~1165
    [9]戴昌达.中国主要土壤光谱反射特性分类与数据处理的初步研究.遥感文集.北京:科学出版社,1981:315~323
    [10]王人潮,苏海萍,王深法.浙江省主要土壤光谱反射特性及其模糊分类在土壤分类中的应用研究.浙江农业大学学报,1986,12(4):464~471
    [11]黄应丰,刘腾辉.华南主要土壤类型的光谱特性与土壤分类.土壤学报,1995,32(1):58~68
    [12]季耿善,徐彬彬.土壤主要粘土矿物的近红外反射特性[A].中国科学院南京土壤研究所.土壤专报(第40号).北京:科学出版社,1987:59~65
    [13]吴豪翔,王人潮.土壤光谱特征及其定量分析在土壤分类上的应用研究.土壤学报,1991,28(2):178~185
    [14]Lyon.R.J.P.风化及其它类荒漠河漆表面层对高光谱分辨率遥感的影响(一).环境遥感,1996,11(2):138~150
    [15]Lyon.R.J.P,风化及其它类荒漠河漆表面层对高光谱分辨率遥感的影响(二).环境遥感,1996,11(3):146~194
    [16]周萍.高光谱土壤成分信息的量化反演.北京:中国地质大学博士论文.2006:65~71
    [17]Lillesand, T. M., Kiefer, R. W. Remote Sensing and Image Interpretation. John Wiley and Sons Ins New York,NY,1987,7(1):30~40
    [18]高永光,胡振琪.高光谱遥感技术在土壤调查中的应用.矿业研究与开发,2006,26(1):45~-47
    [19]张成才,吴泽宁.遥感技术土壤水分含量方法的比较研究.灌溉排水学报,2004,23(2):69~72
    [20]Krishnan P., JD Alexander., BJ Butler. etal. Reflectance technique for predicting soil organic matter. Soil Science,1980,44:1282~1285
    [21]BedidiA., Cervelle B., Madeira J. etal. Moisture Effects on Visible Spectral Characteristics of Later tic Soils. Soil Science,1992,153(2):129~141
    [22]Muller E, Decamps H. Modeling soil moisture reflectance. Remote Sensing of Environment,2000,76(2):173~180
    [23]Bowers S A, Hanks R J. Reflection of radiant energy form soil. Soil Science. 1965,100(2):130~138
    [24]Dalal R C, Henry R J. Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometer. Soil Science Society of America, 1985,50:120-123
    [25]Bowers S A, Smith S J. Spectra photometric determination of soil water content. Soil Science Society of America,1972,36:978~980
    [26]Hatanaka T, Nishimune A, Nira R. Estimation of available moisture holding capacity ofupland soils using Land sat TM data. Soil Sci. Plant Nurture,1995,41:577~586
    [27]Stark E, Lutcher K. Near-infrared analysis (NIRA):a technology for quantitative and qualitative analysis. Appl Spectra,1986,22(4):335~399
    [28]Paloscia S, Pampaloni P. Microwave Polarization Index for Monitoring Vegetation Growth. IEEE Translations on Geosciences and Remote Sensing,1988,26:617~621
    [29]Liu W D, Beret F, Gu X F. et al. Relating soil surface moisture to reflectance Remote Sense. Environment,2002,81(2/3):238~246
    [30]彭玉魁,张建新,何绪生,等.土壤水分、有机质和总氮含量的近红外光谱分析研究.土壤学报,1998,35(4):554~559.
    [31]王纪华,赵春江,郭晓伟.等.用光谱反射率诊断小麦叶片水分状况的研究.中国农业科学,2001,34(1):104~107
    [32]刘伟东,张兵.高光谱遥感土壤湿度信息提取研究.土壤学报,2004,41(50):700~706
    [33]Henderson T L, BaumgardnerM F, Franzmeier D P, etal. High dimensional reflectance analysis of soil organic matter. Soil Science Society of America,1992,56:865~872
    [34]Sudduth K A, Hpmmel J W. soil organic matter CEC and moisture sensing with portable NIR spectrophptometer. Transaction of the ASAE,1993,36(6):1571~1582
    [35]Ben-Dor E, Banin A. Near-infrared analysis as a rapid method to Simultaneously evaluate several soil properties. Soil Science Society of America,1995,59:364~372
    [36]Chang C W, Laird D A. Near-infrared reflectance spectro-scopic analysis of soil C and N. Soil Science.2002,167(2):110~116
    [37]Mecarty.G.W,Reeves.J.B, Reeves.V.B,etal. Mid-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Science Society of America,2002.66(2):640~646
    [38]AI-Abbas A H, Swain P H, Baumgardner M F, Relating of matter and clay content to the content to the multispectral radiance of soils. Soil Science.1972,114(6):477~485
    [39]徐彬彬,戴昌达.南疆土壤光谱反射特性与有机质含量的相关分析.科学通报,1980,6:282~284
    [40]Baumgardner F, Stoner E R, Silval L F, Biehl L L. Reflective Properties of soils. In Brady N.(Ed), Advances in Agronomy,38. Academia Press. NewYork,1985:1~44.
    [41]Schnizer M, Schuppli P. Method for the sequential extraction of organic matter from soils and soil fractions Soil Science Society of America,1989,53:1418~1424
    [42]Wang Z D, Pant B C, Langford C H. Spectroscopic and structural characterization of a Laurentian fulvic acid:Notes on the origin of the color. Anal. Chim. Acta,1990.232:43~ 49
    [43]郭子祺,王志刚.西秦岭金矿化带中土壤与岩石实验室光谱相关性研究.遥感学报,1999,3(3):220~224
    [44]Galv a o L S, Vitorelloi. Variability of laboratory measured soil line of soils from southeastern Brazil.Remote Sensing of Environmen,1998,63(2):166~181
    [45]Viscarra Rossel R A, Walvoort D J, McBratney A B, etal. Visible,near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma,2006,131:59~75
    [46]沙晋明,陈鹏程,陈松林.土壤有机质光谱响应特性研究.水土保持研究,2003,10(2):21~24
    [47]杨景成,黄建辉,潘庆民,等.西双版纳不同热带生态系统土壤有机质的光谱学特性.植物生态学报,2004,28(5):623~629
    [48]谢伯承,薛绪掌,王纪华,等.褐潮土的光谱特性及用土壤反射率估算有机质含量的研究.土壤通报,2004,35(4):391~395
    [49]杨萍.基于实验室高光谱反射数据的土壤成分含量估算研究.南京:南京农业大学硕士论文,2007:45~55
    [50]丁国香.基于神经网络的土壤有机质及全铁含量的高光谱反演研究.南京:南京信息工程大学硕士论文,2008:50~56
    [51]曾志远.卫星遥感图像计算机分类与地学应用研究.北京:科学出版社,2004:135~167
    [52]徐永明,蔺启忠,王璐,等.基于高分辨率反射光谱的土壤营养元素估算模型.土壤学报,2006,43(5):709~716
    [53]郑立华,李民赞,潘娈,等.基于近红外光谱技术的土壤参数BP神经网络预测.光谱学与光谱分析,2008,28(5):1160~1164
    [54]黄明祥.海涂土壤高光谱特性及其沙粒含量预测研究.土壤学报,2009,46(5):181~186
    [55]张娟娟,田永超,朱艳,等.曹卫星不同类型土壤的光谱特征及其有机质含量预测. 中国农业科学,2009,42(9):3154~3163
    [56]Madeira Netto J. Spectral reflectance properties of soils. Photo-inter-pretation.1996,2:66
    [57]Torrent J, Schwertmann U, Fechter H, etal. Quantitative relationship s between soil color and hematite content. Soil Science,1983,136(6):354~358
    [58]彭杰,张杨珠,周清,等.去除有机质对土壤光谱特性的影响.土壤学报,2006,38(4):453~458
    [59]RichterN, Chabrillat S, Kaufmann H. Preliminary analysis for soil organic carbon determination from spectral reflectance in the frame of the EU p rejected Survey.1st International Conference on Remote Sensing Degradation and Desert if ication,Trie.2005,345~386
    [60]Montgomery O L. An investigation of the relationship between spectral reflectance and the chemical, physical and genetic characteristics of soils. Purdue University,1976.78~ 80
    [61]Obukhov,A.I.,D.C.Orlov.Spectra reflectance of the major soil groups and the possibility of using diffuse reflection in soil investigations. Sov.Soil Sci,1964,2:174~184
    [62]季耿善,徐彬彬.土壤粘土矿物反射特性及其在土壤学上的应用.土壤学报,1987,24(1):67~76
    [63]何挺,王静,程烨,等.土壤氧化铁光谱特征研究.地理与地理信息科学,2006,22(2):30~34
    [64]陈立新.土壤实验教程.哈尔滨:东北林业大学出版社,2005,50~101
    [65]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社.1999,60~62
    [66]周清.土壤有机质含量高光谱预测模型及其差异性研究.杭州:浙江大学博士论文.2004,23~79
    [67]Bedidi A, Cervelle B, Maderira J. Moisture effects on spectral character is ties(visible) of literate soils. Soil Science.1992,153:129~141
    [68]H. L. Mathews, R. L. Cunningham, G. W. Petersen:Spectral Reflectance of Selected Pennsylvania Soils. Soil Science Society of America,1973(37):421~424
    [69]Stoner E R. MF. Baumgardner, LL Biehl. etal. Atlas of soil reflectance properties. Purdue University, Indiana,1980:34~67
    [70]Gerbermann A H.,Weher, DD. Reflectance of varying mixtures of clay soil and Photogram metric.Engineering and Remote Sensing.1979,45(8):1145~1150
    [71]魏海砷.神经网络机构设计的理论与方法.北京:国防工业出版社,2005,53~54
    [72]李兴旺,冯宝平.基于BP神经网络的土壤含水量预测.水土保持学报,2002,16(5):117~119
    [73]徐振东.人工神经网络的数学模型建立及成矿预测BP的实现.长春:吉林大学硕士论文2002,13~15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700